Abstract
In this paper we present the results of measured physical parameters of self-organized structures consisting of hydrophobic functionalized silver nanoparticles and amphiphilic molecules capable of micelles formation. Those systems may be considered as simple models for transfer of nanoparticles through the biological membrane. Three different surfactants were used: negatively charged sodium dodecyl sulphite, SDS, neutral Triton X-100 and positively charged tetredodecyltrimethyl ammonium bromide, TTABr. We have found that hydrophobic functionalized Ag nanoparticles are encapsulated in neutral Triton X-100 micelles with a diameter of 10 nm without significant change in the size of the micelles. The efficiency of encapsulation of Ag by SDS micelles is lower compared to Triron X-100 and no incorporation of Ag nanoparticles into TTABr occurs. Obtained results indicate that in aqueous environment ionic properties of molecules creating micelles and concentration ratios between components determine the efficiency and kinetics of two competitive processes association or aggregation of nanoparticles and encapsulation of Ag nanoparticles within micelles.
References
Aslan K., Gryczynski I., Malicka J., Matveeva E., Lakowicz J.R. & Geddes C.D.(2005). Metal-enhanced fluorescence: An emerging tool in biotechnology. Curr. Opin. Biotechnol., 16, 55-62.
Bothun G.D.(2008). Hydrophobic silver nanoparticles trapped in lipid bilayers : Size distribution, bilayer phase behavior, and optical properties. Journal of nanobiotechnology, 6, art. no 13 (only on-line journal).
Chattopadhyay S., Dash S.K, Tripathy S., Das B., Mandal D., Pramanik P. & Roy S.(2014). Toxicity of cobalt oxide nanoparticles to normal cells; an in vitro and in vivo study. Chem. Biol. Interact., 226C, 58-71.
Dharaiya N., Aswal V.K. & Bahadur P.(2015). Characterization of Triton X-100 and its oligomer (Tyloxapol) micelles vis-à-vis solubilization of bisphenol A by spectral and scattering techniques. Colloids Surfaces A Physicochem. Eng. Asp., 470, 230-239.
Dou, Q.Q., Guo H.C & Ye E.(2014). Near-infrared upconversion nanoparticles for bio-applications. Mater. Sci. Eng. C. Mater. Biol., Appl. 45, 635-643.
Duplâtre G., Ferreira Marques M.F. Da Graça Miguel M.(1996). Size of sodium dodecyl sulfate micelles in aqueous solutions as studied by positron annihilation lifetime spectroscopy. J. Phys. Chem., 100, 16608-16612.
Gryczynski I., Malicka J., Gryczynski Z. & Lakowicz J.R.(2004). Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission. Anal. Biochem., 324, 170-182.
Guo D., Zhang J., Huang Z., Jiang S. & Gu N.(2014). Colloidal silver nanoparticles improve anti-leukemic drug efficacy via amplification of oxidative stress. Colloids Surf. B. Biointerfaces, 126C, 198-203.
He X., Zhang M., Feng J., Song M. & Zhao X.(2011). New research progress of metallic silver enhanced fluorescence. Rare Met. Mater. Eng., 40, 559-564.
Lakowicz J.R., Malicka J, Gryczynski I. & Gryczynski Z.(2003a). Directional surface plasmon-coupled emission: A new method for high sensitivity detection. Biochem. Biophys. Res. Commun., 307, 435-439.
Lakowicz J.R., Malicka J, Gryczynski I., Gryczynski Z. & Geddes C.D.(2003b). Radiative decay engineering: the role of photonic mode density in biotechnology. J. Phys. D. Appl. Phys., 36, R240-R249.
Paradies H.H.(1980). Shape and size of a nonionic surfactant micelle. Triton X-100 in aqueous solution. J. Phys. Chem., 84, 599-607.
Park S.H., Oh S-G, Mun J-Y & Han S-S.(2005). Effects of silver nanoparticles on the fluidity of bilayer in phospholipid liposome. Colloids Surf. B. Biointerfaces, 44, 117-122.
Park S.H., Oh S-G, Mun J-Y & Han S-S.(2006). Loading of gold nanoparticles inside the DPPC bilayers of liposome and their effects on membrane fluidities. Colloids Surf. B. Biointerfaces, 48, 112-118.
Reddy B.P.K., Yadav H.K.S., Nagesha D.K., Raizaday A. & Karim A.(2015). Polymeric Micelles as Novel Carriers for Poorly Soluble Drugs- Review. J. Nanosci. Nanotechnol., 15, 4009-4018.
Salamon Z., Macleod H., & Tollin G.(1997). Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems. II: Applications to biological systems. Biochim. Biophys. Acta, 1331, 131-152.
Soler M., Mesa-Antunez P., Estevez M-C., Ruiz-Sanchez A.J., Otte M.A., Sepulveda B., Collado D., Mayorga C., Torres M.J. Perez-Inestrosa E. & Lechuga L.M.(2015). Highly sensitive dendrimer-based nanoplasmonic biosensor for drug allergy diagnosis. Biosens. Bioelectron., 66, 115-123.
Sosnowski T.R.(2015). Nanosized and Nanostructured Particles in Pulmonary Drug Delivery. J. Nanosci. Nanotechnol., 15, 3476-3487.
Spadavecchia J., Manera M.G., Quaranta F., Siciliano P. & Rella R.(2005). Surface plamon resonance imaging of DNA based biosensors for potential applications in food analysis. Biosens. Bioelectron., 21, 894-900.
Varela A.S., Macho M.I.S. & Gonzalez A.G.(1995). The size of sodium dodecyl sulfate micelles in the presence ofnalcohols as determined by fluorescence quenching measurements. Colloid Polym. Sci., 273, 876-880.
Zhang L., Sun X., Song Y., Jiang X, Dong S. &, Wang E.(2006). Didodecyldimethylammonium bromide lipid bilayer-protected gold nanoparticles: synthesis, characterization, and self-assembly. Langmuir, 22, 2838-2843.
Zhang Y, Mali B.L., Aitken C. & Geddes C.D.(2013). Highly sensitive quantitation of human serum albumin in clinical samples for hypoproteinemia using metal-enhanced fluorescence. J. Fluoresc., 23, 187-192.
Zhu Y. & Liao L.(2015). Applications of Nanoparticles for Anticancer Drug Delivery: A Review. J. Nanosci. Nanotechnol., 15, 4753-4773.