On the Possibility of Indirect Determination of the Glass Transition Temperature of Proteins from Viscosity Measurements and Avramov's Model
PDF

How to Cite

Monkos, K. (2015). On the Possibility of Indirect Determination of the Glass Transition Temperature of Proteins from Viscosity Measurements and Avramov’s Model. Current Topics in Biophysics, 37(1), 63–70. https://doi.org/10.2478/ctb-2014-0076

Abstract

The paper presents the results of viscosity determinations on aqueous solutions of hen egg-white lysozyme, bovine ß-lactoglobulin, human and porcine immunoglobulin IgG at a wide range of concentrations and at temperatures ranging from 5oC to 55oC. Viscosity-temperature dependence of the proteins solutions is analyzed based on a formula resulting from the Avramov's model. One of the parameters in the Avramov's equation is the glass transition temperature Tg. It turns out that for all studied proteins, the Tg of the solution increases with increasing concentration. To determine the glass transition temperature of the dry protein Tg,p, a modified form of the Gordon-Taylor equation is used. This equation gives the relationship between Tg and the concentration of the solution, and Tg,p and a parameter dependent on the strength of protein-solvent interaction are fitting parameters. Thus determined the glass transition temperature for the studied dry proteins is in the range from 227.3 K (for bovine ß-lactoglobulin) to 260.6 K (for hen egg-white lysozyme).

https://doi.org/10.2478/ctb-2014-0076
PDF

References

Al.-Lazikani B., Lesk A.M., Chothia C. (1997). Standard conformations for the canonical structures of immunoglobulins. J. Mol. Biol. 273, 927-948.

Avramov I. (1998). Viscosity of glassforming melts. J. Non-Cryst. Solids 238, 6-10.

Aymard P., Durand D., Nicolai T. (1996). The effect of temperature and ionic strength on the dimerisation of ß-lactoglobulin. Int. J. Biol. Macromol. 19, 213-221.

Couchmann P.R. (1978). A classical thermodynamic discussion of the effect of composition on glass-transition temperatures. Macromolecules 11, 117-119.

Frauenfelder H., Sligar S.G., Wolynes P.G. (1991). The energy landscapes and motions of proteins. Science 254, 1598-1603.

García L., Cova A., Sandoval A.J., Müller A.J., Carrasquel L.M. (2012). Glass transition temperatures of cassava starch-whey protein concentrate systems at low and intermediate water content. Carbohydr. Polym. 87, 1375-1382.

Goodman J.W. (1991). Immunoglobulin structure and function. [In:] Stites D.P., Terr A.I. (eds.), Basic and clinical immunology. Prentice Hall, pp. 109-121.

Gordon M., Taylor J.S. (1952). Ideal copolymers and the second-order transition of synthetic rubbers. J. Appl. Chem. 2, 493-499.

Grasmeij er N., Stankovic M., de Waard H., Frijlink H.W., Hinrichs W.L.J. (2013). Unreveling protein stabilization mechanisms: Vitrification and water replacement in a glass transition temperature controlled system. Biochim. Biophys. Acta 1834, 763-769.

Hadden J.M., Chapman D., Lee D.C. (1995). A comparison of infrared spectra of proteins in solution and crystalline forms. Biochim. Biophys. Acta 1248, 115-122.

Hallbrucker A., Mayer E., Johari G.P. (1989). The heat capacity and glass transition of hyperquenched glassy water. Phil. Mag. 60B, 179-187.

Hernández H.G., Livings S., Aguilera J.M., Chiralt A. (2011). Phase transitions of dairy proteins, dextrans and their mixtures as a function of water interactions. Food Hydrocolloids 25, 1311-1318.

Jansson H., Swenson J. (2010). The protein glass transition as measured by dielectric spectroscopy and differential scanning calorimetry. Biochim. Biophys. Acta 1804, 20-26.

Johari G.P., Hallbrucker A., Mayer E. (1987). The glass transition of hyperquenched water. Nature 330, 552-553.

Katkov I.I., Levine F. (2004). Prediction of the glass transition temperature of water solutions: comparison of different models. Cryobiology 49, 62-82.

Khatkar B.S., Barak S., Mudgil D. (2013). Effects of gliadin addition on the rheological, microscopic and thermal characteristics of wheat gluten. Int. J. Biol. Macromol. 53, 38-41.

Khodadadi S., Malkovskiy A., Kisliuk A., Sokolov A.P. (2010). A broad glass transition in hydrated proteins. Biochim. Biophys. Acta 1804, 15-19.

Kuwajima K., Yamaya H., Sugai S. (1996). The burst-phase intermediate in the refolding of ß-lactoglobulin studied by stopped-flow circular dichroism and absorption spectroscopy. J. Mol. Biol. 264, 806-822.

