Abstract
The aim of the study was to establish the role of nitric oxide (NO) in the regulation of steroidogenesis in the placenta during physiological pregnancy and experimental preeclampsia (PE) in rats. EPR centers of the placenta, free NO and its metabolites were determined by the Electron Paramagnetic Resonance (EPR) method. At the last stage of pregnancy in the EPR spectra of the rats’ placenta with PE alterations of the signals intensity of mitochondrial steroidogenic electron transport proteins were detected: the FeS-centers of adrenodoxin decreased, the ferricytochrome P-450 increased, the free NO content decreased, and the complexes of NO with heme (HbNO) and non-heme iron (FeSNO) were detected. These data indicate the violation of placental steroidogenesis, which is confirmed by a decrease in the level of progesterone in blood. Therefore, the nitrosylation of mitochondrial proteins is an important redox-dependent mechanism of regulation of the intensity of steroidogenesis.
References
Arpad Csapo I., Wiest Walter G. (1969). An Examination of the Quantitative Relationship Between progesterone and the Maintenance of Pregnancy. Endocrinology. 85(735), 735-746.
Baylis S.A., Strijbos P.J., Sandra A., Russell R.J., Rijhsinghani A., Charles I.G., Weiner C.P. (1999). Temporal expression of inducible nitric oxide synthase in mouse and human placenta. Mol. Hum. Reprod. 5(3), 277-86.
Beridze M., Sanikidze T., Shakarishvilil R., Intskirveli N., Bornstein N.M. (2011). Selected acute phase CSF factors in ischemic stroke: findings and prognostic value. BMC neurology. 11(1), 41.
Brown G.C. (1995). Nitric oxide regulates mitochondrial respiration and cell functions by inhibiting cytochrome oxidase. FEBS Lett. 369, 136–139.
Cartwright J.E., Kenny L.C., Dash P.R., Crocker I.P., Aplin J.D., Baker P.N., Whitley G.S. (2002). Trophoblast Invasion of spiral arteries: a novel in vitro model. Placenta. 23(2-3), 232-5.
Chan S.W., Leathem J.H. (1975). Placental steroidogenesis in the rat: progesterone production by tissue of the basal zone. Endocrinology. 96(2), 298-303.
Crews J.K., Herrington J.N., Granger J.P., Khalil R.A. (2000). Decreased Endothelium-Dependent Vascular Relaxation During Reduction of Uterine Perfusion Pressure in Pregnant Rat. Hypertension. 35, 367-372.
Darkwa E. O., Djagbletey R., Essuman R., Sottie D., Dankwah G. B., Aryee G. (2018). Nitric Oxide and Pre-Eclampsia: A Comparative Study in Ghana. Open Access Maced J Med Sci. 6(6), 1023–1027.
Dash P.R., Cartwright J.E., Baker P.N., Johnstone A.P., Whitley G.S. (2003). Nitric oxide protects human extravillous trophoblast cells from apoptosis by a cyclic GMP-dependent mechanism and independently of caspase 3 nitrosylation. Exp Cell Res. 15 287(2), 314-24.
Dash P.R., Cartwright J.E., Whitley G.S. (2003). Nitric oxide inhibits polyamine-induced apoptosis in the human extravillous trophoblast cell line SGHPL- 4. Hum Reprod. 18(5), 59-68.
DutkaM., Pyka J., Plonka P.M. (2019). EPR Studies on Understanding the Physical Intricacy of HbNO Complexes. In: Shukla EK (ed.), Electron Spin Resonance Spectroscopy in Medicine, Springer Nature Singapore Pte Ltd. 23-43.
Fink B., Dikakov S., Fink N. (2006). EPR techniques for detection of nitric oxide in vivo as an index of endothelial dysfunction. Pharmacological reports. 58, 8-15.
Gainutdinov Kh.L., Andrianov V.V., Gainutdinova T.Kh., Muranova L.N., Obynochny A.A., Timoshenko A.Kh., Shtark M.B., Epstein O.L., Yurtaeva S.V. (2009). Investigation of changes in NO content during Long-Term Sensitization in Edible Snail Using EPR-Spectroscopy: Effect of Antibodies to Calcium-Binding Protein S-100. Bulletin Experimental Biology and Medicine. 146(12), 617-622.
