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Abstract. There are numerous formats for writing spell-checkers for open-sour-
ce systems and there are many lexical descriptions for natural languages written
in these formats. In this paper, we demonstrate a method for converting Hunspell
and related spell-checking lexicons into finite-state automata. We also present
a simple way to apply unigram corpus training in order to improve the spell-
checking suggestion mechanism using weighted finite-state technology. What we
propose is a generic and efficient language-independent framework of weighted
finite-state automata for spell-checking in typical open-source software, e.g. Mo-
zilla Firefox, OpenOffice and the Gnome desktop.

1 Introduction

Currently there is a wide range of different free open-source solutions for spell-checking
by computer. The most popular of the spelling dictionaries are the various instances of
*spell software, i.e. ispell1, aspell2, myspell and hunspell3 and other *spell derivatives.
The hunspell dictionaries provided with the OpenOffice.org suite cover 98 languages.

The program-based spell-checking methods have their limitations because they are
based on specific program code that is extensible only by coding new features into the
system and getting all users to upgrade. E.g. hunspell has limitations on what affix mor-
phemes you can attach to word roots with the consequence that not all languages with
rich inflectional morphologies can be conveniently implemented in hunspell. This has
already resulted in multiple new pieces of software for a few languages with imple-
mentations to work around the limitations, e.g. emberek (Turkish), hspell (Hebrew),
uspell (Yiddish) and voikko (Finnish). What we propose is to use a generic framework
of finite-state automata for these tasks. With finite-state automata it is possible to im-
plement the spell-checking functionality as a one-tape weighted automaton containing
the language model and a two-tape weighted automaton containing the error model.

In addition, we extend the hunspell spell-checking system by using simple corpus-
based unigram probability training [8]. With this probability trained lexicon it is possi-
ble to fine-tune and improve the suggestions for spelling errors.

1 http://www.lasr.cs.ucla.edu/geoff/ispell.html
2 http://aspell.net
3 http://hunspell.sf.net
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We also provide a path for integrating our finite-state spell-checking and hyphen-
ation into applications through the open-source spell-checking library voikko4, which
has been integrated with typical open-source software, such as Mozilla Firefox, Open-
Office.org and the Gnome desktop via enchant.

2 Definitions

In this article we use weighted two-tape finite-state automata—or weighted finite-state
transducers—for all processing. We use the following symbol conventions to denote the
parts of a weighted finite-state automaton: a transducer T = (Σ,Γ,Q, q0, Qf , δ, ρ) with
a semi-ring (S,⊕,⊗, 0, 1) for weights. HereΣ is a set with the input tape alphabet, Γ is
a set with the output tape alphabet,Q a finite set of states in the transducer, q0 ∈ Q is an
initial state of the transducer, Qf ⊂ Q is a set of finite states, δ : Q×Σ × Γ × S → Q
is a transition relation, ρ : Qf → S is a final weight function. A successful path is
a list of transitions from an initial state to a final state with a weight different from 0
collected from the transition function and the final state function in the semi-ring S
by the operation ⊗. We typically denote a successful path as a concatenation of input
symbols, a colon and a concatenation of output symbols. The weight of the successful
path is indicated as a subscript in angle brackets, input:output<w>. A path transducer
is denoted by subscripting a transducer with the path. If the input and output symbols
are the same, the colon and the output part can be omitted.

The finite-state formulation we use in this article is based on Xerox formalisms for
finite-state methods in natural language processing [2], in practice lexc is a formalism
for writing right linear grammars using morpheme sets called lexicons. Each morpheme
in a lexc grammar can define their right follower lexicon, creating a finite-state network
called a lexical transducer. In formulae, we denote a lexc style lexicon named X as
LexX and use the shorthand notation LexX ∪ input:output Y to denote the addition of
a lexc string or morpheme, input:output Y ; to the LEXICON X. In the same
framework, the twolc formalism is used to describe context restrictions for symbols
and their realizations in the form of parallel rules as defined in the appendix of [2]. We
use TwolZ to denote the rule set Z and use the shorthand notation TwolZ ∩ a:b ↔
l e f t_r i g h t to denote the addition of a rule string a:b <=> l e f t _ r i g
h t ; to the rule setZ, effectively saying that a:b only applies in the specified context.

