Abstract
To investigate systematically the influence of “fractionality” (power order of derivative) on the dynamics of the spin system a general approach was proposed. The OOBE and FOBE were successively solved using analytical (Laplace transform), semi-analytical (ADM - Adomian Decomposition Method) and numerical methods (Grunwald- Letnikov method for FOBE). Solutions of both OOBE and FOBE systems of equations were obtained for various sets of experimental parameters used in spin !! NMR and EPR spectroscopies. The physical meaning of the fractional relaxation in magnetic resonance is shortly discussed.
References
Adomian G.(1994). Solving Frontier Problems of Physics: The Decomposition Method. Kluwer Academic Publishers, Dordrecht/Boston/London. Alexander S., Entin - Wohlman O. & Orbach R. (1985). Relaxation and nonradiative decay in disordered systems. I. One-fracton emission. Phys. Rev. B., 32(10), 6447-6455. Alexander S., Entin - Wohlman O. & Orbach R. (1986). Relaxation and nonradiative decay in disordered systems. II. Two-fracton inelastic scattering. Phys. Rev. B., 33(6), 39353946.
Butzer P.L. & Westphal U. (2000). An Introduction to Fractional Calculus. [In:] Hilfer. R. (ed).,Applications of Fractional Calculus in Physics. , World Scientific Publishing Co. Pte. Ltd., Singapore.,1-85.
Diethelm K., Ford N.J., A.D. Freed A.D., Luchko Yu. (2005). Algorithms for the fractional calculus: A selection of numerical methods, Comput. Methods Appl. Mech. Engrg. 194, 743-773.
Diethelm K. (2010). The Analysis of Fractional Differential Equations. An Application-Oriented Exposition Using Differential Operators of Caputo Type. Springer, Heidelberg Dordrecht London New York.
Duan J-S., Rachb R., Baleanu D., Wazwaz A-M. (2012). A review of the Adomian decomposition method and its applications to fractional differential equations., Communications in Fractional Calculus 3(2), 73-99.
Duarte V. (2005) http://web.ist.utl.pt/~duarte.valerio/ninteger/ninteger.htm.
Duarte V. & Sa da Costa J.(2013). An Introduction to Fractional Control. The Institution of Engineering and Technology. London, United Kingdom.
Feldman Y., Puzenko A. & Ryabov Y. (2006). Dielectric Relaxation Phenomena [In:] Coffey W.T & Kalmykov Y.P. (eds.) Complex Materials Fractals, Diffusion, and Relaxation in Disordered Complex Systems. A Special Volume of Adv. in Chem. Phys. 133(A)., John Wiley & Sons, Inc., Hoboken, New Jersey,pp. 1-125.
Gorenflo R., Loutchko I., Luchko Yu., (2002). Computation of the Mittag-Leffler function Ea,b(z) and its derivatives, Fract. Calculus Appl. Anal. 5, 491-518, erratum, (2003) 6, 111112.
Gran R. J. (2007). Numerical Computing with Simulink. Vol.I. Creating Simulations. SIAM. Society for Industrial and Applied Mathematics, Philadelphia, USA.
Haacke E.A., Brown R.B., Thompson M.R., Venkatesan R. (1999). Magnetic Resonance Imaging. Physical Principles and Sequence Design. J. Wiley & Sons, Inc., New York Chichester Weinheim Brisbane Singapore Toronto.
Haubold H.J, Mathai A.M. & Saxena R.K. (2011). Mittag-Leffler Functions and Their Applications. Review Article. J. Applied Mathematics Vol.2011, Article ID 298628, 51 pages. (http://dx.doi.org/10.1155/2011/298628).
Herrmann R. (2011). Fractional Calculus. An Introduction for Physicists. World Scientific Publishing Co. Pte. Ltd., Singapore.
Hilfer R. Fractional Time Evolution, (2000). An Introduction to Fractional Calculus. [In:] Hilfer. R. (ed.). Applications of Fractional Calculus in Physics., World Scientific Publishing Co. Pte. Ltd., Singapore.87- 130.
Hilfer R & Seybold H.J. (2006). Computation of the generalized Mittag-Leffler function and its inverse in the complex plane, Integral Transforms and Special Functions. 17(9), 637-652.
Junsheng D., Jianye A., Mingyu X. (2007). Solution of System of Fractional Differential Equations by Adomian Decomposition Method, Appl. Math. J. Chinese Univ. Ser. B., 22(1),7-12.
Kaczorek T.(2011). Selected Problems of Fractional Systems Theory. Springer-Verlag Berlin Heidelberg.
