
An Application of Probabilistic Grammars
to Efficient Machine Translation

Paweł Skórzewski

Adam Mickiewicz University
Faculty of Mathematics and Computer Science

ul. Umultowska 87, 61-614 Poznań, Poland
pawel.skorzewski@amu.edu.pl

Abstract. In this paper we present one of the algorithms used to parse probabilis-
tic context-free grammars: the A* parsing algorithm, which is based on the A*
graph search method. We show an example of application of the algorithm in an
existing machine translation system. The existing CYK-based parser used in the
Translatica system was modified by applying the A* parsing algorithm in order
to examine the possibilities of improving its performance. This paper presents the
results of applying the A* algorithm with different heuristic functions and their
impact on the performance of the parser.

Keywords: A* algorithm, machine translation, natural language parsing, PCFG,
probabilistic grammars

1 Introduction

Context-free grammars are one of the popular and useful tools for modeling natural
languages. Probabilistic context-free grammars are the extension of the context-free
grammars that assign the probabilities to different sentences.

A chart parsing is a common method of parsing probabilistic context-free gram-
mars. The time complexity of chart parsing algorithms is generally worst-case cubic,
but in practice even cubic time can be insufficient, especially when dealing with large
grammars and long sentences.

The one of the most important tasks connected with PCFGs is to find the parse
which has the highest probability from all the possible parses of the given sentence.
Such a parse is called a Viterbi parse of the sentence. There is an analogy between
finding the Viterbi parse of a given sentence and finding the shortest path between given
two points in some weighted multigraph. This is the reason why we can use modified
graph search algorithms to parse PCFGs. We may expect that applying the shortest-
path-finding algorithms in PCFG parsing can speed-up the process of finding a Viterbi
parse of a given sentence.

The best-first parsing is one of the methods of speeding-up the parsing of PCFGs.
Best-first method is a greedy strategy described in [1] and [2]. In this method, some
figure of merit is used to determine the priority of removing edges from the agenda.
The number of edges processed by the parser can be significantly reduced by proper
choice of the figure of merit.

INVESTIGATIONES LINGUISTICAE vol. XXI, 2010
http://www.inveling.amu.edu.pl

References [5] and [6] describe a beam-search strategy. This is also a greedy algo-
rithm, in which only limited number of best parses is tracked at any time. Time required
to complete the algorithm can be shortened by reducing the number of tracked parses.

Both algorithms have their advantages but neither best-first strategy nor beam-
search method guarantees that the actual Viterbi parse of a given sentence will be find
by them.

Klein and Manning in [3] presented a PCFG parsing algorithm based on the A*
graph search procedure. The A* algorithm finds the shortest path between two given
vertices of the graph using some given heuristic function. The heuristic function is a
function defined on the vertices of the graph that estimates the distance between the
given vertex and the target vertex. The algorithm tries to find the shortest path by mini-
mizing the sum of the distance covered so far and the value of the heuristic.

The authors showed that the use of A* algorithm with properly chosen heuristic
function can considerably shorten the time of finding the Viterbi parse of a given sen-
tence.

2 The A* Parsing Algorithm

2.1 The Idea of the Algorithm

The A* parsing algorithm is a variant of a chart parser. The A* parser operates on
data structures called edges. Let w = w1 . . . wn be a string to parse. The edge X[i, j]
consists of a symbol of the grammar (X) and the pair of numbers (i, j) that denotes the
span of this symbol in the parse tree of a given stringw = w1 . . . wn. In other words, the
symbol X dominates the substring wi+1 . . . wj . The algorithm assigns a score to each
edge. The agenda is a structure where the edges waiting to be processed are stored. The
other structure, called a chart, stores the edges whose best parses have already been
found.

The course of the algorithm is following: The agenda and the chart are initialized
by the set of edges representing the words of the parsed sentence. Now the scores of
the edges in the agenda are calculated in order to determine the priority of edges. The
edge e = X[i, j] which has the highest priority from among the edges of the agenda
is chosen and removed from the agenda. If there exists an edge Y [k, i] in the chart and
a rule Z → Y X in the set of rules, the new edge Z[i, j] is created in the chart and
inserted into the agenda. Similarly, if there exists an edge Y [j, k] in the chart and a rule
Z → Y X , the new edge Z[k, j] is formed in the chart and inserted into the agenda. To
sum up, the chosen edge is combined with the edges from the chart to form new edges
(if possible according to the rules of the grammar) and these newly formed edges are
put into the agenda. The whole procedure, called a turn of the parser, is repeated until
no edges remain in the agenda or the root of the grammar is reached (ie. removed form
the agenda and constructed into the chart).