A spell-checking dictionary is essentially a single-tape finite-state automaton or a
language model TL, where the alphabet ΣL = ΓL are characters of a natural language.
The successful paths define the correctly spelled word-forms of the language [8].

For weighted spell-checking, we define the weights in a lexicon as the probability
of the word in a text corpus, e.g. Wikipedia. For a weighted model of the automaton, we
use the tropical semi-ring assigning each word-form the weight − log fw

CS , where fw is
the frequency of the word and CS the corpus size as the number of word form tokens.
For word-forms not appearing in the text corpus, we assign a small probability using
the formula − log 1

CS+1 .
A spelling correction model or an error model TE is a two-tape automaton mapping

the input text strings of the text to be spell-checked into strings that may be in the
4 http://voikko.sf.net
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language model. The input alphabet ΣE is the alphabet of the text to be spell-checked
and the output alphabet is ΓE = ΣL. For practical applications, the input alphabet needs
to be extended by a special any symbol with the semantics of a character not belonging
to the alphabet of the language model in order to account for input text containing typos
outside the target natural language alphabet. The error model can be composed with the
language model, TL ◦ TE , to obtain an error model that only produces strings of the
target language. For space efficiency, the composition may be carried out during run-
time using the input string to limit the search space. The weights of an error model may
be used as an estimate for the likelihood of the combination of errors. The error model
is applied as a filter between the path automaton Ts compiled from the erroneous string,
s /∈ TL, and the language model, TL, using two compositions, Ts◦TE◦TL. The resulting
transducer consists of a potentially infinite set of paths relating an incorrect string with
correct strings from L. The paths, s : si

<wi>, are weighted by the error model and
language model using the semi-ring multiplication operation, ⊗. If the error model and
the language model generate an infinite number of suggestions, the best suggestions
may be efficiently enumerated with some variant of the n-best-paths algorithm [7]. For
automatic spelling corrections, the best path may be used. If either the error model or
the language model is known to generate only a finite set of results, the suggestion
generation algorithm may be further optimized.

3 Material

In this article, we present methods for converting the hunspell dictionaries and rule sets
for use with open-source finite-state writer’s tools. As concrete dictionaries, we use the
repositories of free implementations of these dictionaries and rule sets found on the
internet, e.g. the hunspell dictionary files found on the OpenOffice.org spell-checking
site5.

In this section, we describe the parts of the file formats we are working with. All of
the information of the hunspell format specifics is derived from the hunspell(4)6

man page, as that is the only normative documentation of hunspell we have been able
to locate.

The corpora we use for the unigram training of spell-checking dictionaries are
Wikipedia database backups7. The Wikipedia is available for the majority of languages
and it consists of large amounts of language that is typically well-suited for training
spell-checking dictionaries.

3.1 Hunspell File Format

A hunspell spell-checking dictionary consists of two files: a dictionary file and an affix
file. The dictionary file contains only root forms of words with information about mor-
phological affix classes to combine with the roots. The affix file contains lists of affixes

5 http://wiki.services.openoffice.org/wiki/Dictionaries
6 http://manpages.ubuntu.com/manpages/dapper/man4/hunspell.4.
html

7 http://download.wikimedia.org
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1 # Swedish
abakus /HDY

3 a b a l i e n a t i o n /AHDvY
a b a l i e n e r a /MY

5 # N o r t h e r n Sámi
o k t a / 1

7 gu o k t e / 1 , 3
golbma / 1 , 3

9 # Hungar i an
üzé r / 1 1

11 ü z l e t ág / 2 2
ü z l e t v e z e t ö / 3 1

13 ü z l e t s z e r z ö / 4 1

Fig. 1. Excerpts of Swedish, Northern S|-á-|mi and Hungarian dictionaries

along with their context restrictions and effects, but the affix file also serves as a settings
file for the dictionary, containing all meta-data and settings as well.

