Palaeoenvironmental and palaeoclimatic inferences based on X-ray computer tomography: a case study of alkaline lake deposits in Hungary
PDF

Keywords

freshwater carbonate
CT analysis
statistical properties
palaeoenvironment

How to Cite

Alzoubi, N. N., Gulyas, S., & Geiger, J. (2023). Palaeoenvironmental and palaeoclimatic inferences based on X-ray computer tomography: a case study of alkaline lake deposits in Hungary. Geologos, 29(1), 33–49. https://doi.org/10.14746/logos.2023.29.1.03

Abstract

Widely distributed freshwater carbonate sediments, i.e., limestone, dolomitic limestone and dolomite, developed in inter-dune alkaline ponds of the Danube-Tisza Interfluve in the centre of the Carpathian Basin during the Holocene. The key parameters that determine the formation of any given type of carbonate mineral (calcite, dolomite) are temperature, evaporation rate, pH and ion concentrations, in addition to CO2 absorption by aquatic plants. CT analysis is capable of recording small-scale density variations attributable to compositional differences of sedimentary rocks. As the type and proportion of rock-forming minerals and other components is an artifact of past environmental and climatic conditions, CT values may act as potential palaeoenvironmental proxies. The present study compares variations in rock-forming components obtained for freshwater carbonates utilizing the CT method with already available geochemical and palaeoecological proxy data. Variations in molluscan ecology and isotope geochemistry, sedimentation times and CTbased rock density values all indicate the relevance of millennial-scale, climate-driven changes in carbonate formation. As previously observed, the emergence of colder conditions in the North Atlantic, which resulted in increased cyclonic activity and heavier rainfall in western Europe and the Danube watershed area between 10.3 and 9.3 kyr cal BP, resulted in the emergence of humid conditions favouring a rise in the groundwater table at our site and precipitation of calcite from pore waters as opposed to high-magnesium calcite. This is clearly reflected in a negative shift in CT density values in our dated rock samples.

https://doi.org/10.14746/logos.2023.29.1.03
PDF

References

Akaike, H., 1974. A new look at statistical model identification. Institute of Electrical and Electronics Engineers IEEE 19/6, 716–723. DOI: https://doi.org/10.1109/TAC.1974.1100705

Alzoubi, N., Geiger, J. & Gulyas, S., 2022. Defining rock-forming components of Holocene freshwater carbonates via univariate statistical and mixture analysis of CT data. Studia Quaternaria 39, 113–128.

Bender, M.L., Lorens, R.B. & Williams, D.F., 1975. Sodium, magnesium, and strontium in the tests of planktonic foraminifera. Micropalaeontology 21, 448–459. DOI: https://doi.org/10.2307/1485293

Bhattacharyya, K., 2016. Godfrey Newbold Hounsfield (1919–2004): The man who revolutionized neuroimaging. Annals of Indian Academy of Neurology 19, 448–50. DOI: https://doi.org/10.4103/0972-2327.194414

Blaauw, M., Christen, J.A., Benett, K.D. & Reimer, P.J., 2018. Double the dates and go for Bayes-Impacts of model choice, dating density, and quality of chronologies. Quaternary Science Reviews 188, 58–66. DOI: https://doi.org/10.1016/j.quascirev.2018.03.032

Bond, G., Showers, W., Cheseby, M., Lotti, R., Almasi, P., deMenocal, P., Priore P., Cullen, H., Hajdas, I. & Bonani, G., 1997. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science 278, 1257–1266. DOI: https://doi.org/10.1126/science.278.5341.1257

Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M.N., Showers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I. & Bonani, G., 2001. Persistent solar influence on North Atlantic climate during the Holocene. Science 294, 2130–2136. DOI: https://doi.org/10.1126/science.1065680

Chen, Y., Shen, A., Pan, L., Zhang, J. & Wang, X., 2017. Features, origin, and distribution of microbial dolomite reservoirs: a case study of 4th member of Sinian Dengying Formation in Sichuan Basin, SW China. Petroleum Exploration and Development 44, 745–757. DOI: https://doi.org/10.1016/S1876-3804(17)30085-X

