
INVESTIGATIONES LINGUISTICAE VOL. XXXVII, 2017
© INSTITUTE OF LINGUISTICS – ADAM MICKIEWICZ UNIVERSITY

AL. NIEPODLEGŁOŚCI 4, 60-874, POZNAŃ – POLAND

Automatic Diachronic Normalization of Polish Texts

Jassem Krzysztof, Graliński Filip, Obrębski Tomasz and Wierzchoń Piotr

ADAM MICKIEWICZ UNIVERSITY, POZNAŃ

jassem@amu.edu.pl

Abstract

The paper presents a method for the automatic diachronic
normalization of Polish texts – the procedure, which, for a given
historical text, returns its contemporary spelling. The method
applies finite-state transducers, defined in a sublanguage of the
Thrax formalism. The paper discusses linguistic issues, such as
evolution in spelling of the Polish language, as well as
implementation aspects, such as efficiency or testing the proposed
method.

1. Introduction

Studies on orthography, particularly for the Polish language, are usually
focused on changes in spelling over the course of time. The process of creating

orthographical rules can be spontaneous or prescriptive. Spontaneous changes
are indicated by a text corpus and the spelling rules are decided by language

users (e.g. writing the particle nie (English: not) jointly or separately with

participles). In the primary phase of its development, Polish orthography was
strongly affected by technical limitations (e.g. sets of fonts) and preferences of

certain Polish printers (Lisowski 2010). On the other hand, prescriptive

changes (e.g. replacement of j by i in the Polish word Anglia (English:
England)), represented by explicit sets of norms, are formulated by

institutions constituted specifically for the task. Such organizations are usually
tied to academia and, in Poland, usually represented by prominent professors

of linguistics.

Picture 1. visualises a change in the spelling of the word puchar (English:

goblet) due to a very controversial prescriptive decision made as part of the

1936 spelling reform. The horizontal axis indicates time flow and the vertical
axis shows the usage of a word in the language modelled by a frequency of

appearance in a versatile text corpus (Graliński, 2013).

mailto:jassem@amu.edu.pl

Investigationes Linguisticae, vol. XXXVII

18

Picture 1. Frequency oF differEnt spellings of the word "puchar"

The contemporary spelling (puchar) was less frequent before 1936, it was only
after the spelling reform when the puchar spelling replaced puhar. After 1950

the previous spelling all but disappeared.

Picture 2. shows the evolution in spelling of words, which in their genitive

plural forms ended with “cyj” in the past but their contemporary spellings end

with “cji”. An example of such a word is kolacyj – kolacji (genitive plural form
of supper).

Jassem Krzysztof, Graliński Filip, Obrębski Tomasz , Wierzchoń Piotr:

Automatic Diachronic Normalization of Polish Texts

19

Picture 2. Frequency of words ending with “cji” vs “cyj”

It may be noticed that the contemporary spelling was also dominant around

1800. In the 19th century the “cji” spelling occurred more frequently than “cyj”.
The two lines cross around 1940 (where both spellings were used with similar

frequency), since when the contemporary spelling has been significantly

dominant. It is worth noting that the spontaneous shift followed the
prescriptive change in 19361 , which ordered the usage of the “j” letter in the

combination with the consonant “c”.

1

 S. Jodłowski, W. Taszycki, Zasady pisowni polskiej i interpunkcji ze słownikiem ortograficznym, wy d. 2,

rozszerzone według uchwał komitetu Ortograficznego Polskiej Akademii Umiejętności z 21 kwietnia 1 936 r.

Investigationes Linguisticae, vol. XXXVII

20

This paper presents an algorithmic approach to the evolution of the Polish
orthography, focusing on changes in the 19th and 20th centuries. Broadly

speaking, the goal of the study is to provide new philological and historical

(what changes took place and when) as well as operational (the construction of
an algorithm) insights.