The important thing that distinguishes the A* parsing algorithm from among other
chart parsing algorithms is the function used to prioritize edges in the agenda.

An Application of Probabilistic Grammars to Efficient Machine Translation 91

2.2 The Viterbi Inside and Outside Scores

Consider the probabilistic context-free grammar G = (V, T,R, S, P) and a string w =
w1 . . . wn we want to parse. We define the Viterbi inside score βG,w(e) of an edge e =
X[i, j] as the maximum of the log-probabilities of the derivation X ⇒∗ wi+1 . . . wj .
Similarly we define the Viterbi outside score αG,w(e) of an edge e = X[i, j] as the
maximum of the log-probabilities of the derivation X ⇒∗ w1 . . . wiXwj+1 . . . wn. We
can see the Viterbi inside score as the log-probability of the best inside parse of a given
edge and the Viterbi outside score as the log-probability of the best outside parse. We
will drop the grammar and parsed string indicators and write simply β(e) and α(e)
instead of βG,w(e) and αG,w(e) if it doesn’t lead to confusion.

We can estimate Viterbi inside and outside scores β(e) and α(e) by estimates b(e)
and a(e) that fulfil the following conditions. The estimate b(e) represents the log-
probability of the best inside parse of the edge e found so far. At the beginning b(e) =
−∞ and never decreases during the course of the algorithm. When the edge e is re-
moved from the agenda, the estimate b(e) should be equal to the value of β(e). The
estimate a(e) should be admissible, ie. a(e) ≥ α(e).

Note that the value of β(e) can play the role of the distance between starting vertex
and the actual vertex (the distance covered so far) from the classic graph A* algorithm.
The estimate a(e), if admissible, can be used as a heuristic function. So we can use the
sum β(e) + a(e) to prioritize edges in the agenda if the value of β(e) + a(e) never
increases during the course of the algorithm.

There are various heuristic fuctions that can be used in the A* parsing algorithm.
Reference [3] presents heuristics based on context summary estimates and on grammar
projection estimates.

2.3 The Context Summary Esimates

The context summary estimates use the knowledge about the neighbourhood of the
considered symbol: the label and the number of the symbols on the left and on the right.
The value of such estimate is calculated as the maximum of the log-probabilities of the
possible outside derivations that satisfy some given condition.

LetG = (V, T,R, S, P) be a probabilistic context-free grammar and w = w1w2 . . .
wn be a string of terminates.

No information about the symbol’s neighborhood results in the NULL estimate,
constantly equal zero:

aNULL
G,w (X[i, j]) = max

u∈T∗
log P(S ⇒∗ u) = 0. (1)

The opposite is the TRUE estimate, which assumes having the complete information
about the context and thus equals the exact value of Viterbi outside score α:

aTRUE
G,w (X[i, j]) = log P(S ⇒∗ w1 . . . wiXwj+1 . . . wn) = αG,w(X[i, j]) . (2)

The SX estimate is an example of a context summary estimate. It specifies the label
of the current symbol and the number of terminals to the left and to the right:

aSX
G,w(X[i, j]) = max

u1,...,ui,v1,...,vn−j∈T
log P(S ⇒∗ u1 . . . uiXv1 . . . vn−j) , (3)

92 Paweł Skórzewski

S S

w1 wi wj+1 wnX

S

X{ {

i n-j

NULL TRUESX

Fig. 1. Examples of context summary estimates.

ie. the value of the estimate depends on X , i and j.
The symbolic presentation of concepts of different context summary estimates are

presented on the Figure 1.