Cnudde, V., Masschaele, B., Dierick, M., Vlassenbroeck, J., Van Hoorebeke, L. & Jacobes, P., 2006. Recent progress in X-ray ct as a geosciences tool. Applied Geo-chemistry 21, 826–832. DOI: https://doi.org/10.1016/j.apgeochem.2006.02.010

Dempster, A.P., Laird, N.M. & Rubin, D.B., 1977. Maximum likelihood from incomplete data via the EM algorithm. Journal of Royal Statistical Society 39, 1–38. DOI: https://doi.org/10.1111/j.2517-6161.1977.tb01600.x

Duliu, O.G., 1999. Computer axial tomography in geo-sciences: An overview. Earth Science Reviews 48, 265–81. DOI: https://doi.org/10.1016/S0012-8252(99)00056-2

Fang, Y. & Xu, H., 2019. A new approach to quantify the ordering state of protodolomite using XRD, TEM, and Z-contrast imaging. Journal of Sedimentary Research 89, 537–551. DOI: https://doi.org/10.2110/jsr.2019.29

Fourar, M., Konan, G., Fichen, C., Rosenberg, E., Egermann, P., Lenormand, R., 2005. Tracer tests for various carbonate cores using X-Ray CT. International Symposium of the Society of Core Analysts, Toronto, Canada, SCA2005-56.

Földes, T., Árgyelán, G.B., Kiss, B., Repa, I. & Bogner, P., 2004. Application of medical computer tomography measurements to 3D reservoir characterization. Acta Geologica Hungarica 47, 63–73. DOI: https://doi.org/10.1556/AGeol.47.2004.1.5

Gaines, A.M., 1977. Protodolomite redefined. Journal of Sedimentary Petrology 47, 543–546. DOI: https://doi.org/10.1306/212F71D0-2B24-11D7-8648000102C1865D

Hammer, Ø., Harper, D.A.T. & Ryan, P.D., 2001. PAST: Palaeontological statistics software package for education and data analysis. Palaeontologia Electronica 4, 1–9.

Hicks, P.J., Ram Narayanan, K. & Deans, H.A., 1994. An experimental study of miscible displacements in heterogeneous carbonate cores using X-ray CT. SPE Formation Evaluation, 55–60. DOI: https://doi.org/10.2118/20492-PA

Jenei, M., Gulyás, S., Sümegi, P. & Molnár, M., 2007. Holocene lacustrine carbonate formation: old ideas in the light of new radiocarbon data from a single site in central Hungary. Radiocarbon 49, 1017–1021. DOI: https://doi.org/10.1017/S0033822200042879

Kenter, J.A.M., 1989. Applications of computerized tomography in sedimentology. Marine Geotechnology 8, 201–211. DOI: https://doi.org/10.1080/10641198909379868

Ketcham, R.A. & Carlson, W.D., 2001. Acquisition, optimization, and interpretation of X-ray computed tomographic imagery: Applications to the geosciences. Computers and Geosciences 27, 381–400. DOI: https://doi.org/10.1016/S0098-3004(00)00116-3

Kercsmár, Z., 2015. Surface geology of Hungary. Geological study. Geological and Geophysical Institute of Hungary, 66 pp.

Lazareth, C.E, Vanderputten, E., André, L. & Dehairs, F., 2003. High-resolution trace element profiles in shells of the mangrove bivalve Isognomon ephippium: a record of environmental spatiotemporal variations. Estuarine, Coastal and Shelf Science 57, 1103–1114. DOI: https://doi.org/10.1016/S0272-7714(03)00013-1

Magny, M., Bégeot, C., Guiot J. & Peyron, O., 2003. Contrasting patterns of hydrological changes in Europe in response to Holocene climate cooling phases. Quaternary Science Reviews 22, 1589–1596. DOI: https://doi.org/10.1016/S0277-3791(03)00131-8

Magny, M., Leuzinger, U., Bortenschlager, S. & Haas, J.N., 2006. Tripartite climate reversal in Central Europe 5600–5300 years ago. Quaternary Research 65, 3–19. DOI: https://doi.org/10.1016/j.yqres.2005.06.009

Markussen, Ø., Dypvik, H., Hammer, E., Long, H. & Hammer, Ø., 2019. 3D characterization of porosity and authigenic cementation in Triassic conglomerates/arenites in the Edvard Grieg field using 3D micro-CT imaging. Marine and Petroleum Geology 99, 265–281. DOI: https://doi.org/10.1016/j.marpetgeo.2018.10.015

