Abstract
The paper presents the results of viscosity determinations on aqueous solutions of ovalbumin at a wide range of concentrations and at temperatures ranging from 5°C to 55°C. On the basis of these measurements and three models of viscosity for glass-forming liquids: Avramov’s model, free-volume model and power-law model, the activation energy of viscous flow for solutions and ovalbumin molecules, at different temperatures, was calculated. The obtained results show that activation energy monotonically decreases with increasing temperature both for solutions and ovalbumin molecules. The influence of the energy of translational heat motion, protein-protein and protein-solvent interactions, flexibility and hydrodynamic radius of ovalbumin on the rate of decrease in activation energy with temperature has been discussed. One of the parameters in the Avramov’s equation is the glass transition temperature Tg. It turns out that the Tg of ovalbumin solutions increases with increasing concentration. To obtain the glass transition temperature of the dry ovalbumin, a modified Gordon-Taylor equation is used. Thus determined the glass transition temperature for dry ovalbumin is equal to (231.8 ± 6.1) K.
References
Abeyrathne E.D.N.S., Lee H. Y., Ahn D. U. (2014). Sequential separation of lysozyme, ovomucin, ovotransferrin, and ovalbumin from egg white. Poultry Science 93, 1001-1009.
Ahmad F., Salahuddin A. (1976). Reversible unfolding of the major fraction of ovalbumin by guanidine hydrochloride. Biochemistry 15, 5168-5175.
Angell C.A. (1988). Perspective on the glass transition. J. Phys. Chem. Solids 8, 863-871.
Avramov I. (1998). Viscosity of glass forming melts. J. Non-Cryst.Solids 238, 6-10.
Baird D.G., Bellman R.L. (1979). Comparison of the rheological properties of concentrated solutions of a rodlike and a flexible chain polyamide. J. Rheol. 23, 505-524.
Bhandari B.R., Howes T. (1999). Implication of glass transition for the drying and stability of dried foods. J. Food Eng. 40, 71-79.
De Paula R.C.M., Rodrigues J.F. (1995). Composition and rheological properties of cashew tree gum, the exudates polysaccharide from Anticardium occidental L. Carbohydras. Polyp. 26, 177-181.
Desbrieres J., Martinez C., Rinaudo M. (1996). Hydrophobic derivatives of chitosan: characterization and rheological behavior. Int. J. Biol. Macromol. 19, 21-28.
Doster W. (2010). The protein-solvent transition. Biochim. Biophys. Acta 1804, 3-14.
Dreval V.E., Botvinnik G. O., Malkin A. Ya. (1973). Approach to generalization of concentration dependence of zero-shear viscosity in polymer solutions. J. Polym. Sci. 11, 1055-1076.
Ferrer M.L., Duchowich R., Carrasco B., Garcia de la Torre J. (2001). The conformation of serum albumin in solution: a combined phosphorescence depolarization- hydrodynamic modeling study. Biophys. J. 80, 2422-2430.
Fox T. G., Gratch S., Loshaek S. (1956). Viscositytemperature relationships for polymers. [In:] Eirich F.R. (ed.), Rheology. Theory and applications, vol. 1, Academic Press, New York, pp. 447-457.
Frauenfelder H., Sligar S.G., Wolynes P.G. (1991). The energy landscape and motions of proteins. Science 254, 1598-1603.
Frontzek A.V., Strokov S.V., Embs J.P., Lushnikov S.G. (2014). Does a dry protein undergo a glass transition? J. Phys. Chem. B 118, 2796-2802.
Gordon M., Taylor J.S. (1952). Ideal copolymers and the second-order transition of synthetic rubbers. J. Appl. Chem. 2, 493-499.
Hallbruker A., Mayer E., Johari G.P. (1989). The heat capacity and glass transition of hyper quenched glassy water. Phil. Mag. 60B, 179-187.
Ikeda S., Nishinari K. (2001). Solid-like mechanical behaviors of ovalbumin aqueous solutions. Int. J. Biol. Macromol. 28, 315-320.