Our research aims at the creation of an algorithm, which, for a given historical

Polish text, returns its contemporary spelling. We call this process,

diachronic normalization. The process is executed based on a set of
prepared time-labelled transformation rules, which will further enable the user

to determine the origin date of an analysed document.

We believe that the research under description will have a significant impact

on the development of Polish humanities (history, sociology, linguistics, etc.)
because it will:

1) allow linguists to verify both qualitative and quantitative hypotheses

concerning the developmental processes of vocabulary and, as such, will serve

as a basis for humanistic research,

2) become a source of information for historians, sociologists and cultural

specialists (who will be helped in searching texts written in old orthography

without any prior knowledge of the orthography of the time),

3) help improve methods dealing with Natural Language Processing.

An important aspect of this study is that it will make it possible to ascertain the

time in which the text was created. This will automate the process of language

chronologisation, or linguochronologisation. The term denotes assigning a
piece of chronological information to an object of a linguistic study (a word, a

syntagma, etc.). This piece of information is simply a unit of time, i.e. a year,
month or even a minute. The chronological accuracy of time description,

depends on the adopted time parameter. The predominant parameter in

literature is a year (1901, 1939, 1953, etc.). Linguochronologisation helps
ascertain which objects do not appear in a linguistic model before a

predetermined date. This, in turn, allows for the description of language

evolution, especially from the lexical or morphological perspective. (An
example of morphologically-motivated research might be the analysis of

appearance, in Polish texts, of affixes such as: anty- (English: anti-), super-
(English: super-), krypto- (English: crypto)), Chronologisation of linguistic

objects of interest allows for the determination of language peculiarities

against the flow of time.

To test the prepared algorithms, a corpus of time-labelled historical texts has

been collected. A part of the corpus was acquired relatively easily: Some texts
had been equipped with metadata in the Dublin Core standard (with additional

date-of-publication – although this information is sporadically false,

Jassem Krzysztof, Graliński Filip, Obrębski Tomasz , Wierzchoń Piotr:

Automatic Diachronic Normalization of Polish Texts

21

inaccurate or using an atypical convention), a part of the material came from
digital libraries (most of which are based on the dLibra system). Although the

challenge of acquiring the texts (with corresponding metadata) is more

technical than academic, it was nevertheless necessary to overcome it to create
a core set of data, on which the algorithms described below have been tested.

The reported task was not limited just to the relatively well structured

resources of digital libraries. Different versions of the same text (e.g. The

Lord’s Prayer, Pan Tadeusz by A. Mickiewicz, etc.) are usually referred to in
various ways. Comparing the orthography of these texts from different time

periods allowed for the extraction of fundamental differences in the spelling of

Polish words.

The study is focused on the description of orthographical rules from the 19 th
and 20th centuries. In principle, most of the 19th century is characterised by a

lack of standard orthographical rules for the Polish language. The situation did

not change after Poland regained independence in 1918. The first conscious
and widely spread orthographical reform took place in 1936. An

Orthographical Committee (Komitet Ortograficzny) was formed by prof. Jan

Rozwadowski. After his death the committee was headed by prof. Kazimierz
Nitsch. The most important decisions of the committee were:

1) the spelling of foreign loanwords, such as ortografia (English:

orthography) or radio (English: radio) should use “i” instead of “j”, unless

preceded by an “s”, “z” or “c”, as in words: kompresja (English: compression),

daglezja (English: douglas fir) or lekcja (English: lesson);

2) inflected adjectives forms should end with “-ym / -im” in the singular

number (e.g. dobrym, English: good), and end with “-ymi /-imi” in the plural

number (dobrymi), rather than the with the older morphemes “-em” (singular)

or “-emi” (plural);

3) the spelling of clusters “ke” and “ge” should be differentiated in “foreign

sounding” words such as “ke” in kelner (English: waiter) or “ge” in geometria

(English: geometry) from “fully assimilated words”. e.g. “kie” as in kielnia

(English: trovel) or “gie” as in giełda (English: stock exchange).