Giorgio S., Linares E., Ischiropoulos H., Von Zuben F. J., Yamada A., Augusto O. (1998). In Vivo Formation of Electron Paramagnetic Resonance-Detectable Nitric Oxide and of Nitrotyrosine Is Not Impaired during Murine Leishmaniasis. Infect Immun. 66(2), 807–814.
George E.M., Granger J.P. (2012). Linking Placental Ischemia and Hypertension in Preeclampsia: Role of Endothelin 1. Hypertension. 60(2), 507-11.
Gordon J., Macdonald T., Mattf Dennis W. (1984). Adrenal and Placental Steroid Secretion during Pregnancy in the Rat. Endocrinology. 114(6), 2068-2073.
Granger J.P., LaMarca B.B., Cockrell K., Sedeek M., Balzi C., Chandler D., Bennett W. (2006). Reduced uterine perfusion pressure (RUPP) model for studying cardiovascular-renal dysfunction in response to placental ischemia. Methods. Mol.Med. 122, 383-92.
Holland O., Nitert M. Dekker, Gallo L.A., VejzovicM., Fisher J.J., Perkins A.V. (2017). Review: Placental mitochondrial function and structure in gestational disorders. Placenta. 54, 2-9.
Hong-hai Z., Wang Y., Chen D. (2011). Analysis of Nitroso-Proteomes in Normotensive and Severe Preeclamptic Human Placentas. Biol Reprod. 84(5), 966–997.
Jakubowska M., Michalczyk-Wetula D., Pyka J, Susz A., Urbanska K., Płonka B.K., Kuleta Łacki P., Krzykawska-Serda M., Fiedor L., Płonka P. (2013). Nitrosylhemoglobin in hotodynamically stressed human tumors growing in nude mice. Nitric Oxide 35, 79–881.
Khetsuriani T., Sanikidze T., Khugashvili R. (2004). Alterations of oxidative metabolism at the pregnancy attended with pre-eclampsia. Annals of Biomedical Research and Education. 4(2), 81-82.
Khetsuriani T., Chabashvili N., Sanikidze T. (2006). Role of endothelin-1 and nitric oxide level in pathogenesis preeclampsia. Georgian medical news. 141, 17-21.
Kingdom J.C., Kaufmann P. (1997). Oxygen and placental villous development: origins of fetal hypoxia. Placenta. 18(8), 613-21.
Kirima K., Tsuchiya K., Sei H., Hasegawa T., Shikishima M., Motobayashi Y., Morita K., Yoshizumi M., Tamaki T. (2003). Calculation of systemic blood NO dynamics by EPR spectroscopy: HbNO as an endogenous index of NO. Am J Physiol Heart Circ Physiol. 285, 589-96.
Klimek J., Woźniak M., Szymańska G., Zelewski L. (1998). Inhibitory effect of free radicals derived from organic hydroperoxide on progesterone synthesis in human term placental mitochondria. Free radical biology and medicine. 24(7-8), 1168-75.
Kozlov A.V., Szalay L., Umar F., Fink B., Kropik K., Nohl H., Redl H., Bahrami S. (2003). EPR analysis reveals three tissues responding to endotoxin by increased formation of reactive oxygen and nitrogen species. Free Radic Biol Med. 15, 1555–1562.
Kozlov A.V., Bini A.,, Iannone A,, Zini I., Tomasi A. (1996). Electron Paramagnetic Resonance Characterization of Rat Neuronal Nitric Oxide Production ex vivo. Methods in Enzymology, 268, 229-236.
Krause B.J., Hanson M.A., Casanello P. (2011). Role of nitric oxide in placental vascular development and function. Placenta. 32(11), 797-805.
Laskowska M., Laskowska K., Terbosh M., Oleszczuk J. (2013). A comparison of maternal serum levels of endothelial nitric oxide synthase, asymmetric dimethylarginine, and homocysteine in normal and preeclamptic pregnancies. Med Sci Monit. 6(6), 430–437.