Jansson H., Swenson J. (2010). The protein glass transition as measured by dielectric spectroscopy and differential scanning calorimetry. Biochim. Biophys. Acta 1804, 20-26.
Johari G.P., Hallbruker A., Mayer E. (1987). The glass transition of hyper quenched water. Nature 330, 552-553.
Kakivaya S.R., Hoeve C.A. (1975). The glass point of elastin. Proc. Nat. Acad. Sci. USA 72, 3505-3507.
Kang D., Ryu S.R., Park Y., Czarnik-Matusewicz B., Jung Y.M. (2014). PH-induced changes of ovalbumin studied by 2D correlation IR spectroscopy. J. Mol. Struct. 1069, 299-304.
Katkov I.I., Levine F. (2004). Prediction of the glass transition temperature of water solutions: comparison of different models. Cryobiology 49, 62-82.
Khatkar B.S., Barak S., Mudgil D. (2013). Effects of gliadin addition on the rheological, microscopic and thermal characteristics of wheat gluten. Int. J. Biol. Macromol. 53, 38-41.
Khodadadi S, Malkovskiy A., Sokolov A.P. (2010). A broad glass transition in hydrated proteins. Biochim Biophys. Acta 1804, 15-19.
Khodarahmi R., Soori H., Karimi S. A. (2009), Chaperon-like activity of heme group against amyloid- like fibril formation by hen egg ovalbumin: Possible mechanism of action. Int. J. Biol. Macromol. 44, 98-106.
Kuwai K., Suzuki T., Oguni M. (2006). Lowtemperature glass transitions of quenched and annealed bosine serum albumin aqueous solutions. Biophys. J. 90, 1-7.
Laberge M. (1998). Intrinsic protein electric fields: basic noncovalent interactions and relationship to protein-induced stark effects. Biochim. Biophys. Acta 1386, 305-330.
Lefebvre J. (1982). Viscosity of concentrated protein solutions. Rheol. Acta 21, 620-625.
Lin Y.C., Chang Z.C., Lin C.B., Shen C.C., Su Y.L. (2012). Effect of curing temperature on properties and solvent welding strength of ovalbumin. J. Appl. Polym Sci. 124, 2144-2153.
McCarty B.J., Worrall D.M. (1997). Analysis of serpin inhibitory function by mutagenesis of ovalbumin and generation of chimeric ovalbumin/PAI-1 fusion proteins. J. Mol. Biol. 267, 561-569.
Menon R. S., Allen P.S. (1990). Solvent proton relaxation of aqueous solutions of the serum proteins a2-macroglobulin, fibrinogen, and albumin. Biophys. J. 57, 389-396.
Monkos K. (1996). Viscosity of bovine serum albumin aqueous solutions as a function of temperature and concentration. Int. J. Biol. Macromol. 18, 61-68.
Monkos K. (2000). Viscosity analysis of the temperature dependence of the solution conformation of ovalbumin. Biophys. Chem. 85, 7-16.
Monkos K. (2007a). Temperature dependence of the activation energy of viscous flow for ovalbumin in aqueous solutions. Curr. Top. Biophys. 30, 29-33.
Monkos K. (2007b). Studies of protein solution conformations using viscometric measurements. [In:] Uversky V. & Permyakov E. (eds.), Methods in protein structure and stability analysis, Nova Science Publishers, New York, pp. 355-387.
Monkos K. (2011a). A comparison of the activation energy of viscous flow for hen egg-white lysozyme obtained on the basis of different models of viscosity for glass-forming liquids. Curr. Top. Biophys. 34, 1-9.
Monkos K. (2011b). Temperature behavior of viscosity flow with proteins. Gen. Physiol. Biophys. 30, 121-129.
Monkos K. (2013). A viscometric approach of pH effect on hydrodynamic properties of human serum albumin in the normal form. Gen. Physiol. Biophys. 32, 67-78.
