
FOLIA SCANDINAVICA
VOL. 4 POZNAŃ 1997

THREE TEXT SEARCHING UTILITIES

Jakub Saternus

INTRODUCTION

During my stay at the University of Gothenburg I
had access to a large collection of Swedish texts (nearly 30e6 words). My
Master’s thesis was consequently based on a computational research on
Swedish lexicalised verb phrases. In order to carry out such an auto
mated survey, one has to find an appropriate tool for it. I wrote the three
programs because I found the standard UNIX power tools to be of a too
general nature.

I considered writing so-called “wrappers” i.e., usually shell scripts that
at some stage invoke other programs in a specially created environment,
but after a few attempts I decided to implement a very specialised set of
small programs that, connected together, would give the desired result. I
am planning to discuss the linguistic goal of my research in a separate
paper. The results are very interesting and deserve a proper presentation.
Here I would like to focus on the programs and programming issues only.

This collection of small UNIX utilities was not meant to be a fully cus-
tomisable set of programs. It was created in order to satisfy my own
needs. Each of the programs is in a way finite i.e., it performs only one
task and thus any other uses of this software should be considered an
abuse of it, not predicted by their author.

In the final stage of the code development the main Makefile knew
how to make three programs:

1. fras
2. cntwrds
3. conc

162 Jakub Saternus

This paper cannot be considered as a proper documentation of the above
mentioned programs. Firstly, it is being written 2 months after the pro
grams were finally “checked in” using the Revision Control System, sec
ondly it is being written as a separate paper, not firmly attached to the
source code. To be exact I am editing this text in MS Word for Windows 2.0a
(at the editor’s request), while the programs were developed on UNIX ma
chines. The source files, on the other hand, do contain some valuable com
ments but they are not suitable for generating documentation. To cut a long
story short, I have not written the programs in CWEB.

As for the languages that I used: choosing UNIX means choosing C.
I went a bit further and used C++ because the GNU C++ library provides
very functional implementations of a dozen classes operating on the most
widely used data structures. I also used lex for generating lexical analy
sers for all applications. All of the programs also rely heavily on a couple
of common C++ string handling classes.

Each program takes as an obligatory parameter one or more (in case
of f ras) word lists i.e., files containing a number of words separated by a
newline character. Trailing spaces are stripped but otherwise the list
should be prepared very carefully, which in most cases implies that it
should not be edited by hand. Here is a sample:

a n sta lla
anstallde
an sta ller
an sta llt
anvanda
anvande
anvander
anvant
a w isa
aw isade

The order does not matter as the whole list is always sorted before it
is used. This approach may seem not too economical as it implies that
each list fed into the program is sorted on every run but this is due to the
discrepancy between the so rt standard utility and the standard
strcmpO function on the system that I originally developed my pro
grams - they handled the Swedish national characters differently.

Every program takes its input from std in and produces output on
stdout. Redirection is necessary in order to feed data and save the re
sults. This can usually be done by typing:

$ prog_name a rg l arg2 < in p u t_ f i le > ou tp u t_£ ile

at the UNIX shell prompt.

Three Text Searching Utilities 163

l.FRAS

usage: fras verbs adverbs nouns prepositions
Each of the arguments should be a valid file name containing a list of

words to be searched for. The program was primarily used to search for
patterns of the form:

verb [adverb] noun \preposition]
(square brackets denote an optional component)

and present it in the following way:
verb [adverb] noun preposition (following words)

provided that the program has found an adverb and a preposition. Other
wise the output might look like:

verb noun (following words)
so it is rather highly specialised and thus does its job quite well. Exten
ding it to handle different combinations should not be too difficult
(one could invoke it by providing three adverb lists but the question is
whether such combinations are valid syntactic structures). Even a small
grammar (specified in an additional file) could be implemented which
would mean turning the program into an intelligent parser. So far it was
not necessary to do so.

Here is a sample search session:
sympatiserade man med (deras kamp,)
var [ens] p l ik t (och man sk u lle vara ak tiv i)
liknande grupper bland (tyska fly k tin g a r som kampade inbordes)
snara forandringar (och trodde a tt detta var socia lism en s)
bottnar [ocksa] besv ikelsen (och b it t e r h e te n ,)
kunde man (besk y lla n&gon f o r .)
b lev motet med (Sverige?)

The amount of the right context depends on whether a punctuation
mark comes right after the found construction or a few words later.

2. CNTWKDS I.E., COUNT WORDS

Counting all the words in a file is trivial. This simple command does
the job:

$ wc - w filename
counting the number of occurrences of the word “the” in a file is also easy:

164 Jakub Saternus

$ grep 'the' filename | wc -1
but what if we want to count all the occurrences of several words in seve
ral files? There are a number of solutions based on different standard
and non-standard UNIX tools but they all mean writing some sort of a
script in some ugly and cryptic (e.g. Perl) language. That is why I decided
to write my own little word counting program. If it proves to be bug-free I
may well release i t . . .

usage: cntwrds word_list
The only argument is a file containing a list of words that we are in

terested in counting in the input stream. It can even handle hyphenated
words by simply ignoring hyphenation marks (which can be dangerous in
some cases). The output is very simple and well suited to further auto
matic processing.

0 a n sta lla
0 a n sta lld e
0 a n s ta lle r
0 a n s ta llt

5 4 anvanda
14 anvande
41 anvander

7 anvant

3. CONC I.E., IMITATION OF A CONCORDANCE PROGRAM

This program was inspired by an interactive concordance program
that I once had access to. The main drawback of that original program
was that a user could not supply more than one word to look up at a
time. In my case the number of words I needed to look up, in order to
analyse the context they occur in, was over 300, so there really was no
other way than to write “a quick hack” to solve the problem. I needed to
find out how often Swedes omit certain grammatical contractions before
past participle forms of verbs.

usage: conc [-w width] [-t tab] -f word_list
Taking a short list of random words:
are
f i l e
f i l e s
to

Three Text Searching Utilities 165

the program generates the following output:

are defined in the system header _file sys/stat.h. The magic number tests are
/stat.h. The magic number tests _are used to check for files with data in
The magic number tests are used _to check for files with data in particular

tests are used to check for _ files with data in particular fixed formats,
(compiled program) a.out _file, whose format is defined in a.out.h and

standard include directory. These _files have a 'magic number' stored in a
place near the beginning of the _file that tells the UNIX operating system
UNIX operating system that the _file is a binary executable, and which of
'has been applied by extension _to data files. Any file with some invariant

been applied by extension to data _ files. Any file with some invariant
by extension to data files. Any _file with some invariant identifier at a

This might not seem too interesting but in fact what we get here as a
result is the actual- usage of these four words. The list can easily be
further processed by the standard UNIX utilities.

The -w parameter specifies the width of the output and - t specifies
the position of the underscore. (I chose the underscore because it is very
seldom used in ordinary texts and on the other hand it is very easy to
spot.)

I hope that this brief description of the three text utilities will draw
the reader’s attention to the enormous possibilities of text processing in
the UNIX environment.

REFERENCE

Kernighan, Brian W. and Dennis M. Ritchie, 1988, The C Programming Language,
Prentice Hall Software Series.

Knuth D. E., 1973, The Art of Computer Programming, volume III Sorting and
Searching, Addison-Wesley Publishing Company.

Levine, John R. et al., 1992, lex & yacc, O’Reilly & Associates, Inc.
Oram Andrew and Steve Talbott, 1991, Managing Projects with make, O’Reilly & As

sociates, Inc.
Sedgewick Robert, 1990, Algorithms in C++, Addison-Wesley Publishing Company.

