Abstract
Seen in the light of increasing anthropogenic impacts on the environment and a growing demand for potable water, pollution of groundwater is a very important issue, especially in large city areas. The present research includes analyses of the chemical composition at 109 measuring points in the Wrocław area, and of the spatial distribution of groundwater components with regard to land use, geological structure and hydrogeological conditions. Based on spatial analyses, it has been noted that changes depend mainly on land use and the kind of activity carried out in close proximity of water intake. Shallow groundwater in Wrocław is characterised by a great variability of main components. Factor analysis has made it possible to distinguish these components and determine the degree of their influence on the chemical composition of shallow groundwater in the entire study area. The current research demonstrates the high sensitivity of aquifers to pollution and emphasises the role of human activity in levels of groundwater pollution in urban areas.
References
Ali, J., Kumar, M., Saraf, S. & Jain, T., 2015. Study of water quality of shallow groundwater. Advances in Applied Science Research 6, 78–87.
Cattell, R.B., 1966. The scree test for the number of factors. Multivariate behavioral research 1(2), 245–276. 10.1207/s15327906mbr0102_10 DOI: https://doi.org/10.1207/s15327906mbr0102_10
Chudzik, L. & Wojtkowiak, A., 2006. Hydrogeological Map of Poland, scale 1:50,000, Top aquifer – hydrodynamics and occurence, sheet 764 Wrocław. Polish Geological Institute – National Research Institute, Warszawa.
Ciężka, M., Modelska, M., Górka, M., Trojanowska-Olichwer, A. & Widory, D., 2016. Chemical and isotopic interpretation of major ion compositions from precipitation: a one-year temporal monitoring study in Wrocław, SW Poland, Journal of Atmospheric Chemistry 73, 61–80. 10.1007/s10874-015-9316-2 DOI: https://doi.org/10.1007/s10874-015-9316-2
Criollo, R., Vázquez-Suñé, E., Burdons, S., Enrich, M. & Chesa, M.J., 2018. Urban groundwater quality. Update of the Barcelona city. [In:] EGU General Assembly Conference Abstracts, p. 18937.
Czerski, M. & Ihnatowicz, A., 2006. Hydrogeological Map of Poland, scale 1:50,000, Top aquifer – hydrodynamics and occurence, sheet 727 Trzebnica. Polish Geological Institute – National Research Institute, Warszawa.
Davies, P.J., Wright, I.A., Jonasson, O.J. & Findlay, S.J., 2010. Impact of concrete and PVC pipes on urban water chemistry. Urban Water Journal 7, 233–241. 10.1080/1573062X.2010.484502 DOI: https://doi.org/10.1080/1573062X.2010.484502
Dorociak-Tokarczyk, K., Kazak, J. & Szewrański, S., 2018. The impact of a large city on land use in Suburban area – the case of Wrocław (Poland). Journal of Ecological Engineering 19, 89–98. 10.12911/22998993/81783 DOI: https://doi.org/10.12911/22998993/81783
Dragon, K., 2006. Application of factor analysis to study contamination of a semi-confined aquifer (Wielkopolska Buried Valley aquifer, Poland). Journal of Hydrology 331, 272–279. 10.1016/j.jhydrol.2006.05.032 DOI: https://doi.org/10.1016/j.jhydrol.2006.05.032
Dubicki, A., Dubicka, M. & Szymanowski, M., 2002. Klimat Wrocławia [Climate of Wroclaw]. [In:] Smolnicki, K. & Szykasiuk, M. (Eds), Środowisko Wrocławia – Informator [Environment of Wroclaw]. Dolnośląska Fundacja Ekorozwoju, Wrocław, p. 9–20 (in Polish).
EEA report | No 10/2017 Landscapes in transition – An account of 25 years of land cover change in Europe. https://www.eea.europa.eu/publications/landscapes-in-transition (access 20 January 2022).
European Commission, 2018. Urban Atlas 2018. FUA Delivery Report. https://land.copernicus.eu/local/urban-atlas/urban-atlas-2018 (access 9 September 2021).
European Commision, Eurostat, 2016. Urban Europe — statistics on cities, towns and suburbs. Publications Office, 10.2785/594675.
Foster, S., 2020. Global overview of groundwater in urban development – A tale of 10 cities. Water 12, 456, 1–8. 10.3390/w12020456 DOI: https://doi.org/10.3390/w12020456
Gizler, H., 1982. Detailed Geological Map of Poland, 1:50,000, sheet 726 Oborniki Śląskie. Polish Geological Institute – National Research Institute, Warszawa.
