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ABSTRACT: Perception is a constructive mental process, which cannot be considered 
impersonally. Similarly, music cannot be cognised solely on the basis of its score, since 
its coming into being is strictly connected to the activation of human memory and 
sound imagination. The patterns that emerge from the sounds of heard music enable 
the listener to draw conclusions regarding the structures those sounds embody. How­
ever, such conclusions are accompanied by a degree of uncertainty, which concerns 
not just the perceived moment of the heard music, but also the way in which it is rep­
resented in the listener’s memory. Perception is an inferential, multi-layered, uncer­
tain process, in which particular patterns seem more likely than others. Mental repre­
sentations of those probabilities lie behind such essential musical phenomena as sur­
prise, tension, expectation and pitch identification, which are fixed elements of the 
perception of music.
The aim of the present article is to describe the essence of three selected types of mu­
sic modelling, based on spectral anticipation (Shlomo Dubnov), based on memory 
(Rens Bod), and exploiting the dynamic character of music to obtain information 
(Samer Abdallah and Mark Plumbley). All these models take account of the element of 
uncertainty that accompanies the perception of music; hence they make use the foun­
dations of information theory and statistical analysis as measurement ‘tools’. The use 
of these tools makes it possible to obtain numerical rates, which inform us of the de­
gree of predictability of the musical structures being analysed. One crucial advantage 
of these methods is the possibility of evaluating them in respect to the use of real mu­
sical structures, deriving from actual music, and not abstract structures formed for the 
purposes of research. We obtain cognitive insight into the analysed music by employ­
ing methods of a mathematical provenance, and so we have the possibility of examin­
ing music whilst taking account of the role of the listener, but with the use of objectiv- 
ised methods.
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Introduction

Insight into the mechanisms responsible for the perception of mu­
sic not only provides us with knowledge about perception itself, as one of the 
elements -  alongside memory and thought -  in the process of cognising mu­
sic, but is also a source of knowledge about music itself. Perception is a con­
structive mental process, which cannot be considered impersonally, be it only 
for the reason that the perception of music is dependent to a substantial de­
gree on the listener’s level of perceptual ‘training’. Similarly, music cannot be 
cognised solely on the basis of its score, since its coming into being is strictly 
connected to the activation of human memory and sound imagination.

Although the notation of music in a given musical style is unchanging, the 
perception of that music alters over the course of time. This is because, in our 
everyday lives, we are subjected to a huge amount of mental stimuli, and na­
ture has equipped us for gaining control over such information. A  listener’s 
musical behaviour proceeds according to a specific standard. Listening to an 
unfamiliar piece of music for the first time, a listener attempts to associ­
ate/match its material with his previous perceptual experiences, the effects of 
which he has assembled in his long-term memory in the form of cognitive 
schemata. If such association/matching fails, then the listener seeks new pat­
terns for the information that is reaching him. Since the capacity of short­
term memory is limited to a more or less constant quantity of perceptual 
units, and that limitation is independent of the quantity of information con­
tained in each perceptual unit,1 the quantity of information that can be stored 
in that memory is determined by the way in which the listener forms a per­
ceptual pattern from that information. If, while consciously listening to mu­
sic, a listener recognises a pattern, then the quantity of perceptual units re­
quiring further consideration decreases. As a listener acquires auditory ex­
perience, information that originally occupied several perceptual units is pat­
terned on a lesser quantity of units, and space in the short-term memory is 
freed for additional information. In this way, over time, the perception of 
music experienced many times over changes.

The patterns that emerge from the sounds of heard music enable the lis­
tener to draw conclusions regarding the structures those sounds embody. 
However, such conclusions are accompanied by a degree of uncertainty, 
which concerns not just the perceived moment of the heard music, but also 
the way in which it is represented in the listener’s memory. Perception is an 
inferential, multi-layered, uncertain process, in which particular patterns

1 George A. Miller, ‘The Magic Number Seven, Plus or Minus Two: Some Limits on Our 
Capacity for Processing Information’, in The Psychology o f Communication: Seven Essays, 
ed. George A. Miller (Baltimore, 1969), 14-44, at 36.