The dictionary file starts with a number that is intended to be the number of lines
of root forms in the dictionary file, but in practice many of the files have numbers
different from the actual line count, so it is safer to just treat it as a rough estimate.
Following the initial line is a list of strings containing the root forms of the words
in the morphology. Each word may be associated with an arbitrary number of classes
separated by a slash. The classes are encoded in one of the three formats shown in
the examples of Figure 1: a list of binary octets specifying classes from 1–255 (minus
octets for CR, LF etc.), as in the Swedish example on lines 2–4, a list of binary words,
specifying classes from 1–65,535 (again ignoring octets with CR and LF) or a comma
separated list of numbers written in digits specifying classes 1–65,535 as in the North
Sámi examples on lines 6–8. We refer to all of these as continuation classes encoded by
their numeric decimal values, e.g. ’abakus’ on line 2 would have continuation classes
72, 68 and 89 (the decimal values of the ASCII code points for H, D and Y respectively).
In the Hungarian example, you can see the affix compression scheme, which refers to
the line numbers in the affix file containing the continuation class listings, i.e. the part
following the slash character in the previous two examples. The lines of the Hungarian
dictionary also contain some extra numeric values separated by a tab which refer to the
morphology compression scheme that is also mentioned in the affix definition file; this
is used in the hunmorph morphological analyzer functionality which is not implemented
nor described in this paper.

The second file in the hunspell dictionaries is the affix file, containing all the set-
tings for the dictionary, and all non-root morphemes. The Figure 2 shows parts of the
Hungarian affix file that we use for describing different setting types. The settings are
typically given on a single line composed of the setting name in capitals, a space and
the setting values, like the NAME setting on line 6. The hunspell files have some values
encoded in UTF-8, some in the ISO 8859 encoding, and some using both binary and
ASCII data at the same time. Note that in the examples in this article, we have tran-
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1 AF 1263
AF VË−jxLnÓéè3ÄäTtYc , 4 l # 1

3 AF UmÖyiYcÇ # 2
AF ÖCWRÍ− j þÓíyÉÁÿYc2 # 3

5
NAME Magyar I s p e l l h e l y e s í r á s i s zó t á r

7 LANG hu_HU
SET UTF−8

9 KEY öüó | q w e r t z u i o p őú | # wrap
a s d f g h j k l éáűíyxcvbnm

11 TRY íóú t a e s l z á n o r h g k i é # wrap
dmyőpvö b u c f j üyxwq−.á

13
COMPOUNDBEGIN v

15 COMPOUNDEND x
ONLYINCOMPOUND |

17 NEEDAFFIX u

19 REP 125
REP í i

21 REP i í
REP ó o

23 REP o l i e r e o l i é r e
REP cc gysz

25 REP cs t s
REP cs ds

27 REP c c s t s
# 116 more REP l i n e s

29
SFX ? Y 3

31 SFX ? ö ős /1108 ö 20973
SFX ? 0 ös /1108 [ ^ aáeé i íoóöőuüű ] 20973

33 SFX ? 0 s /1108 [ áé i íoóúőuúüű−] 20973

35 PFX r Y 195
PFX r 0 l e g ú j r a /1262 . 22551

37 PFX r 0 l e g ú j j á /1262 . 22552
# 193 more PFX r l i n e s

Fig. 2. Excerpts from Hungarian affix file

scribed everything into UTF-8 format or the nearest relevant encoded character with a
displayable code point.

The settings we have used for building the spell-checking automata can be roughly
divided into the following four categories: meta-data, error correction models, special
continuation classes, and the actual affixes. An excerpt of the parts that we use in the
Hungarian affix file is given in Figure 2.

Creating and Weighting Hunspell Dictionaries as Finite-State Automata 5



The meta-data section contains, e.g., the name of the dictionary on line 6, the char-
acter set encoding on line 8, and the type of parsing used for continuation classes, which
is omitted from the Hungarian lexicon indicating 8-bit binary parsing.

The error model settings each contain a small part of the actual error model, such
as the characters to be used for edit distance, their weights, confusion sets and phonetic
confusion sets. The list of word characters in order of popularity, as seen on line 12 of
Figure 2, is used for the edit distance model. The keyboard layout, i.e. neighboring key
sets, is specified for the substitution error model on line 10. Each set of the characters,
separated by vertical bars, is regarded as a possible slip-of-the-finger typing error. The
ordered confusion set of possible spelling error pairs is given on lines 19–27, where
each line is a pair of a ‘mistyped’ and a ‘corrected’ word separated by whitespace.

The compounding model is defined by special continuation classes, i.e. some of the
continuation classes in the dictionary or affix file may not lead to affixes, but are defined
in the compounding section of the settings in the affix file. In Figure 2, the compounding
rules are specified on lines 14–16. The flags in these settings are the same as in the affix
definitions, so the words in class 118 (corresponding to lower case v) would be eligible
as compound initial words, the words with class 120 (lower case x) occur at the end of a
compound, and words with 117 only occur within a compound. Similarly, special flags
are given to word forms needing affixes that are used only for spell checking but not for
the suggestion mechanism, etc.