2.4 The Grammar Projection Estimates

The grammar projection estimates use the entire context of the current symbol and a
reduced grammar (with smaller number of symbols and reduced set of rules). We define
the grammar projection G′ = (V ′, T ′, R′, S′, P ′) of a given probabilistic context-free
grammar G = (V, T,R, S, P) as follows. Let N be an arbitrary set of symbols and let
π:V ∪ T → N be a function. Then:

– V ′ := {π(A):A ∈ V } ⊆ N ,
– T ′ := {π(a):A ∈ T} ⊆ N and T ′ ∩ V ′ = ∅,
– R′ := {π̂(r): r ∈ R}, where

π̂:R→ R′ , (4)
π̂(A→ X1 . . . Xk) := π(A)→ π(X1) . . . π(Xk) , (5)

– S′ := π(S),
– P ′ is determined as

P ′(r′) := max
r:π̂(r)=r′

P (r) . (6)

Note that the resulted grammar is a weighted context-free grammar but do not have to
be a probabilistic context-free grammar (the probabilities of the rules with the same
symbol on the left do not have to sum to 1). More precisely, for every fixed A ∈ V ′:

∑

A→ζ∈R′
P ′(A→ ζ) ≥ 1 . (7)

If we compare it with the condition that helds for PCFGs:
∑

A→ζ∈R
P (A→ ζ) = 1 , (8)

An Application of Probabilistic Grammars to Efficient Machine Translation 93

we can see that the following inequation holds for each production r ∈ R:

P ′(π̂(r)) ≥ P (r). (9)

This relation enables us to use a(e) = αG′,w(π(X)[i, j]) as an outside estimate of
αG,w(X[i, j]), bacause it guarantees that

αG′,w(π(X)[i, j]) ≥ αG,w(X[i, j]) (10)

for each edge X[i, j].
There exists a variety of grammar projection estimates, from the NULL projection

estimate (based on the constant projection) to the TRUE projection estimate (corre-
sponding to the identity projection).

3 The Application of A* Parsing Algorithm in the Translatica’s
Parser

3.1 Translatica Machine Translation System

Translatica is a rule-based machine translation system that can translate between fol-
lowing pairs of lanuages:

– Polish and English,
– Polish and Russian,
– Polish and German,
– Polish and French.

The translation of more language pairs is in development.
The German language parser of the Translatica system is a CYK-based parser that

uses a weighted context-free grammar. The rules and their weights for this grammar
have been extracted automatically from the TüBa treebank1.

We adapted the current CYK-based parser so that the A* methods could be used to
imrove its performance and speed.

3.2 The Implementation of Context Summary Based Heuristics

We chose to implement the SX heuristic because (as described in [3]) it was expected
that it would bring the significant edge savings with relatively little precomputation
required.

Each turn of the parser begins with finding the sum β(e) + a(e) for each edge e
in the agenda. If it is the fist time for the edge e to find the value of the sum, it is
calculated and stored in the memory. Otherwise, the result is retrieved from the memory.
This process, called memoization, prevents calculating the value of the heuristic for the
same arguments twice and thus saves the time and speeds up the calculation.

We also implemented the NULL heuristic — for comparational reasons. As con-
statntly equal zero, the NULL heuristic is easy to implement.

1 http://www.sfs.uni-tuebingen.de/en/tuebadz.shtml

94 Paweł Skórzewski

Table 1. The average translation times for the test set of 100 German sentences. The column
labeled relative shows the ratio of the test time to the time of parsing without A* methods.

threshold 10000 50000
time absolute relative absolute relative

without A* 36 s 1.00 1 min 9 s 1.00
with A*, SX heuristic 52 s 1.44 2 min 2 s 1.77

with A*, NULL heuristic 37 s 1.03 1 min 20 s 1.16

Table 2. The average translation times for the test set of 500 German sentences. The column
labeled relative shows the ratio of the test time to the time of parsing without A* methods.

threshold 10000 50000
time absolute relative absolute relative

without A* 2 m 56 s 1.00 5 min 52 s 1.00
with A*, SX heuristic 4 m 32 s 1.55 11 min 50 s 2.02

with A*, NULL heuristic 3 m 6 s 1.06 6 min 55 s 1.18

3.3 The Implementation of Grammar Projection Based Heuristic: the Attribute
Grammar Projection

The grammar used in Translatica’s German parser is a kind of weighted attribute gram-
mar. In the attribue grammar each rule is accompanied by a set of attribute expressions.
The rule can be used only if the expressions associated with the rule are satisfied by the
actual values of symbols’ attributes.