Grischek, T., Nestler, W., Piechniczek, D. & Fischer, T., 1996. Urban groundwater in Dresden, Germany. Hydrogeology Journal 4, 48–63. 10.1007/s100400050088 DOI: https://doi.org/10.1007/s100400050088
Horbowy, K., Krawczyk, A. & Krawczyk, J., 2010, Hydrogeological Map of Poland, scale 1:50,000, Top aquifer – quality, sheet 727 Trzebnica. Polish Geological Institute – National Research Institute, Warszawa.
IMWM-NRI (The Polish Institute of Meteorology and Water Management – National Research Institute), 2021. https://danepubliczne.imgw.pl/datastore (access 20 January 2022).
Johnson, A.I., 1975. Report on the activities of the international commission on subsurface water for the period 1971–1975. Hydrological Sciences Journal 20, 413–419. 10.1080/02626667509491573 DOI: https://doi.org/10.1080/02626667509491573
Khatri, N. & Tyagi, S., 2015. Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Frontiers in Life Science 8, 23–39. 10.1080/21553769.2014.933716 DOI: https://doi.org/10.1080/21553769.2014.933716
Kiełczawa, J., 2006. Hydrogeological Map of Poland, scale 1:50,000, Top aquifer – hydrodynamics and occurence, sheet 763 Leśnica. Polish Geological Institute – National Research Institute, Warszawa.
Kiełczawa, J., 2007. Hydrogeological Map of Poland, scale 1:50,000, Top aquifer – quality, sheet 763 Leśnica. Polish Geological Institute – National Research Institute, Warszawa.
Kiełczawa, J., Mroczkowska, B. & Kłonowski, M., 1997. Hydrogeological Map of Poland, scale 1:50,000, sheet 763 Leśnica (with Explanations). Polish Geological Institute – National Research Institute, Warszawa.
Kieńć, D., 1997. Hydrogeological Map of Poland, scale 1:50,000, sheet 727 Trzebnica (with Explanations). Polish Geological Institute – National Research Institute, Warszawa.
Konieczyńska, M., 1998. Geochemical atlas of Wrocław and environs, Part II: groundwater. Polish Geological Institute – National Research Institute, Warszawa.
Lidzbarski, M., Sokołowski, K. & Warumzer, R., 2016. Factors affecting resources and chemistry of ground-water in the Gdańska agglomeration area. Przegląd Geologiczny 64, 389–398 (in Polish with English summary).
Łabno, A., 1986. Detailed Geological Map of Poland 1:50,000, sheet 763 Leśnica. Polish Geological Institute – National Research Institute, Warszawa.
Macioszczyk, A., 1987. Hydrogeochemia [Hydrogeochemistry]. Wydawnictwa Geologiczne, Warszawa (in Polish), 475 pp.
Macioszczyk, A. & Dobrzyński, K., 2002. Hydrogeochemia strefy aktywnej wymiany wód podziemnych [Hydrogeo-chemistry of active exchange groundwater zone]. PWN, Warszawa (in Polish), 448 pp.
Mroczkowska, B. & Michniewicz. M., 1976. Atlas geologiczny Wrocławia, część III – Hydrogeologia [Geological atlas of Wrocław, part III – Hydrogeology] Wydawnictwa Geologiczne, Warszawa (in Polish).
Nasrabadi, T. & Abbasi Maedeh, P., 2014. Groundwater quality degradation of urban areas (case study: Teheran city, Iran). International Journal of Environmental Sciences and Technology 11, 293–302. 10.1007/s13762-013-0340-y DOI: https://doi.org/10.1007/s13762-013-0340-y
Różański, P. & Gawlikowska, E., 2015a. Geoenvironmental Map of Poland II 1:50,000, B, sheet 726 Oborniki Śląskie. Polish Geological Institute – National Research Institute, Warszawa.
Różański, P. & Gawlikowska, E., 2015b. Geoenvironmental Map of Poland II 1:50,000, B, sheet 727 Trzebnica. Polish Geological Institute – National Research Institute, Warszawa.
Różański, P. & Gawlikowska, E., 2015c. Geoenvironmental Map of Poland II 1:50,000, B, sheet 763 Leśnica. Polish Geological Institute – National Research Institute, Warszawa.
Różański, P. & Gawlikowska, E., 2015d. Geoenvironmental Map of Poland II 1:50,000, B, sheet 764 Wrocław. Polish Geological Institute – National Research Institute, Warszawa.