Furthermore, a set of rules was introduced, which determine whether specific
word chunks should be written separately or jointly – the rules gave preference

for separated spelling, e.g przede wszystkim (English: above all) or na pewno
(English: for sure). Additionally, the use of upper-cased and lower-cased

letters was re-defined. The rules put forward by the Orthographical Committee

applied until 1996, when a set of new rules was developed, including the joint
writing of the particle nie (English: not) with participles, e.g. nieśpiewany,

nienarysowany (the scope of this spelling reform was much smaller than that

of 1936).

Investigationes Linguisticae, vol. XXXVII

22

2. Related work

The problem of transliteration of Polish historic texts was first tackled by

Jakub Waszczuk in 20122 for the sake of the SYNAT project3 (a reference to the
SYNAT project may be found in (Mykowiecka, Rychlik, Waszczuk, 2012),

where the authors report on the paper-into-electronic conversion of an Old

Polish dictionary). The solution proposes a formalism, as well as its
interpreter, called hist-pl-transliter, designed for the creation of

transliteration rules, which allows for:

- Substitution of character strings

- Definition of character classes

- Concatenation of character strings or character classes

- Alternative of character strings or character classes

Additionally, the author of the formalism publicizes a list of rules that have

been used for the IMPACT project4 , which consisted in the preparation of full-

text versions of Polish historical texts stored in selected Polish digital libraries.
The rules focus mainly on transliteration of diacritic letters, non-existing in the

contemporary writing (such as "à" "á" "á" "â", "ã" "ä", "ȧ"), but a few context-

dependent rules are included there as well, as shown in Listing 1.

 (1) , vowel >+> ("y" #> "j")

 (2) , vowel >+> ("i" #> "j") >+> vowel

 (3) , hardConsonant >+> ("y" #> "yj") >+> vowel

 (4) , softConsonant >+> ("y" #> "ij") >+> vowel

Listing 1. Context dependent rules in the hist-pl-transliter package

The rules in Listing 1. are processed by the interpreter in the following way:

(1): substitute “y” by “j”, if preceded by a vowel;

(2): substitute “i” by “j”, if preceded by a vowel and followed by a vowel;

(3): substitute “y” by “yj”, if preceded by a “hard consonant” and followed by a
vowel;

2 https://hackage.haskell.org/package/hist-pl-transliter

3 http://synat.nlp.ipipan.waw.pl/

4 http://dl.psnc.pl/activities/projekty/impact/result s/

Jassem Krzysztof, Graliński Filip, Obrębski Tomasz , Wierzchoń Piotr:

Automatic Diachronic Normalization of Polish Texts

23

(4) substitute “y” by “ij”, if preceded by a “soft consonant and followed by a
vowel.

The most recent effort in the area has been carried out within the KORBA
project5 (Bronikowska, Radziejewski, 2017). The task consists in the

transliteration of Polish texts originating from the 17th and 18th centuries. The
solution applies the AMEBA SUPERTOOL6 , originally designed for the afore-

mentioned IMPACT project. The solution applies a large set of context-

dependent rules defined by means of regex-based formalism, as shown in
Listing 2.

(1) ^u mowic $ mówić

(2) ^wy mow i*$ mów

Listing 2. Context-dependent rules in the AMEBA SUPERTOOL

The rules in Listing 2 are interpreter by AMEBA SUPERTOOL as follows:

(1): Substitute „mowic by mówić”, if preceded with the letter „u”, which begins
the word, and followed by the end of the word;

(2) Substitute „mow by mów”, if preceded with the string „wy”, which begins
the word, and followed by the letter “I” (which may or may not end the word).

3. Rule-based Diachronic normalization

3.1. Source of Rules
The set of rules for diachronic normalization is based on the historical

description of Polish orthographic changes presented in (Malinowski, 2012).
Our task consisted in:

- creating a machine-readable rule formalism,

- re-writing the orthographic rules in the created formalism.