Monkos K. (2014). On the possibility of indirect determination of the glass transition temperature of proteins from viscosity measurements and Avramov’s model. Curr. Top. Biophys. 37, 63-70.
Monkos K. (2015). Determination of the glass-transition temperature of proteins from a viscometric approach. Int. J. Biol. Macromol. 74, 1-4.
Morozov V. N., Gevorkian S. G. (1985). Lowtemperature glass transition in proteins. Biopolymers 24, 1785-1799.
Nisbet A. D., Saundry R. H., Moir A. J. G., Fothergill L.A., Fothergill J.E. (1981). The complete amino-acid Sequence of hen ovalbumin. Eur. J. Biochem. 115, 335-345.
Noel T R., Parker R., Ring S.G. (1995). The glass-transition behavior of wheat gluten proteins. Int. J. Biol. Macromol. 17, 81-85.
Pamies R., Hernández J.G., del Carmel Lόpez Martinez M., Garcia de la Torre J. (2008). Determination of intrinsic viscosities of macromolecules and nanoparticles. Comparison of single-point and dilution procedures. Colloid. Polym. Sci. 286, 1223-1231.
Panagopoulou A., Kyritsis A., Shinyashiki N., Pissis P. (2012). Protein and water dynamics in bovine serum albumin - water mixture over wide ranges of composition. J. Phys. Chem. B 116, 4593-4602.
Renault A., Pezennec S., Gauthier F., Vie W., Desbat B. (2002). Surface rheological properties of native and Sovalbumin are correlated with the development of an intermolecular beta-sheet network at the air-water interface. Langmuir 18, 6887-6895.
Sartor G., Mayer E., Johari G.P. (1994). Calorimetric studies of the kinetic unfreezing of molecular motions in hydrated lysozyme, hemoglobin, and myoglobin. Biophys. J. 66, 249-258.
Stein P.E., Leslie A. G. W., Finch J. T., Carrell R. W. (1991). Crystal structure of uncleaved ovalbumin at 1.95 Å resolutions. J. Mol. Biol. 221, 941-959.
Steinbach P.J., Brooks B.R. (1993). Protein hydration elucidated by molecular dynamics simulation. Proc. Natl. Acad. Sci. USA 90, 9135-9139.
Taborek P., Kleiman R.N., Bishop D.J. (1986). Power-law behavior in the viscosity of super cooled liquids. Phys. Rev. B 34, 1835-1840.
Tanford C. (1961). Physical chemistry of macromolecules. Wiley, New York, Tani F., Shirai N., Nakanishi Y., Yasumoto K., Kitabatake N. (2004). Role of the carbohydrate chain and two phosphate moieties in the heat-induced aggregation of hen ovalbumin. Biosci. Biotechnol.Biochem. 12, 2466-2476.
Teeter M.M., Yamano A., Stec B., Mohanty U. (2001). On the nature of a glassy state of matter in a hydrated protein: Relation to protein function. Proc. Natl. Acad. Sci. USA 98, 11242-11247.
Vilker V.L., Colton C.K., Smith K.A. (1981). The osmotic pressure of concentrated protein solutions: effect of concentration and pH in saline solutions of bovine serum albumin. J. Colloid. Interface Sci. 79, 548-566.
Vinogradov G. V., Malkin A.Y. (1980). Rheology of polymers. Mir, Moscow.
Yang Y., Barendregt A., Kamerling J.P., Heck A.J.R. (2013). Analyzing protein micro-heterogeneity in chicken ovalbumin by high-resolution native mass spectrometry exposes qualitatively and seki-quantitatively 59 proteoforms. Anal. Chem. 85, 12037-12045.
Young E. G. (1963). Occurrence, classification, preparation and analysis of proteins. [In:] Florkin M., Stolz E.H. (eds.), Comprehensive Biochemistry, Amsterdam, pp. 22.
Zimmerman S.B., Minton A.P. (1993). Macromolecular crowding: biochemical, biophysical, and physiological consequences. Annu. Rev. Biophys. Biomol. Struct. 22, 27-65.