The actual affixes are defined in three different parts of the file: the compression
scheme part on the lines 1–4, the suffix definitions on the lines 30–33, and the prefix
definitions on the lines 35–37.

The compression scheme is a grouping of frequently co-occurring continuation
classes. This is done by having the first AF line list a set of continuation classes which
are referred to as the continuation class 1 in the dictionary, the second line is referred to
the continuation class 2, and so forth. This means that for example continuation class
1 in the Hungarian dictionary refers to the classes on line 2 starting from 86 (V) and
ending with 108 (l).

The prefix and suffix definitions use the same structure. The prefixes define the left-
hand side context and deletions of a dictionary entry whereas the suffixes deal with the
right-hand side. The first line of an affix set contains the class name, a boolean value
defining whether the affix participates in the prefix-suffix combinatorics and the count
of the number of morphemes in the continuation class, e.g. the line 35 defines the prefix
continuation class attaching to morphemes of class 114 (r) and it combines with other
affixes as defined by the Y instead of N in the third field. The following lines describe
the prefix morphemes as triplets of removal, addition and context descriptions, e.g., the
line 31 defines removal of ’ö’, addition of ’ős’ with continuation classes from AF line
1108, in case the previous morpheme ends in ’ö’. The context description may also
contain bracketed expressions for character classes or a fullstop indicating any charac-
ter (i.e. a wild-card) as in the POSIX regular expressions, e.g. the context description on
line 33 matches any Hungarian vowel except a, e or ö, and the 37 matches any context.
The deletion and addition parts may also consist of a sole ‘0’ meaning a zero-length
string. As can be seen in the Hungarian example, the lines may also contain an addi-
tional number at the end which is used for the morphological analyzer functionalities.
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4 Methods

This article presents methods for converting the existing spell-checking dictionaries
with error models to finite-state automata. As our toolkit we use the free open-source
HFST toolkit8, which is a general purpose API for finite-state automata, and a set of
tools for using legacy data, such as Xerox finite-state morphologies. For this reason this
paper presents the algorithms as formulae such that they can be readily implemented
using finite-state algebra and the basic HFST tools.

The lexc lexicon model is used by the tools for describing parts of the morphotactics.
It is a simple right-linear grammar for specifying finite-state automata described in [2,
6]. The twolc rule formalism is used for defining context-based rules with two-level
automata and they are described in [5, 6].

This section presents both a pseudo-code presentation for the conversion algorithms,
as well as excerpts of the final converted files from the material given in Figures 1 and
2 of Section 3. The converter code is available in the HFST SVN repository9 for those
who wish to see the specifics of the implementation in lex, yacc, c and python.

4.1 Hunspell dictionary conversion

The hunspell dictionaries are transformed into a finite-state transducer language
model by a finite-state formulation consisting of two parts: a lexicon and one or more
rule sets. The root and affix dictionaries are turned into finite-state lexicons in the lexc
formalism. The lexc formalism models the part of the morphotax concerning the root
dictionary and the adjacent suffixes. The rest is encoded by injecting special symbols,
called flag diacritics, into the morphemes restricting the morpheme co-occurrences by
implicit rules that have been outlined in [1]; the flag diacritics are denoted in lexc by
at-sign delimited substrings. The affix definitions in hunspell also define deletions and
context restrictions which are turned into explicit two-level rules.

The pseudo-code for the conversion of hunspell files is provided in Algorithm 1
and excerpts from the conversion of the examples in Figures 1 and 2 can be found in
Figure 3. The dictionary file of hunspell is almost identical to the lexc root lexicon,
and the conversion is straightforward. This is expressed on lines 4–9 as simply going
through all entries and adding them to the root lexicon, as in lines 6—10 of the example
result. The handling of affixes is similar, with the exception of adding flag diacritics for
co-occurrence restrictions along with the morphemes. This is shown on lines 10—28 of
the pseudo-code, and applying it will create the lines 17—21 of the Swedish example,
which does not contain further restrictions on suffixes.

To finalize the morpheme and compounding restrictions, the final lexicon in the lexc
description must be a lexicon checking that all prefixes with forward requirements have
their requiring flags turned off.