One of the orthographic changes is defined in (Malinowski, 2012) as follows:
“Introduction of the letter j in non-initial syllables of foreign-origin words”. A

part of machine-readable re-formulation of the rule is given in Listing 5.

Our approach resembles the one proposed in hist-pl-transliter, as it requires

less human effort in rules creation than that of AMEBA SUPERTOOL. In

comparison to hist-pl-transliter our solution delivers some new operators,
applies an up-to-date package for the processing of finite-state transducers,

5 http://clip.ipipan.waw.pl/KORBA

6 https://bitbucket.org/jsbien/pol

Investigationes Linguisticae, vol. XXXVII

24

suggests treatment of “exception words” and takes advantage of the
Malinowski’s work.

3.2. Finite State Transducers
Diachronic normalization transforms one character string into another. The

most common approach to automatize such a task is the usage of finite-state
transducers (FSTs). An FST verifies if a string satisfies specified conditions

and, in the positive case, performs defined transformations on it. A finite-state
automaton (FSA) is a finite-state transducer that verifies if a string satisfies

specified conditions and, in the positive case, returns its unchanged copy.

Finite-state automata and transducers are commonly used in a wide range of

tasks related to various subdomains of Natural Language Processing:

dictionary representation, text normalization, tokenization, morphological
analysis, speech recognition, speech synthesis or optical character recognition.

FSTs are regarded as very efficient for string transformation. This is very
important from our point of view as we intend to normalize large volumes

(counted in gigabytes) of texts.

A very efficient C++ toolkit for building and manipulating FSTs is called

OpenFst (Allauzen et all, 2007). Its usage requires basic programming skills.

Our goal is to propose a formalism for diachronic normalization rules that
takes advantage of FSTs but does not require a programming background. We

have decided to build the rules on an intuitive subset of functions that are
offered by Thrax (Sproat et all, 2007). Thrax is a library of tools for compiling

grammars into finite state transducers, which was developed by researchers

from Google Research and New York University. It is an open source project
distributed under the Apache license.

Thrax-compliant grammars are expressed as lists of symbols, regular
expressions or context-dependent rewrite rules. The Thrax compiler translates

grammar specification into weighted finite-state transducers in the OpenFst
format and, making use of the OpenFst functionality, allows for performing

various operations on those transducers. OpenFst supplies a wide range of

operations on weighted finite-state transducers, such as union, intersection,
composition, projection, path search, etc.

The Thrax-compliant sublanguage, reduced for the needs of diachronic
normalization, is defined as follows:

A) Regular expressions are allowed on character strings and FST declarations

(point C), e.g.

“ab” denotes a string ab,

(“a” | “b”) denotes either a or b,

a* denotes an empty string or one or more consecutive as (aa…)

a+ denotes a string of one or more as.

Jassem Krzysztof, Graliński Filip, Obrębski Tomasz , Wierzchoń Piotr:

Automatic Diachronic Normalization of Polish Texts

25

B) Replacement rules are defined on strings, e.g.

(“ab” : “cd”) denotes the replacement of the string ab by the string cd

C) FSAs nad FSTs are declared by means of the “=” character, e.g.

Letter = (“a” | “b”, …),

NonEmptyString = Letter+

D) Subtraction of automata are marked by the “-“ character, e.g.

Vowel – “i" is the automaton that verifies the appearance of a vowel other

than “i”

E) Two special labels are introduced:

“[BOS]” and “[EOS]” stand for the beginning and the end of the string

respectively

F) Rewrite Rule:

CDRewrite[Rule, LeftContext, RightContext, Alphabet] is a directive

to apply Rule repeatedly provided that the constraints on the left context

(LeftContext) and the right context (RightContext) are satisfied. The directive

leaves all other characters defined in Alphabet unchanged.

