Sodium chloride-induced conformational change in tRNA as measured by circular dichroism
PDF

How to Cite

Sarbak, S., Kujawa, M., Jurga-Nowak, H., & Dobek, A. (2016). Sodium chloride-induced conformational change in tRNA as measured by circular dichroism. Current Topics in Biophysics, 38(1), 1–5. https://doi.org/10.1515/ctb-2015-0001

Abstract

The effect of 0.01-1 M sodium ions on the conformation of the folded brewer’s yeast tRNAPhe was examined by circular dichroism method in the region 200-350 nm. The minimum peak at about 210 nm for tRNA solution with 50 mM sodium chloride showed a decrease in magnitude by 26-30% in comparison to that recorded for the solution of higher NaCl content. The depths of the peaks at 225 nm and 233 nm for two solutions with the lowest sodium chloride concentrations (cNaCl = 10mM, cNaCl = 50mM) were changed by 3-10% relative to the those in the spectra of other samples, for the 260 nm maximum peak a decrease in height was 21-25%. In the region 300-350 nm no significant difference was observed. The results point to a strong relationship between concentration of sodium ions and stabilization process of secondary and tertiary tRNA structure, which indicates the influence of sodium ions on stacking and base-pairing interactions.

https://doi.org/10.1515/ctb-2015-0001
PDF

References

Adams A., Lindahl T. & Fresco J. R.; (1967), Conformational differences between the biologically active and inactive forms of a transfer ribonucleic acid. Proc. Natl. Acad. Sci. USA 57(6), 1684-1691.

Alberts B., Bray D., Hopkin K., Johnson A., Lewis J., Raff M., Roberts K. & Walter P.; (2014), Essential cell biology, Garland Science Taylor & Francis Group, 4 ed., 245-250.

Basu A., Jaisankar P., & Kumar G. S.; (2013), Binding of the 9-O-N-aryl/arylalkyl Amino Carbonyl Methyl Substituted Berberine Analogs to tRNAphe, PloS ONE, 8(3).

Cantor C., Jaskunas S. & Tinoco Jr. I.; (1966), Optical properties of ribonucleic acids predicted from oligomers, J. Mol. Biol. 20, 39.

Cohn M., Danchin A. & Grunberg-Manago M.; (1969), Proton Magnetic Relaxation Studies of Manganous Complexes of Transfer RNA and Related Compounds, J. Mol. Biol. 39, 199.

Danchin A.; (1972), tRNA structure and binding sites for cations, Biopolymers 11, 1317.

Dobek A., Patkowski A., Labuda D. & Augustyniak J.; (1975), Effect of Na+ ion concentration on tRNA conformation in solution studied by laser Raman spectroscopy, J. Raman Spect. 3, 45-54.

Dobek A., Patkowski A. & Labuda D.; (1977), Light scattering by solutions of tRNA molecules oriented in D.C. magnetic field, J. Polymer Sci. 61(1), 111–121.

Doctor B. P., Fuller W., & Webb N. L.; (1969), Arrangement of the Helical Regions in E. coli Tyrosine tRNA, Nature (London) 221, 18.

Dudock B. S., DiPeri C. & Michael M. S.; (1970), Factors determining the specificity of the tRNA aminoacylation reaction: Non-absolute specificity of tRNA-aminoacyl-tRNA synthetase recognition and particular importance of the maximal velocity, J. Biol. Chem. 245, 2465.

Ishida T. & Sueoka N.; (1968), Tryptophan transfer RNA as the UGA suppressor, J. Biol. Chem. 243, 5329.

Kawai G., Ue H., Yasuda M., Sakamato K., Hashizume T. McCloskey JA., Miyazawa T. & Yokoyama S. (1991), Nucleic Acids Symp. Ser. 25, 49-50.

Kay C. M. & Willick G. E.; (1971), Magnesium-induced conformational change in transfer ribonucleic acid as measured by circular dichroism, Biochemistry, 10(12), 2216–2222.

Kelly S. M. & Pric N. C.; (2000), The Use of Circular Dichroism in the Investigation of Protein Structure and Function, Current Protein and Peptide Science, 1(4), 349-384.

Labuda D., Haertle T., & Augustyniak J.; (1977), Dependence of tRNA Structure in Solution upon Ionic Condition of the Solvent, Eur. J. Biochem. 79, 293-301.

Ojala D., Merkel C., Gelfand R. & Attardi G.; (1980), The tRNA genes punctuate the reading of genetic information in human mitochondrial DNA, Cell Press 22(2), 393–403.

Rialdi G., Levy J. & Biltonen R.; (1972), Thermodynamic studies of transfer ribonucleic acids. I. Magnesium binding to yeast phenylalanine transfer ribonucleic acid, Biochemistry 11, 2472.

Riazance-Lawrence J. H. & Johnson Jr. W. C.; (1992), Multivalent ions are necessary for poly[d(AC)·d(GT to assume the Z form: A CD study, Biopolymers, 32, 271-276.

Turner P. C., McLennan A.G., Bates A. D. & White M. R. H.; (1998), Instant notes in molecular biology, ISBN 7-03-007305-3. BIOS Scientific Publishers Limited, UK.

Wananu M. & Tor Y.; (2012), Methods for Studying Nucleic Acid/Drug Interactions, ISBN 978-1-4398-3973-7. CRC Press Taylor & Francis Group, 1 ed., 52.

Westhof E., Dumas P., & Moras D.; (1985), Crystallographic refinement of yeast aspartic acid transfer RNA, J. Mol. Biol. 184(1), 119-145.

Yokoyama S., Watanabe T., Murao K., Ishikura H., Yamaizumi Z., Nishimura S. & Miyazawa T.; (1985), Molecular mechanism of codon recognition by tRNA species with modified uridine in the first position of the anticodon, Proc. Natl. Acad. Sci. USA 82, 4905-4908.