seem more likely than others. We know today that mental representations of 
those probabilities lie behind such essential musical phenomena as surprise, 
tension, expectation and pitch identification, which are fixed elements of the 
perception of music.2 The variability of the perception that is triggered by 
human musical experience affects the size of the probabilities ascribed to the 
sound patterns formed while listening to music, which shape the surface of 
that music, and to the structures on which they are based. Human knowledge 
of probabilities also derives, to a large extent, from the regularity of the aural 
environment. The awareness of these relationships influences the creation of 
music, with the effect that the composer, employing a particular strategy, 
determines the perceptual processes. The perceiving of music is linked to the 
communicating of particular structures from the mind of the composer to the 
mind of the listener by means of a particular representation of the surface of 
music. The success of such communication depends on a common knowledge 
of the style of a given piece of music, and also on the character of that style. 
Every musical style is characterised by means of probabilistic limitations im­
posed on the structures and on the mutual relations between them and the 
representations of the musical surface that are formed on their basis. How­
ever, in order for the communication between the composer and the listener 
to proceed successfully, there must also occur between them an understand­
ing in respect to those limitations. Otherwise, the communication may be 
hampered or even precluded, as a result of which even a listener with com­
plete knowledge of the style of the given piece of music may not be able to 
divine the structures intended by the composer from the perceived surface of 
the music.

The purpose of interdisciplinary research into music is to discover the 
mental processes and representations involved in such musical behaviour as 
listening, performing and composing music. Thanks to elaborated models 
enabling us to analyse the musical structures that underpin the shaping of 
perceived representations of musical surface, we can gain insight into many 
aspects of the perception of music, and thereby point to the solutions em­
ployed in the creative process through which the listener can discover those 
same structures intended by the composer.

Theoretical foundations

The starting point for applying the foundations of information 
theory in the modelling of musical perception is to treat a musical structure as 
a source of information about its surface, formed while listening to music. 
This information is transmitted to the listener -  the information sink -  at a

2 David Temperley, Music and Probability (Cambridge, 2007), 3.



specific time, which is why the process of communication is dynamic and 
depends both on the music itself and on the listener, who -  in perceiving the 
music -  makes predications of a sort regarding the information source and 
forms particular expectations on the basis of previous musical experiences. So 
if the musical structure, as an information source, is responsible for creating 
particular data about the heard music, this also allows us to describe many 
different sequences by means of a single statistical model with a specific 
probability distribution. A  research approach that takes account of the foun­
dations of information theory makes it possible to evaluate which data are 
more likely to appear, and also, further down the line, to state which struc­
tures of music are more typical or appear extremely rarely.

One of the fundamental notions employed in the modelling of perception 
is entropy, which defines the characteristic size of uncertainty proper to a 
given source and calculated as the quotient of the logarithm from the number 
of typical sequences and the logarithm from all possible sequences of the 
same length .3 Thus entropy is a logarithm from the relative size of a typical 
set. This means that the uncertainty is greater with a larger typical set: a high 
entropy signifies a low certainty, and so a high uncertainty. At this point, it is 
worth also emphasising the difference between determinism and predictabil­
ity. Randomness -  triggering uncertainty with a low level of predictability -  
usually applies to a set that contains an element of variability or surprise, 
whilst structure is understood as something more predictable, based on rules, 
or even deterministic. Structures, which possess deterministic dynamics, can 
have different degrees of predictability, depending on the precision of the 
measurement or accurate knowledge about their past.

One important aspect of information theory is the information channel, or 
the mutual link between the information source and the information sink. 
The channel is characterised by uncertainty as to what has been transmitted. 
In mathematical terms, this aspect is described by means of so-called mutual 
information. This can be defined as the difference between the entropy of a 
source and the conditional entropy between the source and the sink. If we 
treat the source information as a discrete random variable x, with a probabil­
ity of P(x), then its entropy is expressed by the equation H(x) = EP(x)logP(x). 
When the information reaching the sink is the discrete random variable y, 
with a probability of P(y), then the entropy of this information is H(y) = 
SP(y)logP(y). The joint entropy for the two discrete random variables x  and y 
is expressed by the equation H(x, y) = -  E£P(x, y)logP(x, y). Finally, the con­
ditional entropy, indicating the uncertainty as to the random variable y, on 
condition that we know random variable x, equates to H(y|x) = IP(x)H(y|x) 
(the conditional entropy for random variable x  may be indicated in a similar

3 Henryk Górecki, Teoria informacji [Information theory] (Łódź, 2006).



way, on condition that we know random variable y). In this context, the func­
tion I(x, y), representing the value of the mutual information, shows how 
much information one variable provides about the other. One can also point 
to two extreme situations: the two variables are independent of one another, 
in which case the mutual information I(x, y) is zero; the variables are equiva­
lent to one another, in which case the mutual information I(x, y) = H(x) = 
H(y) = H(x, y), since the conditional entropy is zero, because knowledge of 
one variable wholly describes the other variable, leaving no conditional uncer- 
tainty.4 Ultimately, in the context of the terms and equations given above, we 
may represent the mutual information in the form of the following expres­
sions: I(x, y) = H(x) -  H(x|y) = H(y) -  H(y|x) = H(x) + H(y) -  H(x, y) = IP(x, 
y)logP(x, y)/P(x)P(y).