By considering all possibile values of attributes and fixing the values of selected at-
tributes of the rules and the symbols we can obtain the context-free grammar. Thus the
probabilistic attribute grammar can be projected to a probabilistic context-free gram-
mar. In the Translatica’s parser we have implemented the projection obtained by fixing
the most common attributes (eg. the tense).

4 The Evaluation of the Solutions

The number of turns of Translatica’s parser can be limited. The maximal number of
parser turns is called a threshold and can be arbitrarily set before running the parser.
The default value of Translatica’s German parser is set to 50000.

In order to compare the performance of the old Translatica’s parser and the new A*
parser, we conducted various tests. We have done a series of machine translation on the
two sets of example sentences on various topics (a set of 100 sentences and a set of 500
sentences) using two different thresholds: 10000 and 50000. We used three different
parsers:

– the “old” Translatica’s parser—without A*,
– the A* parser with SX heuristic,
– the A* parser with NULL heuristic.

An Application of Probabilistic Grammars to Efficient Machine Translation 95

0 5 10 15 20 25 30 35
sentence length [words]

2

4

6

8

10

12
tr

an
sl

at
io

n
tim

e
[s

ec
on

ds
]

without A*

with A* (NULL)

with A* (SX)

Fig. 2. The relationship between the lengths of individual sentences and the times of their trans-
lation for the threshold of 10000.

0 5 10 15 20 25 30 35
sentence length [words]

2

4

6

8

10

12

tr
an

sl
at

io
n

tim
e

[s
ec

on
ds

]

without A*

with A* (NULL)

with A* (SX)

Fig. 3. The relationship between the lengths of individual sentences and the times of their trans-
lation for the threshold of 50000.

The average times of translation of the set of 100 example German sentences is
shown in Table 1. The average times of translation of the set of 500 example German
sentences (100 sentences repeated 5 times) is shown in Table 2.

The relationship between the length of the sentence and the time of its translation is
presented on Figures 2 and 3.

The implementation of the A* algorithm has not brought the acceleration of the
translation process in Translatica’s parser. Indeed, the A* parser implemented in Trans-
latica turned out to be slightly slower than the old CYK-based Translatica’s parser.

The quality of the translation with the A* algorithm was comparable to the transla-
tion without the A* algorithm. Most sentences were translated identically. Many trans-
lations differed no more than in a single word. There were some sentences that had

96 Paweł Skórzewski

'auf'

'$auf'

PREP

PP

NP

'dem'

'$der'

ART N

'Weg'

'$Weg'

PP

PP

'nach'

'$nach'

PREP NP

'Bremen'

'$Bremen'

PRN

NP SIMPX

'trifft'

'$treffen'

V

VP

VC

VCC

NP NP

'der'

'$der'

ART N

'Esel'

'$Esel'

'einen'

'$ein'

ART N

'Hund'

'$Hund'

'auf'

'$auf'

PREP

PP

NP

'dem'

'$der'

ART N

'Weg'

'$Weg'

VCC

PP VC NP NP

'nach'

'$nach'

PREP NP

'Bremen'

'$Bremen'

PRN

'trifft'

'$treffen'

V

VP

'der'

'$der'

ART N

'Esel'

'$Esel'

'einen'

'$ein'

ART N

'Hund'

'$Hund'

SIMPX

Fig. 4. Comparison of results of parsing the German sentence Auf dem Weg nach Bremen trifft
der Esel einen Hund when the threshold is set to 10000 — without the A* algorithm (left) and
using the A* algorithm (right).