Maurício, A., Pereira, M.F., Rocha, C., Figueiredo, C. & Marques, J.M., 2017. X-ray micro-CT study of Cabeço De Vide serpentinites and carbonate rock samples: a preliminary approach. Procedia Earth and Planetary Science 17, 952–955. DOI: https://doi.org/10.1016/j.proeps.2017.01.034

Mcconnaughey, T., 1991. Calcification in Chara Corallina: CO2 hydroxylation generates protons for bicarbonate assimilation. Limnology and Oceanography 36, 619–28. DOI: https://doi.org/10.4319/lo.1991.36.4.0619

Miháltz, I., 1947. A Duna-Tisza csatorna geológiai viszonyainak tanulmányozása – A Duna-Tisza csatorna [Study of the geological conditions of the Danube-Tisza channel]. A Magyar Földmívelésügyi Minisztérium kiadványa, Budapest, pp. 3–12 (in Hungarian).

Miháltz, I., 1953. A Duna-Tisza köze déli részének földtani felvétele – MÁFI évi jelentése az 1950 évről [Geological survey of the southern part of the Danube-Tisza junction – MÁFI annual report for the year 1950], pp. 113–148.

Miháltz, I. & Faragó, M., 1946. A Duna-Tisza közi édesvízi mészkőképződmények [Freshwater limestone formations between the Danube and Tisza]. Az Aéfölf Tudományos Intézet 1944–45. évi Évkönyve 1. Szeged, pp. 371–384 (in Hungarian).

Molnár, B., 1970. On the origin and hydrogeology of natron lakes in the southern Great Hugarian Plain. Móra Ferenc Múzeum Évkönyve 1, 65–76.

Molnár, B., 1976. Recent lacustrine dolomite formation in The Great Hungarian Plain. Acta Geologica Academai Socientiarum Hungaricae 20, 179–198.

Molnar, B., 1980. Diagenetic and lithification processes of recent hypersaline dolomites on the danube-tisza interfluve. Mineralogical Magazine 24, 315–37.

Molnár, B., 1988. Quaternary geohistory of the Hungarian part of the Danube-Tisza Interfluve. Proceedings of Geo Institute 21, 61–78, Belgrade.

Molnár, B., 1991. Modern lacustrine calcite, dolomite, and magnesite formation in Hungary. Department of Quaternary Geology, University of Turku, 1–22 pp.

Molnár, B. & Botz, R., 1996. Geochemistry and stable isotope ratio of modern carbonate in natron lakes of the Danube-Tisza Interfluve, Hungary. Acta Geologica Hungarica 39, 153–174.

Molnár, B. & Szónoky, M., 1976. On the origin and geohistorical evolution of the natron lakes of the Bugac Region. Móra F. Múzeum Évkönyve, Szeged 1974/75, 257–270.

Molnár, B., Hum, L. & Fényes, J., 1995. Investigation of modern geological processes in Holocene lacustrine carbonates in the Danube-Tisza Interfluve – Hungary. Acta mineralogica-petrographica, Szeged, 36, 73–87.

Molnár, B., Murvai, M.I. & Hegyi-Pakó, J., 1976. Recent lacustrine dolomite formation in The Great Hungarian Plain. Acta Geologica Academai Socientiarum Hungaricae 20, 179–198.

Molnár, S., Bakacsi. Z., Balog, K., Bolla, B. & Tóth, T., 2019. Evolution of a salt-affected lake under changing environmental conditions in Danube-Tisza Interfluve. Carpathian Journal of Earth and Environmental Sciences 14, 77–82. DOI: https://doi.org/10.26471/cjees/2019/014/060

Mucsi, M., 1963. Finomrétegtani visózsgálatok a kisunsági édesvizi karbonátképződményekben [Fine-strati-graphic viscosities in the Kisunság freshwater carbonate formations] Földtani Közlöny 93, 373–386 (in Hungarian).