4. Rules for Diachronic Normalization

4.1. Automata declarations
Automata declarations serve for defining character classes. The largest
character class, Any, consists of all characters (weather alphanumerical or not)

that may appear in a UTF-coded Polish text. Less numerous classes
correspond to the set of Polish alphabetical characters (Letter), vowels

(Vowel), consonants (Consonant), any non-empty string of alphabetical

characters (NonEmptyString), etc.

Automata declarations may also serve for distinguishing specific classes of

Polish letters. Listing 3. shows an example:

Followed_by_j = "c" | "s" | "z" | ;

Followed_by_i = "d" | "f" | "g" | "h" | "k" | "l" | "m" | "n" | "p" | "r" |
 "t" | "w" ;

Listing 3. Automata declarations for specific classes of Polish consonants

The classes defined in Listing 1. are applied in the rule that normalizes the

archaic spellings kolacyja and tragedyja into kolacja (Eng. supper) and
tragedia (Eng. tragedy) respectively. If the stem ends with a letter belonging

to the first class (“c”, “s” or “z”), the modernized ending starts with “j”, if,

however, the stem ends with “d” etc., the ending starts with the “i”.

Investigationes Linguisticae, vol. XXXVII

26

Listing 4. shows automata declarations that serve to mark the beginning / end of a

word:

NonLetter = Any - Letter ;

Beginning = "[BOS]" | NonLetter ;

End = "[EOS]" | NonLetter ;

Listing 2. Automata declarations for marking the beginning / end of a word

NonLetter is defined to match all non-alphabetical characters. The Beginning
automaton marks the start of an alphabetic string, the End automaton marks

the end of an alphabetic string.

4.2. Replacement rules
Replacement rules look for the occurrence of specific character strings in a

defined neighborhood and replace them with their modernized versions.

Each rule consists of two parts: The first part is a definition of a transducer for

string replacement, with optional constraints on neighboring characters. The

second part is a directive to apply the replacement globally in a text with
optional additional constraints on the context.

CONTEXT-FREE REPLACEMENT RULES

In context-free replacement rules the directive part applies the replacement

independently of the context.

Jota_before_vowel = ("y" : "j")

 (Vowel - "i") ;

Rule001_07 = CDRewrite [Jota_before_vowel,

 AnyString,
 AnyString,

 Any*] ;

Listing 3. A replacement rule independent of context

The first part of the rule in Listing 5. serves for the replacement of “y” by “j” if

“y” is followed by a vowel other than “I”. The directive part puts no constraints
on the context (“y” may be preceded and followed by any string). (The

argument Any* tells the rule to copy any other character.)

CONTEXT-DEPENDENT REPLACEMENT RULES

In context-dependent replacement rules the directive part applies the

replacement only if additional constraints on the context are satisfied.

Jassem Krzysztof, Graliński Filip, Obrębski Tomasz , Wierzchoń Piotr:

Automatic Diachronic Normalization of Polish Texts

27

Infinitive_z = "y" ("dź" : "ć") |
 ("ie" | "a") ("dź" : "ść") |
 ("e" | "ó") ("dz" : "c") ;

Rule001_02 = CDRewrite [Infinitive_z,
 NonEmptyString,
 End,
 Any*] ;

Listing 6. A context-dependent replacement rule

The rule in Listing 6. converts older forms of selected verb infinitive forms into
their modernized forms. The first part (Infinitive_z) specifies the transducer:

“dź” should be replaced by “ć” if it follows “y” (e.g. bydź -> być; English: to be);

“dź” should be replaced by “ść” if it follows either “ie” or “a”; “dz” should be
replaced by “c” if it follows “e” or “ó”. The second part is a directive to apply

the replacement, provided that the location of the replacement is preceded by a
non-empty string and followed by the end of the word.

MULTIWORD RULES

Replacement rules may merge or divide words.