'auf'

'$auf'

PREP

PP

NP

'dem'

'$der'

ART N

'Weg'

'$Weg'

VCC

PP VC NP NP

'nach'

'$nach'

PREP NP

'Bremen'

'$Bremen'

PRN

'trifft'

'$treffen'

V

VP

'der'

'$der'

ART N

'Esel'

'$Esel'

'einen'

'$ein'

ART N

'Hund'

'$Hund'

SIMPX

'auf'

'$auf'

PREP

PP

NP

'dem'

'$der'

ART N

'Weg'

'$Weg'

VCC

PP VC NP NP

'nach'

'$nach'

PREP NP

'Bremen'

'$Bremen'

PRN

'trifft'

'$treffen'

V

VP

'der'

'$der'

ART N

'Esel'

'$Esel'

'einen'

'$ein'

ART N

'Hund'

'$Hund'

SIMPX

Fig. 5. Comparison of results of parsing the German sentence Auf dem Weg nach Bremen trifft
der Esel einen Hund when the threshold is set to 50000 — without the A* algorithm (left) and
using the A* algorithm (right).

been translated identically (and correctly) by 10000-threshold A* algorithm, 50000-
threshold A* algorithm and 50000-threshold non-A* algorithm, and yet their transla-
tion by 10000-threshold non-A* algorithm was broken. The example of parse trees of
such sentence is presented on Figures 4 and 5. The existence of sentence translated in
such manner may indicate that the number of steps needed to find the best parse us-
ing the A* algorithm is smaller than using the parser not equipped with A* tools. The
slower spped of the A* parser may result from the implementational matters.

5 Conclusions and Future Work

The implementation of the A* parsing algorithm in Translatica’s German parser has
not brought the expected performance improvement. There are a few possible reasons
for this conclusion.

First, Translatica’s parser is not a proper probabilistic context-free grammar. In-
deed, it is not even the weighted context-free grammar since it has no special start
symbol. Each symbol of the Translatica’s grammar can play the role of its start sym-
bol if it is convenient. The input sentence is parsed using the bottom-up method. The
parser builds its parse tree upwards until there is no possibility to continue. The last used

An Application of Probabilistic Grammars to Efficient Machine Translation 97

edge’s label becomes de facto a start symbol. This approach enables parser to parse the
incomplete sentences, but on the other hand, it makes the calculation of the heuristic
difficult. Without one designated start symbol, or with many possible start symbols, the
calculated heuristic becomes unreliable.

Another reason is that it is not possible to implement the A* parsing algorithm in
Translatica’s parser without major modification of its structure.

Nevertheless, the attempt to implement the A* algorithm in an existing CYK-based
parsed was an innovative and interesting experiment. It brought the experience and large
knowledge about probabilistic grammars, A* parsing and various implementational is-
sues.

We expect that future research of A* parsing implementation will bring the desired
results: the faster and better translation. The use of modern algorithms and tools to speed
up the machine translation is an important matter so the studies on the implementation
of modern algorithms in Translatica’s parser will be continued. We will focus on efforts
to improve the translation performance and to implement the fully functional A* parser.

References

1. Caraballo, S.A., Charniak, E.: New Figures of Merit for Best-First Probabilistic Chart Parsing.
Computational Linguistics 24, pp. 275-298 (1998)

2. Charniak, E., Goldwater, S., Johnson, M.: Edge-Based Best-First Chart Parsing. In Proceed-
ings of the Sixth Workshop on Very Large Corpora, pp. 127-133 (1998)

3. Klein, D., Manning, C.D.: A* Parsing: Fast Exact Viterbi Parse Selection. In Proceedings
of the Human Language Technology Conference and the North American Association for
Computational Linguistics (HLT-NAACL), pp. 119-126 (2003)

4. Manning, C.D., Schütze, H.: Foundations of Statistical Natural Language Processing. Prentice
Hall, New Jersey (2000)

5. Ratnaparkhi, A: Learning to Parse Natural Language with Maximum Entropy Models. Ma-
chine Learning 34, pp. 151-175 (1999)

6. Roark, B.: Probabilistic Top-Down Parsing and Language Modeling. Computational Linguis-
tics 27, pp. 249-276 (2001)

7. Skórzewski, P.: Efektywny parsing jȩzyka naturalnego przy użyciu gramatyk probabilisty-
cznych (Efficient Natural Language Parsing Using Probabilistic Grammars). Master Thesis
on Adam Mickiewicz University, Poznań (2010)

8. Skórzewski, P.: Effective Natural Language Parsing With Probabilistic Grammars). In Pro-
ceedings of Computational Linguistics – Applications, pp. 175-178. Wisła (2010)

98 Paweł Skórzewski