Müller, G. & Wagner, F., 1978. Holocene carbonate evolution in Lake Balaton (Hungary): a response to climate and impact of man. IAS Special Publication 2, 57–81. DOI: https://doi.org/10.1002/9781444303698.ch4

Müller, G., Irion, G. & Förstner, U., 1972. Formation and diagenesis of inorganic Ca-Mg carbonates in the lacustrine environment. Die Naturwissenschaften 59, 158–164. DOI: https://doi.org/10.1007/BF00637354

Oliveira, G., Geia, M., Missagia, R., Neto, I., Santos, V. & Paranhos, R., 2020. Core plug and 2D/3D-image integrated analysis for improving permeability estimation based on the differences between micro- and macroporosity in Middle East carbonate rocks. Journal of Petroleum Science and Engineering 193, 107335. DOI: https://doi.org/10.1016/j.petrol.2020.107335

Pósfai, M., 2020. A Balaton üledékének ásványai (Minerals in the sediments of Lake Balaton). Földtani Közlöny 150/4, 511–528. DOI: https://doi.org/10.23928/foldt.kozl.2020.150.4.511

Reimer, P., Austin, W., Bard, E., Bayliss, A., Blackwell, P.G., Ramsey, C., Butzin, M., Cheng, H., Edwards, R., Friedrich, M., Grootes, P., Guilderson, T., Hajdas, I., Heaton, T., Hogg, A., Hughen, K., Kromer, B., Manning, S., Muscheler, R., Palmer, J., Pearson, C., Plicht, J., Reimer, R., Richards, D., Scott, E., Southon, J., Turney, C., Wacker, L., Adolphi, F., Büntgen, U., Capano, M., Fahrni, S., Fogtmann-Schulz, A., Friedrich, R., Köhler, P., Kudsk, S., Miyake, F., Olsen, J., Reinig, F., Sakamoto, M., Sookdeo, A. & Talamo, S., 2020. The IntCal20 northern hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757. DOI: https://doi.org/10.1017/RDC.2020.41

Richardson, L.L., Aguilar, C. & Nealson, K.H., 1988. Manganese oxidation in pH and O2 microenvironments produced by phytoplankton. Limnology and Oceanography 33, 352–363. DOI: https://doi.org/10.4319/lo.1988.33.3.0352

Sümegi, P., Molnár, D., Sávai, S., Náfrádi, K., Novák, Z., Szelepcsényi, Z. & Törőcsik, T., 2015. First radiocarbon dated palaeoecological data from the freshwater carbonates of the Danube-Tisza interfluve. Open Geo-sciences 7, 40–52. DOI: https://doi.org/10.1515/geo-2015-0003

Sümegi, P. & Náfrádi, K., 2015. A radiocarbon-dated cave sequence and the Pleistocene/Holocene transition in Hungary. Open Geosciences 1, 783–798. DOI: https://doi.org/10.1515/geo-2015-0051

Thompson, J.B., Schultze-Lam, S., Beveridge, T.J., Des Marais, D.J., 1997. Whitening events: biogenic origin due to the photosynthetic activity of cyanobacterial picoplankton. Limnology and Oceanography 42/1, 133–141. DOI: https://doi.org/10.4319/lo.1997.42.1.0133

Tompa, É., Nyírő-Kósa, I., Rostási, Á., Cserny, T., Pósfai, M., 2014. Distribution and composition of Mg-calcite and dolomite in the water and sediments of Lake Balaton. Central European Geology 57, 113–136. DOI: https://doi.org/10.1556/CEuGeol.57.2014.2.1

Tullner, T. & Cserny, T., 2003. New aspects of lake-level changes: Lake Balaton, Hungary. Acta Geologica Hungarica 46, 215–38. DOI: https://doi.org/10.1556/AGeol.46.2003.2.8

Vanderputten, E., Dehairs, F., Keppens, E. & Baeyens, W., 2000. High-resolution distribution of trace elements in the calcite shell of modern Mytilus edulis: environmental and biological controls. Geochemica et Cosmochemica Acta 64, 997–1011. DOI: https://doi.org/10.1016/S0016-7037(99)00380-4

Wilding, M., Lesher, C.E. & Shields, K., 2005. Applications of neutron computed tomography in geosciences. Nuclear instruments and methods in physics research A, 542, 290–295. DOI: https://doi.org/10.1016/j.nima.2005.01.151