SeparateModal = "nie"
 ("" : " ")
 ("można" | "trzeba" | "potrzeba" | "wolno"
 "powinno") ;

Rule005_12 = CDRewrite[SeparateModal,
 Beginning,
 End,
 Any*] ;

Listing 7. A word-division rule

The rule given in Listing 7. serves for the separation of the particle nie (Eng.
not) from modal verbs such as można (Eng. one may), trzeba, potrzeba (Eng.

one should), wolno (Eng. it is allowed), powinno (Eng.: one should).

Preposition_czem = ("zaczem" : "za czym") |
 ("poczem" : "po czym") |
 ("przyczem" : "przy czym") ;

Rule005_06 = CDRewrite[Preposition _czem,
 Beginning,
 End,
 Any*] ;

Listing 8. A word-merging rule

Investigationes Linguisticae, vol. XXXVII

28

The rule given in Listing 8. separates the archaic combined spelling of some
prepositions: za (Eng. behind), po (Eng. after), przy (English: at) from the

conjunction czem (locative, older form of the conjunction what — not only the

words were merged, also the form of the pronoun needed to be modernized).

4.3. Exceptions to the rules
The major drawback of the adopted approach is that the rules undesirably

convert existing contemporary words whose spelling comply with the rules. We
call such words exceptions.

To obtain an exhaustive list of exceptions we have run the following procedure:
All word-forms from the contemporary dictionary of the Polish language7 are

processed by the normalization rules. The word-forms that undergo

modification by the rules are regarded as exceptions.

The initial set of merely 32 replacement rules generated no less than 61027
exceptions. A major part of the exceptions was generated due to too week

constraints on the context. For example, the rule that modernized archaic

imperative endings of some verbs (“-iej” -> “-ij”) caused unwanted changes of
correct adjective word-forms. This observation convinced us to revise the

rules, with more attention paid to the constraints.

The exceptions (i.e. words that should not be transformed although they

comply with the rules) include words:

- containing the characters “é” or “á”, e.g. variétés, (these diacritic vowels

were used in Polish before the reform in 19th century8 , nowadays they can be

encountered only in some non-assimilated loanwords);

- containing the character “y” as a consonant (e.g. cowboy, yacht); the

diachronic rules transform “y” into “j”;

- containing the letter “j” following a consonant (e.g. podjudzać; English: to

instigate); the rules incorrectly transform j into i;

- comparative forms of some adjectives; (e.g. chudszy; English: thinner); the

rules treat such words as archaic forms of past participles and inserts the letter

“ł” before the ending (the modification is desired for the archaic participle

poszedszy,¸which should be normalized into poszedłszy; English: having

gone)

- common names, such as Kołomyja (the name of a Polish town), which,

according to the rules, is unwantedly normalized to Kołomja.

7 http://sjp.pl

8 “Rozprawy i wnioski o ortografii polskiej przez deputacyą od Towarzystwa Warsz. Przyjaciół Nauk

wy znaczoną”, Warszawa, 1830 (English: Conclusions on the Polish orthography by the deputation founded by

the Warsaw Society of Friends of Science, Warsaw, 1 830)

Jassem Krzysztof, Graliński Filip, Obrębski Tomasz , Wierzchoń Piotr:

Automatic Diachronic Normalization of Polish Texts

29

To overcome the problem of unwanted transformations of existing words, we
have compiled the set of exceptions into a finite-state automaton. The

normalization procedure does not affect words accepted by the exceptions

automaton.

On the other hand, there are also words that should be normalized and are not
because their archaic versions are stored in the sjp dictionary (e.g. decyzyj,

English: decisions). As a solution, we have decided to remove the archaic

forms from the contemporary dictionary (i.e. the ones that are easy to detect).
This leaves us with some archaic words, which are homophonic with modern

wordforms (e.g. kładź – the archaic form of the verb kłaść (English: to put)

and the Polish common noun footbridge). Currently, they are treated as
exceptions in our approach.