8 http://HFST.sf.net
9 http://hfst.svn.sourceforge.net/viewvc/hfst/trunk/
conversion-scripts/
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Algorithm 1 Extracting morphemes from hunspell dictionaries
finalflags← ε

2: for all lines morpheme/Conts in dic do
flags← ε

4: for all cont in Conts do
flags← flags+ @C.cont@

6: LexConts ← LexConts ∪ 0:[<cont] cont
end for

8: LexRoot ← LexRoot ∪ flags + morpheme Conts
end for

10: for all suffixes lex, deletions,morpheme/Conts, context in aff do
flags← ε

12: for all cont in Conts do
flags← flags+ @C.cont@

14: LexConts ← LexConts ∪ 0 cont
end for

16: Lexlex ← Lexlex ∪ flags + [< lex] + morpheme Conts
for all del in deletions do

18: lc← context+ deletions before del
rc← deletions after del + [< lex] +morpheme

20: Twold ← Twold ∩ del:0⇔ lc _ rc
end for

22: Twolm ← Twolm ∩ [< lex] : 0⇔ context _ morpheme
end for

24: for all prefixes lex, deletions,morpheme/conts, context in aff do
flags← @P.lex@

26: finalflags← finalflags+ @D.lex@
lex→ prefixes {othewise as with suffixes, swapping left and right}

28: end for
Lexend ← Lexend ∪ finalflags #

4.2 Hunspell Error Models

The hunspell dictionary configuration file, i.e. the affix file, contains several parts that
need to be combined to achieve a similar error correction model as in the hunspell
lexicon.

The error model part defined in the KEY section allows for one slip of the finger
in any of the keyboard neighboring classes. This is implemented by creating a simple
homogeneously weighted crossproduct of each class, as given on lines 1–7 of Algo-
rithm 2. For the first part of the example on line 10 of Figure 2, this results in the lexc
lexicon on lines 11–18 in Figure 4.

The error model part defined in the REP section is an arbitrarily long ordered confu-
sion set. This is implemented by simply encoding them as increasingly weighted paths,
as shown in lines 9–12 of the pseudo-code in Algorithm 2.

The TRY section such as the one on line 12 of Figure 2 defines characters to be
tried as the edit distance grows in descending order. For a more detailed formulation
of a weighted edit distance transducer, see e.g. [8]). We created an edit distance model

8 Tommi A. Pirinen, Krister Lindén



LEXICON Root
2 HUNSPELL_pfx ;

HUNPELL_dic ;
4

! swed i sh l e x c
6 LEXICON HUNSPELL_dic

@C.H@@C.D@@C. Y@abakus HDY ;
8 @C.A@@C.H@@C.D@@C.v@@C. Y@aba l i ena t i on

HUNSPELL_AHDvY ;
10 @C.M@@C. Y@abal ienera MY ;

12 LEXICON HDY
0: [ <H] H ;

14 0 : [ <D] D ;
0 : [ <Y] Y ;

16
LEXICON H

18 e r HUNSPELL_end ;
e r s HUNSPELL_end ;

20 e r HUNSPELL_end ;
e r s HUNSPELL_end ;

22
LEXICON HUNSPELL_end

24 @D.H@@D.D@@D.Y@@D.A@@D.v@@D.m@ # ;

26 ! swed i sh t w o l c f i l e
Ru les

28 " S u f f i x H a l l o w e d c o n t e x t s "
%[%<H%]: 0 <=> \ a _ e r ;

30 \ a _ e r s ;
a : 0 _ e r ;

32 a : 0 _ e r s ;

34 " a d e l e t i o n c o n t e x t s "
a : 0 <=> _ %[%<H%]:0 e r ;

36 _ %[%<H%]: e r s ;

Fig. 3. Converted dic and aff lexicons and rules governing the deletions

with the sum of the positions of the characters in the TRY string as the weight, which
is defined on lines 14–21 of the pseudo-code in Algorithm 2. The initial part of the
converted example is displayed on lines 20–27 of Figure 4.