Kilbas A.A., Srivastava H.M., Trujillo J.J. (2006). Theory and Applications of Fractional Differential Equations., Elsevier B.V., Amsterdam, The Netherlands.
Lang S. (2000). Linear Algebra.3-ed., Springer-Verlag, New York Inc.
Lewis F.L., Syrmos V.L. (1995).Optimal Control.2-nd ed., John Wiley & Sons, Inc., New York.
Madhu P.K., Kumar A. (1995). Direct Cartesian-space solutions of generalized Bloch equations in the rotating frame. J. Magn. Reson. A, 114, 201-211.
Magin R., Feng X., Baleanu D., (2009) Solving the fractional
order Bloch equation, Concepts in Magnetic Resonance Part A., 34A (1) 16-23.
Metzler R., Klafter R. (2000).The Random Walk's Guide to Anomalous Diffusion: A Fractional Dynamics Approach. Physics Reports. 339, 1-77.
Miller K.S, Ross B. (1993). An Introduction to the Fractional Calculus and Fractional Differential Equations. John Wiley & Sons, Inc., New York.
Mital P.B, Kr U. & Prasad R.C. (2011). Modeling and Simulation of Fractional Order Chaotic Systems Using Matlab/Simulink. VSRD-IJEECE, 1(4), 220-224.
Monje C.A, Chen YQ., Vinagre B.M, Xue D., Feliu V. (2010). Fractional-order Systems and Controls. Fundamentals and Applications. Springer-Verlag London Limited.
Oldham K.B., Spanier J. (1974). The Fractional Calculus. Theory and Applications of Differentiation and Integration to Arbitrary Order. Academic Press, Inc., San Diego, California.
Oustaloup A., Mathieu B., and Lanusse P. (1995). The CRONE control of resonant plants: application to a flexible transmission. Eur. J. of Control, 1(2), 113-121. (http://www.ims-bordeaux.fr/CRONE/toolbox).
Podlubny, I. (1999). Fractional differential equations. Academic Press, San Diego.
Podlubny I. (2002).Geometrical and physical interpretation of fractional integration and fractional differentiation. Fractional Calculus & Applied Analysis. 5(4),367-386.
Podlubny I, Kacenak M. (2005). Mittag-Leffler function, [PodlubnyI.,online],http://www.mathworks.com/matlabcentral/fileexchange/8738.
Petráš I. (2010). Modeling and numerical analysis of fractional-order Bloch equations, Computers and Mathematics with Application., 61, 341-356.
Petráš I. (2011). Fractional-Order Nonlinear Systems. Modeling, Analysis and Simulation. Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg.
Sabatier J., Agrawal O.P., Tenreiro-Machado J.A.(eds.) (2007). Advances in Fractional Calculus.Theoretical Developments and Applications in Physics and Engineering. Springer, Dordrecht, The Netherlands.
Simulink® Getting Started Guide (1990-2013).The MathWorks, Inc.
Slichter C.P. (1989). Principles of Magnetic Resonance. Third Enlarged and Updated Edition. Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong.
Stanislavsky A.A. (2004). Probability Interpretation of the Integral of Fractional Order. Theoretical and Mathematical Physics., 138(3),418-431.
Symbolic Math Toolbox™5, MuPAD® Tutorial.(1997-2008). The MathWorks, Inc.
Torrey H.C. (1949). Transient nutations in nuclear magnetic resonance, Phys. Rev. 76, 1059-1068.
Uchaikin V.V. (2013). Fractional Derivatives for Physicists and Engineers. Vol. I. Background and Theory. SpringerVerlag, Heidelberg Dordrecht London New York.
West B.J. (2006). Fractal Physiology, Complexity, and the Fractional Calculus. [In:] Coffey W.T & Kalmykov Y.P. (eds.) Complex Materials Fractals, Diffusion, and Relaxation in Disordered Complex Systems. A Special Volume of Adv. in Chem. Phys. 133(B), 1-92., John Wiley & Sons, Inc., Hoboken, New Jersey.
Weilbeer M., “Efficient Numerical Methods for Fractional Differential Equations and their Analytical Background”. PhD. Thesis, Carl-Friedrich-Gauß-Fakultät für Mathematik und Informatik der Technischen Universität Braunschweig. 2005.
Whittaker E.T, and G.N. Watson G.N (1965). A Course of Modern Analysis., Cambridge University Press, Cambridge,(polish. ed. PWN, Warszawa, 1967).
Yariv A.(1975). Quantum Electronics. John Wiley & Sons, New York.
Zhao C., Zhao Y. Luo L. (2011). Fractional Modeling Method Research on Education Evaluation, Journal of Software, 6(5),901-907.