Lobysheva II., Biller P., Gallez B., Beauloye C., Balligand JL. (2013). Nitrosylated hemoglobin levels in human venous erythrocytes correlate with vascular endothelial function measured by digital reactive hyperemia. PLoS ONE, 8(10), e76457
Lyall F. (2005). Priming and remodeling of human placental bed spiral arteries during pregnancy - a review. Placenta. 26, 31-6.
Manandhar B.L., Chongstuvivatwong V., Geater A. (2013). Antenatal care and severe pre-eclampsia in Kathmandu syncytiotrophoblast valley. J Chitwan Med College. 3(6), 43–47.
Martinez F., Olvera-Sanchez S., Esparza-Perusquia M., Gomez-Chang E., Flores-Herrera O. (2015). Multiple functions of syncytiotrophoblast mitochondria. Steroids. 103, 11–22.
Mastronicola D., Genova M. L., Arese M., Barone M. C., Giuffre A., Bianchi C., Brunori M., Lenaz G., Sarti P. (2003). Control of respiration by nitric oxide in Keilin Hartree particles, mitochondria and SH-SY5Y neuroblastoma cells. Cell Mol. Life Sci. 60, 1752–1759.
Matsubara K., Higaki T., Matsubara Y., Nawa A. (2015). Nitric Oxide and Reactive Oxygen Species in the Pathogenesis of Preeclampsia. Int J Mol Sci. 16(3), 4600–4614.
Motta-Mejia C., Kandzija N., Zhang W., Mhlomi V., Cerdeira A. S., Burdujan A., Tannetta D., Dragovic R., Sargent I.L., Redman C. W., Kishore U., Vatish M. (2017). Placental Vesicles Carry Active Endothelial Nitric Oxide Synthase and Their Activity is Reduced in Preeclampsia. Hypertension. 70(2), 372–381.
Myatt L., Cui X. (2004). Oxidative stress in the placenta, Histochem. Cell Biol. 122, 369-382.
Myatt L., Rosenfield R.B., Eis A.L., Brockman D.E., Grrec L., Lyall F. (1996). Nitrotyrosine residues in placenta. Evidence of peroxynitrite formation and action. Hypertension. 28, 488-493.
Nonaka A., Manabe T., Asano N., Kyogoku T., Imanishi K., Tamura K., Tobe T., Sugiura Y., Makino K. (1989). Direct ESR measurement of free radicals in mouse pancreatic lesions. Int J Pancreatol. 5(2), 203–211.
Norris L.A., Higgins J.R., Darling M.R., Walshe J.J., Bonnar J. (1999). Nitric oxide in the uteroplacental, fetoplacental, and peripheral circulations in preeclampsia. Obstet Gynecol. 93, 958-963.
North R.A., McCowan L.M., Dekker G.A., Plonka, P.M., Chlopicki S., Plonka B.K., Jawien J., Gryglewski R.J. (1999). Endotoxaemia in rats: detection of nitrosyl-haemoglobin in blood and lung by EPR, Curr. Top. Biophys. 23, 47–53.
Plonka PM., Chlopicki S., Wisniewska M., Plonka BK. (2003). Kinetics of increased generation of NO in endotoxemic rats as measured by EPR. Acta Biochim Pol. 50(3), 807-13.
Podjarny E, Losonczy G, Baylis C. (2004). Animal models of preeclampsia. Semin Nephrol. 24(6), 596-606.
Poston L., Chan E.H., Stewart A.W., Black M.A., Taylor R.S., Walker J.J., Baker P.N., Kenny L.C. (2011). Clinical risk prediction for pre-eclampsia in nulliparous women: development of model in international prospective cohort. BMJ. 342. d1875.
Possomato-Vieira J. S., Khalil R. A. (2016). Mechanisms of Endothelial Dysfunction in Hypertensive Pregnancy and Preeclampsia. Adv Pharmacol. 77, 361–431.
Pulatova M.K., Richireva G.T., Kuroptieva Z.V, (1989). Electron paramagnetic resonace in molekular radiobiology. Electroatomizdat. 72-80.
Redman C.W., Sargent I.L. (2005). Latest Advances in Understanding Preeclampsia. Science. 308, 1592-2005.
Rice-Evans C., Diplock A.T. (1992). Techniques in free radical research (laboratory techniques in biochemistry and molecular biology). Elsevier Science.181-89.