Finally to attribute different likelihood to different parts of the error models we use
different weight magnitudes on different types of errors, and to allow only correctly
written substrings, we restrict the result by the root lexicon and morfotax lexicon, as
given on lines 1–9 of Figure 4. With the weights on lines 1–5, we ensure that KEY
errors are always suggested before REP errors and REP errors before TRY errors. Even

Creating and Weighting Hunspell Dictionaries as Finite-State Automata 9



Algorithm 2 Extracting patterns for hunspell error models
for all neighborsets ns in KEY do

2: for all character c in ns do
for all character d in ns such that c! = d do

4: LexKEY ← LexKEY ∪ c : d<0>#
end for

6: end for
end for

8: w ← 0
for all pairs wrong, right in REP do

10: w ← w + 1
LEXREP ← LEXREP ∪ wrong : right<w>#

12: end for
w ← 0

14: for all character c in TRY do
w ← w + 1

16: LexTRY ← LexTRY ∪ c : 0<w>#
LexTRY ← LexTRY ∪ 0 : c<w>#

18: for all character d in TRY such that c! = d do
LexTRY ← LexTRY ∪ c : d<w># {for swap: replace # with cd and add Lexcd∪d :
c<0>#}

20: end for
end for

though the error model allows only one error of any type10, simulating the original
hunspell, the resulting transducer can be transformed into an error model accepting
multiple errors by a simple FST algebraic concatenative n-closure, i.e. repetition.

4.3 Weighting Finite-State Dictionaries

Finite-state automata can be weighted simply by using finite-state composition. For
corpus-based weighting, the automata containing a weighted language model simply
encodes a probability of a token appearing in a corpus [8]. The weights are formu-
lated as penalty values belonging to the weighted semiring using the formula− log f

CS ,
where f is the frequency of a token, and CS the size of the corpus in tokens. For tokens
not appearing in the corpus, a maximum weight of − log 1

CS+1 is used to ensure that
they will be suggested last by the error correction mechanism.

Since the error model is weighted as well, the weights need to be scaled so that
combining them under the semiring addition operation will produce reasonable results.
In our experiment we have opted to scale the weights of the error model so that the
weight of making one error is always greater than the back-off weight in the unigram
weighting model. Using this scaling ensures that the error model takes precedence over
the probability data learned from the dictionary, which may only fine-tune the results in
cases where there are multiple choices at the same error distance using the error model.
10 the manual does not specify how many times and in which order different errors are tried, we

assume once for simplicity and as a baseline
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LEXICON HUNSPELL_error_root
2 < ? > HUNSPELL_error_root ;

HUNSPELL_KEY " w e i gh t : 0" ;
4 HUNSPELL_REP " we i gh t : 100" ;

HUNSPELL_TRY " w e ig h t : 1000" ;
6

LEXICON HUNSPELL_errret
8 < ? > HUNSPELL_errret ;

# ;
10

LEXICON HUNSPELL_KEY
12 ö : ü HUNSPELL_errret " we i gh t : 0" ;

ö : ó HUNSPELL_errret " we i gh t : 0" ;
14 ü : ö HUNSPELL_errret " we i gh t : 0" ;

ü : ó HUNSPELL_errret " we i gh t : 0" ;
16 ó : ö HUNSPELL_errret " we igh t : 0" ;

ó : ü HUNSPELL_errret " we i gh t : 0" ;
18 ! same f o r o t h e r p a r t s

20 LEXICON HUNSPELL_TRY
í : 0 HUNSPELL_errret " we i gh t : 1" ;

22 0 : í HUNSPELL_errret " we igh t : 1" ;
í : ó HUNSPELL_errret " we i gh t : 2" ;

24 ó : í HUNSPELL_errret " we i gh t : 2" ;
ó : 0 HUNSPELL_errret " we i gh t : 2" ;

26 0 : ó HUNSPELL_errret " we igh t : 2" ;
! same f o r r e s t o f t h e a l p h a b e t

28
LEXICON HUNSPELL_REP

30 í : i HUNSPELL_errret " we igh t : 1" ;
i : í HUNSPELL_errret " w e i gh t : 2" ;

32 ó : o HUNSPELL_errret " we igh t : 3" ;
o l i e r e : o l i è r e HUNSPELL_errret " we i gh t : 4" ;

34 cc : gysz HUNSPELL_errret " we igh t : 5" ;
c s : t s HUNSPELL_errret " w e i gh t : 6" ;

36 cs : ds HUNSPELL_errret " we igh t : 7" ;
c c s : t s HUNSPELL_errret " we ig h t : 8" ;

38 ! same f o r r e s t o f REP p a i r s . . .