Marsh D., Bartucci R., Guzzi R., Sportelli L., Esmann M. (2013). Librational fluctuations in protein glasses. Biochim. Biophys. Acta 1834, 1591-1595.

Martinez L.M., Angell C.A. (2001). A thermodynamic connection to the fragility of glass-forming liquids. Nature 410, 663-667.

Monkos K. (1996). Viscosity of bovine serum albumin aqueous solutions as a function of temperature and concentration. Int. J. Biol. Macromol. 18, 61-68.

Monkos K. (1997). Concentration and temperature dependence of viscosity in lysozyme aqueous solutions. Biochim. Biophys. Acta 1339, 304-310.

Monkos K. (2000). Viscosity analysis of the temperature dependence of the solution conformation of ovalbumin. Biophys. Chem. 85, 7-16.

Monkos K. (2004). On the hydrodynamics and temperature dependence of the solution conformation of human serum albumin from viscometry approach. Biochim. Biophys. Acta 1700, 27-34.

Monkos K. (2006). On the hydrodynamics of dimeric bovine ß-lactoglobulin solutions from viscometry approach. Polish J. Environ. Stud. 15, 88-90.

Monkos K. (2009). Activation energy of viscous flow for some globular and non-globular proteins obtained from viscosity measurements and modified Arrhenius equation. Ann. Acad. Med. Siles. 63, 27-38.

Monkos K. (2011). A comparison of the activation energy of viscous flow for hen egg-white lysozyme obtained on the basis of different models of viscosity f or glass-forming liquids. Curr. Top. Biophys. 34, 1-9.

Monkos K. (2013). A viscometric approach of pH effect on hydrodynamic properties of human serum albumin in the normal form. Gen. Physiol. Biophys. 32, 67-78.

Morozov V.N., Gevorkian S.G. (1985). Low-temperature glass transition in proteins. Biopolymers 24, 1785-1799.

Oreccini A., Paciaroni A., Bizzarri A.R., Cannistraro S. (2001). Low-frequwncy vibrational anomalies in ß-lactoglobulin: contribution of different hydrogen classes reveiled by inelastic neutron scattering. J. Phys. Chem. B, 105, 12150-12156.

Panagopoulou A., Kyritsis A., Sabater i Serra R., Gómez Ribelles J.L., Shinyashiki N., Pissis P. (2011). Glass transition and dynamics in BSA-water mixtures over wide ranges of composition studied by thermal and dielectric techniques. Biochim. Biophys. Acta 1814, 1984-1996.

Ringe D., Petsko G.A. (2003). The “glass transition” in protein dynamics: what it is, why it occurs, and how to exploit it. Biophys. Chem. 105, 667-680.

Rodríguez Furlán L.T., Lecot J., Pérez Padilla A., Campderrós M.E., Zaritzky N. (2011). Effect of saccharides on glass transition temperatures of frozen and freeze dried bovine plasma protein. J. Food Engn. 106, 74-79.

Roth S., Murray B.S., Dickinson E. (2000). Interfacial shear Rheology of aged and heat-treated ß-lactoglobulin films: Displacement by nonionic surfactant. J. Agric. Food Chem. 48, 1491-1497.

Roughton B.C., Topp E.M., Camarda K.V. (2012). Use of Glass transitions in carbohydrate excipient designe for lyophilized protein formulations. Comput. Chem. Engn. 36, 208-216.

Sartor G., Mayer E., Johari G.P. (1994). Calorimetric studies of the kinetic unfreezing of molecular motions in hydrated lysozyme, hemoglobin, and myoglobin. Biophys. J. 66, 249258.

Smith L.J., Sutcliffe M.J., Redfield C., Dobson C.M. (1993). Structure of hen lysozyme in solution. J. Mol. Biol. 229, 930944.

Squire P.G., Himmel M.E. (1979). Hydrodynamics and protein hydration. Arch. Biochem. Biophys. 196, 165-177.

Steinbach P.J., Brooks B.R. (1993). Protein hydration Elucidated by molecular dynamics simulation. Proc. Natl. Acad. Sci. USA 90, 9135-9139.

Teeter M.M., Yamano A., Stec B., Mohanty U. (2001). On the Nature of a glassy state of matter in a hydrated protein: Relation to protein function. Proc. Natl. Acad. Sci. USA 98, 11242-11247.

Vinogradov G.V., Malkin A.Ya. (1980). Rheology of Polymers. Mir, Moscow, 1980.

Young E.G. (1963). Occurrence, classification, preparation And analysis of proteins. [In:] Florkin M., Stolz E.H. (eds.), Comprehensive biochemistry. Amsterdam, pp. 22.