Roberts J.M., Cooper D.W. (2001). Pathogenesis and genetics of pre-eclampsia. Lancet. 357, 53 56.
Sanikidze T.V., Beridze M., Mitagvaria N., Bakhtadze S., Khan N. (2012). Neuroprotective treatment of cerebral infarction: an experimental study. International Journal of Neuroscience. 123(2), 104-113.
Sanikidze T., Chikvaidze E. (2016). Role of the Free Radicals in Mechanisms of Gallstone Formation: An EPR Study. Radiat Prot Dosimetry. 172(1-3):317-324.
Sanyal M.K. (1978). Secretion of progesterone during gestation in the rat. J Endocrinol. 79(2), 179-90.
SartiP., AreseM., BacchiA., BaroneM.C., ForteE., Mastronicola D., BrunoriM., GiuffrèA. (2003). Nitric oxide and mitochondrial complex IV. IUBMB Life. 55(10-11), 605-11.
Sengupta P. (2013).The Laboratory Rat: Relating Its Age With Human’s. Int J Prev Med. 4(6), 624–630.
Sharashenidze A., Kikalishvili L., Turmanidze T., Sanikidze T. (2016). Morphological Changes in Rat Placenta in Different Periods of Pregnancy during the Simulated Pre-Eclampsia. Georgian medical news. 236, 97-101.
Simpson E. R., Miller D. A. (1978). Cholesterol Side-Chain Cleavage, Cytochrome P450, and Iron-Sulfur Protein in Human Placental Mitochondria. Archives of Biochemistry and Biophysics. 190 (2), 800-808.
Sladek S.M., Magness R.R., Conrad K.P. (1997). Nitric oxide and pregnancy. Am J Physiol. 272, R441 R463.
Stamler J.S., Simon D.I., Osborne J.A., Mullins M.E., Jaraki O., Michel T., Singel D.J., Loscalzo J. (1992). S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc Natl Acad Sci U S A. 89, 444-448.
Tortladze M., Kintraia N., Sanikidze T. (2012). The EPR study of nitric oxide in placenta during preeclampsia. Georgian Med News. 208-209, 55-59.
Tropea T., Wareing M., Greenwood S.L., Feelisch M., Sibley C.P., Cottrell E.C. (2018). Nitrite mediated vasorelaxation in human chorionic plate vessels is enhanced by hypoxia and dependent on the NO-sGC-cGMP pathway. Nitric Oxide. 80, 82-88.
Tuckey R. C., McKinley A. J., Madeleine J. Headlam. (2001). Oxidized adrenodoxin acts as a competitive inhibitor of cytochrome P450scc in mitochondria from the human placenta. Eur. J. Biochem. 268, 2338-2343.
Tuckey R.C., Headlam M.J. (2002). Placental cytochrome P450scc (CYP11A1): comparison of catalytic properties between conditions of limiting and saturating adrenodoxin reductase. J Steroid Biochem Mol Biol. 81(2), 153-8.
Tuckey R.C. (2005). Progesterone synthesis by the human placenta. Placenta. 26(4), 273-281.
Walker J.J. (2000). Pre-eclampsia. Lancet. 356 (9237), 1260–1265.
Wan J., Hu Z., Zeng K., Yin Y., Zhao M., Chen M., Chen Q. (2018). The reduction in circulating levels of estrogen and progesterone in women with preeclampsia. Pregnancy Hypertens. 11, 18-25.
Walter L. Miller. (2013). Steroid hormone synthesis in mitochondria. Molecular and Cellular Endocrinology. 379(1–2), 1-84.
Wang J., Yang J., Wu X., Mu Y., Li S., Cui K., Wang X., Zhao F. (2014). Predictive value of placenta derived RASSF1A sequence expression in maternal plasma for pre-eclampsia. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 31(1), 25-8.
Wu Q., Wu G., Li J.X. (2016). Effect of hypoxia on expression of placental trophoblast cells SATB1 and β-Catenin and its correlation with the pathogenesis of preeclampsia. Asian Pac J Trop Med. 9(6), 567-71.
Zhang H., Wang Y., Chen D. (2011). Analysis of Nitroso-Proteomes in Normotensive and Severe Preeclamptic Human Placentas. Biology of Reproduction. 84(5), 966-975.