Fig. 4. Converted error models from aff file

The tokens are extracted from Wikipedia using a dictionary transducer and tok-
enizing analysis algorithm[4]. This algorithm uses the dictionary automaton to extract
tokens that appear in the dictionary from the Wikipedia data. The rest of the tokens
are formed from contiguous runs of other dictionary characters which did not result
in dictionary word-forms. From this set, the correct tokens are turned into a weighted
suffix-tree automaton using the − log f

CS formula for the weights. This is unioned with
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a version of the original dictionary whose final weights have been set to the maximum
weight, − log 1

CS+1 .

5 Tests and Evaluation

We have implemented the spell-checkers and their error models as finite-state transduc-
ers using program code and scripts with a Makefile. To test the code, we have converted
42 hunspell dictionaries from various language families. They consist of the dictionar-
ies that were accessible from the aforementioned web sites at the time of writing. The
Table 1 gives an overview of the sizes of the compiled automata. The size is given in
binary multiples of bytes as reported by ls -hl. In the Table 1, we also give the num-
ber of roots in the dictionary file and the affixes in affix file. These numbers should also
help with identifying the version of the dictionary, since there are multiple different
versions available in the downloads.

To test the converted spell-checking dictionaries and error models, we picked 5 dic-
tionaries of varying size and features. For spelling material, we created sets of spelling
errors automatically, by introducing spelling errors in the tokens of Wikipedia data.
The errors have been made by a python script implementing the edit distance type of
errors to the words with a likelihood of 1/33 per character. The words which did not
receive any automatic misspellings were not included in the test set, but words where
spelling errors introduced another word form of the language were retained. These cor-
rect words resulting false positive hits in both tested systems also serve as further check
that the systems work equally well. The hunspell results were obtained by hunspell
-1 -d $LL < misspelings, and the automata were applied using the HFST tool
hfst-ospell error-model dictionary.

The table 2 gives measures how our FSTs work compared to original Hunspell
model, i.e. how accurately the FSTs implement the hunspell functionality. The differ-
ences between rankings show how accurately our weighted hunspell error model im-
plements the hunspell’s algorithm for generating suggestions, and the differences in
false positives come from dictionary implementation. These contain different ordering
of equally distant spelling errors and lack of case folding, for example. In the table
the colums 1, 2 − 4 and 5− show numbers of correct results showing as first, other
top four, or lower suggestions. The column F is for spelling results, that are found in
the dictionary—in this case, false positives. The column M contains misses, where no
correct suggestion was given at all—even though all correct strings were originally ex-
tracted using the dictionary.

The table 3 summarizes how the probabilities and repetition can be used to change
the spelling suggestions made by our finite-state dictionary and error models. Three
variants of finite-state automata combinations were tested; one allowing for one hun-
spell errors without any weighting, one for two errors, and one where two error model
was used in conjunction with Wikipedia probability weighted dictionary.

The time requirements of each system was also briefly tested using the standard
Unix time(1) tool to measure the time of correcting the same misspelled strings
previously used for testing the precision and recall. The times were measured on an
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Table 1. Compiled Hunspell automata sizes

Language Dictionary Roots Affixes

Portugese (Brazil) 14 MiB 307,199 25,434
Polish 14 MiB 277,964 6,909
Czech 12 MiB 302,542 2,492

Hungarian 9.7 MiB 86,230 22,991
Northern Sámi 8.1 MiB 527,474 370,982

Slovak 7.1 MiB 175,465 2,223
Dutch 6.7 MiB 158,874 90

Gascon 5.1 MiB 2,098,768 110
Afrikaans 5.0 MiB 125,473 48
Icelandic 5.0 MiB 222087 0

Greek 4.3 MiB 574,961 126
Italian 3.8 MiB 95,194 2,687

Gujarati 3.7 MiB 168,956 0
Lithuanian 3.6 MiB 95,944 4,024

English (Great Britain) 3.5 MiB 46,304 1,011
German 3.3 MiB 70,862 348
Croatian 3.3 MiB 215,917 64
Spanish 3.2 MiB 76,441 6,773
Catalan 3.2 MiB 94,868 996

Slovenian 2.9 MiB 246,857 484
Faeroese 2.8 MiB 108,632 0
French 2.8 MiB 91,582 507