Senate Department for Urban Development (SenStadt): Berlin Environmental Atlas: Map Description, 1993. https://www.berlin.de/umweltatlas/en/water/quality-of-groundwater/1991/map-description (access 12 February 2022).
Senate Department for Urban Development (SenStadt): Berlin Environmental Atlas: Map Description, 2006. https://www.berlin.de/umweltatlas/en/water/quality-of-groundwater/2000/map-description (access 12 February 2022).
Serafin, R., Krawczyk, A. & Chudzik, L., 2010. Hydrogeo-logical Map of Poland scale 1:50,000, Top aquifer – quality, sheet 764 Wrocław. Polish Geological Institute – National Research Institute, Warszawa.
Shi, X., Wang, Y., Jiao, J.J., Zhong, J., Wen, H. & Dong, R., 2018. Assessing major factors affecting shallow groundwater geochemical evolution in a highly urbanized coastal area of Shenzhen City, China. Journal of Geochemical Exploration 184, 17–27. 10.1016/j.gexplo.2017.10.003 DOI: https://doi.org/10.1016/j.gexplo.2017.10.003
Statistical Yearbook of Wrocław City, 2020. https://wro-claw.stat.gov.pl/en/publications/statistical-year-books/statistical-yearbook-of-wroclaw-city-2020,4,14.html (access 20 January 2022).
Szkudlarek-Kajewska, J., Kajewski, I. & Otop, I., 2018 Bilans wodny powierzchni ziemi na obszarze Wrocławia na podstawie badań symulacyjnych przy pomocy modelu Wetspass [Earth surface water balance for area of Wrocław based on wetspass model simulations]. Inżynieria Ekologiczna 19, 33–41 (in Polish). 10.12912/23920629/95276 DOI: https://doi.org/10.12912/23920629/95276
The World According To GaWC, 2020. https://www.lboro.ac.uk/gawc/world2020t.html, (accessed 20 January 2022).
Trałka, M., Modelska, M. & Błachowicz, M., 2021. Agresywność chemiczna płytkich wód podziemnych Wrocławia [Chemical aggressiveness of shallow ground-water in Wrocław]. Przegląd Geologiczny 69, 901–908 (in Polish with English summary). 10.7306/2021.51 DOI: https://doi.org/10.7306/2021.51
Vázquez Suñé, E., 2003. Urban groundwater. Barcelona City case study. Universitat Politècnica de Catalunya, 134 pp.
Winnicka, G., 1985. Detailed Geological Map of Poland 1:50,000, sheet 764 Wrocław. Polish Geological Institute – National Research Institute, Warszawa.
Winnicki, J., 1985. Detailed Geological Map of Poland 1:50,000, sheet 727 Trzebnica. Polish Geological Institute – National Research Institute, Warszawa.
Wojciechowska, R., 1997. Hydrogeological Map of Poland, scale 1:50,000, sheet 726 Oborniki Śląskie (with Explanations). Polish Geological Institute – National Research Institute, Warszawa.
Worsa-Kozak, M. & Kotowski, A., 2009. Przykład wykorzystania danych z monitoringu wód podziemnych do oceny wpływu elektrowni wodnych na środowisko [The example of using data form groundwater monitoring to analyse the environmental effects of water-power plants]. Biuletyn Państwowego Instytutu Geologicznego 436, 555–562 (in Polish).
Worsa-Kozak, M., Kotowski, A. & Wartalski, A., 2008. Monitoring stanów wód podziemnych w rejonie Śródmiejskiego Węzła Wodnego we Wrocławiu [Groundwater fluctuations monitoring program in Wrocław Downtown Water Floodway System]. Przegląd Geologiczny 56, 302–308 (in Polish with English summary).
Zawistowski, K. & Wojtkowiak, A., 2006. Hydrogeological Map of Poland scale 1:50,000. Top aquifer – hydrodynamics and occurence, sheet 726 Oborniki Śląskie. Polish Geological Institute – National Research Institute, Warszawa.
Zawistowski, K. & Wojtkowiak, A., 2007. Hydrogeological Map of Poland scale 1:50,000. Top aquifer – quality, sheet 726 Oborniki Śląskie. Polish Geological Institute – National Research Institute, Warszawa.
Żuk, U., 2000. Hydrogeological Map of Poland scale 1:50,000, sheet 764 Wrocław (with Explanations). Polish Geological Institute – National Research Institute, Warszawa.
License
Copyright (c) 2022 Marta Trałka, Marek Błachowicz, Sebastian Buczyński
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.