5. Implementation

5.1. Testing procedure

As the rules for the diachronic normalization are not trivial and their
interaction may lead to unexpected results, a proper testing procedure is
crucial. We decided to embed test cases within the rules with a special mark-up
(„>” at the beginning of line) as given in Listing 9.

Rule: Letter 'i' before vowel
> iayko -> jajko

Jota_at_beginning = (("i | y") : "j")
 Vowel ;

Listing 9. A test case preceding a rule

Here, we specify that the expected output for iayko is jajko (English: egg). Test
cases precede the related rule. The embedded test cases are intended for both
humans and machines:

 for humans, they form a part of the documentation, as it is easier to
understand the meaning of a rule with a clear example given;

 for machines, they are computer-readable test cases that can be verified
automatically (akin to unit tests used in software engineering).

All such test cases are extracted automatically from the source codes of the
rules and verified automatically in a continuous manner. If any of the test
cases fails, the given rule (or its test case) must be modified before acceptance
to the project.

Currently, the number of test cases is 61. “Soft” testing with a corpus of real
texts (i.e. checking accuracy on a test text corpus) is planned for the near
future.

Investigationes Linguisticae, vol. XXXVII

30

5.2. Efficiency issues
FST composition combines two FSTs, A and B, into one FST. The

composition applies transformations defined by A to an input string, and then
applies transformations defined by B to the string returned by A.

FST subtraction applies transformation defined by A if the input is not
accepted by B.

In theory, the diachronization procedure could be implemented as a single
FST, constructed as a composition of all replacement rule FSTs, from which

the exception transducer is subtracted. In practice, however, such a simple and

elegant approach is not feasible. Thrax fails to generate the transducer
representing the composition of all rules because of memory excess error.

To overcome this problem another processing scheme was implemented,

namely on-the-fly composition. The input string is processed by the cascade of

rule transducers r1 , r2 , …, rn connected in such a way that the output of ri is
passed to the input of ri+1 (precisely speaking, output of ri is composed with

ri+1).

The equivalence of those two solutions follows from the associativity property

of transducer composition operation:

input . (r1 . r2 . r3 . … . rn-1 . rn) = (((((input . r1) . r2) . r3) . …) . rn-1) . rn

This solution makes it possible to avoid the construction of large transducers.

The problem of memory having been solved, the problem of time complexity

appeared. Neither Thrax nor OpenFst package supply ready-to-use tools that
allow for implementing on-the-fly composition with satisfactory processing

speed. The problem was eventually solved by writing a special purpose low-

level program using the OpenFst C++ programming interface. The
implemented solution made it possible to avoid unnecessary repetition of

several time-consuming operations, such as loading a transducer each time a
rule is applied. Eventually, the processing speed increased to a reasonable

level.

6. Evaluation

The evaluation experiment was carried out in 4 steps:

- Preprocessing

- Human verification

- Generation of a testing list

- Human cleaning

- Evaluation

Jassem Krzysztof, Graliński Filip, Obrębski Tomasz , Wierzchoń Piotr:

Automatic Diachronic Normalization of Polish Texts

31

In the pre-processing stage, a corpus of OCR-ed texts was processed by means
of simple regex replacement rules (an example is given in Listing 10).

 new Rule("([dfglmnprt])[jy]([aąeęiou])", "$1i$2"),

Listing 10. A Preprocessing rule that changes “j” or “y” into “I” in specific contexts

The aim was to eliminate frequently occurring errors of optical recognition, as

well as to apply very simple and regular rules on character replacement in the
diachronic normalization.

The result of pre-processing on the corpus was verified by humans, who
diachronically normalized already pre-processed texts.

In the third step, the corrections made by humans were automatically

compilated into a list of pairs: <original word, corrected word>. The list

consisted of 3298 pairs.

Human cleaning consisted in selecting such items from the list, whose

presence was due to the diachronic normalization process (and not OCR
errors). The resulting list consisted in 759 pairs. These pairs were submitted to

the evaluation process. The results are listed in Table 1.