Swedish 2.5 MiB 64,475 330
English (U.S.) 2.5 MiB 62,135 41

Estonian 2.4 MiB 282,174 9,242
Portugese (Portugal) 2 MiB 40.811 913

Irish 1.8 MiB 91,106 240
Friulian 1.7 MiB 36,321 664
Nepalese 1.7 MiB 39,925 502

Thai 1.7 MiB 38,870 0
Esperanto 1.5 MiB 19,343 2,338
Hebrew 1.4 MiB 329237 0
Bengali 1.3 MiB 110,751 0
Frisian 1.2 MiB 24,973 73

Interlingua 1.1 MiB 26850 54
Persian 791 KiB 332,555 0

Indonesian 765 KiB 23,419 17
Azerbaijani 489 KiB 19,132 0

Hindi 484 KiB 15,991 0
Amharic 333 KiB 13,741 4
Chichewa 209 KiB 5,779 0
Kashubian 191 KiB 5,111 0
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Table 2. Difference between hunspell and FST with 2 errors

Language Hunspell FST
1 2− 4 5−∞ Fp M 1 2− 4 5−∞ Fp M

Occitan 164 34 3 4 85 234 35 5 0 16
Kurdish 200 26 4 6 6 214 17 4 0 7

Interlingua 817 95 2 13 73 814 92 17 3 72
Hungarian 338 45 6 16 21 354 38 8 6 22

Table 3. Suggestion algorithm results

Language FST FST + 2 errors FST + 2 errors + unigrams
1 2− 4 5−∞ Fp M 1 2− 4 5−∞ Fp M 1 2− 4 5−∞ Fp M

Occitan 185 13 0 0 92 234 35 5 0 16 251 21 2 0 16
Kurdish 171 10 0 0 61 214 17 4 0 7 215 16 4 0 7

Interlingua 631 45 1 3 320 820 80 9 3 72 828 88 9 3 72
Hungarian 266 11 2 6 143 354 38 8 6 22 360 30 10 6 22

application server provided by Centre of Scientific Computing in Finland running 8
AMD 8360 quad-core processors with 512 GiB of RAM memory available 11.

The tests clearly show that increasing the size of error model has greater effect
to performance than weighting the error model. For weighted error models the only
performance hit is practically the 0.1 s difference in startup time for loading potentially
slightly larger dictionary.

6 Discussion

The spelling errors corrected by edit-distance style of error models suggested in order
of probability in reference corpora all assume the spelling errors are primarily from me-
chanic typing mistakes. For other types of errors, only the ordered string replacements
and primarily English phonetic are used. To attribute for other types of errors it could
be possible to learn longer error models with error corpora[3], in particular it would be
interesting to see how this fares with methods of using Wikipedia edit history to find
the real world spelling corrections to gather spelling mistake corpora.

The performance of finite-state based spell checking system compared to hunspell
approach seems to have typically an order of magnitude faster times as is typical with
finite-state systems, providing nearly identical results. The differences in error method
w.r.t.repetition depth and other minor details are still to be reverse-engineered to achieve
perfectly faithful FST reimplementation of hunspell.

On practical side the current availability of the software supporting finite-state spell
checking has already most of the coverage hunspell software does, as it is pluggable to
libvoikko spell-checking software, which has ports for the most prominent open source

11 http://www.csc.fi/english/pages/hippu\_guide/introduction/
overview/index\_html/?searchterm=hippu
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Table 4. Suggestion algorithm speed

Language Hunspell FST FST + 2 errors FST + 2 errors + unigrams

Occitan 10.7 0.1 s 0.8 s 0.9 s
Kurdish 0.6 s 1.1 s 1.1 s 1.2 s

Interlingua 21.3 s 2.9 s 3.2 s 3.4 s
Hungarian 28.6 s 5.4 s 9.8 s 9.9 s

software and spell checking libraries, such as OpenOffice.org, Mozilla, and libenchant,
as well as the Mac OS X’s ubiquitous spelling service.

In particular this only captures misspellings in isolation, which prevents us from
detecting correctly spelled words in unexpected contexts. We intend to look into ex-
tending our model with context-based n-gram models for real-word spelling errors, e.g.
[9].

7 Conclusion

We have demonstrated a method and created the software to convert legacy spell-
checker data into a more general framework for finite-state automata. We have also
provided a path for introducing this in real-life applications.
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