Tool Modified Correct

modifications
HIST-PL 247 / 759

(32.5%)

145 / 7 59 (19.1%)

AMEBA 144 / 7 59

(19.0%)

123 / 7 59 (16.2%)

DIACHRONIC 464 / 7 59 (61,1%) 324 / 7 59 (42.7 %)

TABLE 1. Comparison of three diachronic normalization tools for Polish

Note that the low percentages (in general) in Table 1. may be justified by the

fact that the data under examination consisted solely of the “hard words” that

had not been changed by the pre-processor.

Our application (Diachronic) shows the highest recall on the one hand, but

commits the highest number of errors on the other. This indicates that the
Malinowski’s work is a good starting point for rule creation, however the rules

should be carefully re-examined to assure higher accuracy of the normalization
tool.

7. Conclusions

This paper reports on a FST-based method for the diachronic normalization of

Polish texts. The method gives satisfactory results in the aspects of efficiency

Investigationes Linguisticae, vol. XXXVII

32

and quality. In the future, we intend to improve the results by defining new
replacement rules on the one hand (by means of the analysis of normalized

archaic texts) and putting stricter constraints on the existing rules on the

other. We also plan to optimize the procedure that deals with exceptions.
Finally, our goal is to define an automatic procedure, which, based on the rules

used in the normalization process, predicts the origin date of the text.

Jassem Krzysztof, Graliński Filip, Obrębski Tomasz , Wierzchoń Piotr:

Automatic Diachronic Normalization of Polish Texts

33

References

Allauzen C., Riley M., Schalkwyk J., Skut W. and Mohri M., OpenFst: A General and

Efficient Weighted Finite-State Transducer LIbrary, Proceedings of the

Twelfth I nternational Conference on I mplementation and

Application of Automata, (CIAA 2007), Lecture Notes in Computer

Science, Vol. 4783. pp. 11-23. Prague, Czech Republic. Springer.

Bronikowska R., Modrzejewski E. The enrichment of the lexical information and the

corpus resources by using the results of the morphological analysis of historical texts,

http://www.elexicography.eu/wp-content/uploads/2017/03/ (downloaded on 2017-

06-15).

Graliński F., 2013, Polish digital libraries as a text corpus, in: Zygmunt Vetulani and

Hans Uszkoreit (eds.), Proceedings of 6th Language & Technology Conference, pp.

509-513. Fundacja Uniwersytetu im. Adama Mickiewicza.

Klemensiewicz Z., 1963, (ed.), Pisownia polska. Przepisy – słowniczek, Warszawa –

Kraków – Wrocław – Łódź, Zakład im. Ossolińskich.

Lisowski T., 2010, Economic calculation and Polish alphabetic writing, in: Sekiguchi

T. (ed.), The International Academic Conference “Meetings of the Three Polish

Studies Centres in Asia – China, Korea, Japan”, pp. 195–204.

Malinowski M., 2012, Ortografia polska od II poł. XVIII wieku do współczesności.

Kodyfikacja, reformy, recepcja; praca doktorska, Uniwersytet Śląśki w Katowicach.

Mykowiecka A., Rychlik P., Waszczuk J., Building an Electronic Dictionary of Old

Polish on the Base of the Paper Resource, in: Petya Osenova, Stelios Piperidis, Milena

Slavcheva Cristina Vertan (eds.), Proceedings of the Workshop on Adaptation of

Language Resources and Tools for Processing Cultural Heritage at LREC

2012, European Language Resources Association (ELRA), 2012, pp. 16-21.

Tai T., Sproat R., Skut W., 2011, Thrax: An Open Source Grammar Compiler Built on

OpenFst, in: Proceedings of the IEEE Automatic Speech Recognition and

Understanding Workshop, IEEE, Piscataway, NJ.

http://www.openfst.org/twiki/pub/FST/FstBackground/ciaa.pdf
http://www.openfst.org/twiki/pub/FST/FstBackground/ciaa.pdf