The models: 
1. The model of spectral anticipation

The model of spectral anticipations makes use of mutual informa­
tion for the theoretical characterisation of the size of the information trans­
mitted through the communication channel, which is a time channel. This 
means that the entry data for the channel is the history of the signal up to 
the current point in time, and the exit data is its next (present) sample. In 
addition, the receiver must employ certain algorithms for predicting the cur­
rent sample on the basis of samples from the past. Accordingly, the informa­
tion at the sink y consists of the history of the signal xlt x2,..., xn-i available to 
the receiver prior to its hearing xn. As Dubnov indicates, the process of 
transmission is interpreted here in terms of the execution of predic­
tion/anticipation in time. The time channel brings to the next sample the 
element of ‘surprise’; the size of the mutual information depends on that 
surprise and on the listener’s ability to predict it. The information transmis­
sion via time channel outlined above is registered by means of the informa­
tion rate, IR, often defined as the scalar-IR. This is often interpreted as the 
size of the information which the signal takes into its future. It may be de­
fined as the relative reduction of the uncertainty of the present, in a situation 
of consideration of the past, which equates to the size of the mutual informa­
tion transmitted between the past xpast={xi, x2,..., xn-i} and the present xn. In 
the case of information for multiple variables (defined as multi-information), 
IR corresponds to the difference between the multi-information contained in

4 Thomas M. Cover and Thomas A. Joy, Elements oflnformation Theory (New York, 
1991); Monson H. Hayes, Statistical Signal Processing andModeling (New York, 1996).

s Shlomo Dubnov, ‘Spectral Anticipations’, Computer Music Journal 30/2 (2006),



the two sets of variables xh x2,..., xn and xh x2,..., xn< (that is, the size of the 
extra information that is added when one more sample is observed during 
the transmission process): p(x1; x2,..., xn) = H(xn) -  H(xn| xpast) = I(xn, xpast) =
I ( X i ,  X2, . . . ,  X n) -  I ( X i ,  X2, . . . ,  X n-i).6

Dubnov proposes the expansion of IR into a multi-dimensional process. In 
this case, he considers a new type of IR, which may apply to sequences with 
multiple variables described as vectors in higher-dimensional space. Marking 
the sequence of vectors X h X2,..., Xl and generalising the definition of IR (here 
called the vector-IR), we obtain the expression p(X1; X2,..., XL) = I(Xi, X2,..., XL)
-  {I(Xj, X2,..., XL-i) +I(Xl)}, where the new definition for the multi-dimensional 
information rate states that this is the difference in the information following L 
successive vectors minus the sum of the information in the first L-i vectors and 
the multi-information between elements within the last vector X l .  It also as­
sumes the existence of a certain transformation T, such that S = TX and the 
elements S„ S2,..., S l after transformation are statistically independent. Making 
use of the links between the entropies of the linear transformation of random 
vectors, IR may be calculated as the sum of the IRs of the individual elements, 
Si(n), i = i...n , that is, pL(Xi, X2,..., X l) = £ p(s,(i),..., s,(L)). The crucial signifi­
cance of the generalisation of the vector-IR for research into the perception of 
music is the fact that it allows us to identify the structural elements of the signal 
in the form of elements with a high scalar-IR.

In the Vector-IR Anticipation algorithm, Dubnov draws on representa­
tions of the Audio Basis. Such representations are obtained by transforming 
the time signal into a spectral domain by means of the Short-Time Fourier 
Transform (STFT). This is attained by employing Fourier transformation for 
blocks of audio samples, with the use of a so-called sliding-window, or ‘win­
dowing’, which extracts short segments of the signal, known as ‘frames’, from 
the audio stream. Each frame can be mathematically considered as a vector in 
higher-dimensional space. In this context, the first stage in describing the 
modelling is to introduce a suitable geometrical representation of the music 
being studied, in the form of frames of audio samples or certain features ob­
tained from those frames, through the use of various methods, such as the 
STFT or Filter Banks. The next stage in the research procedure is the decom­
position of the base, combined with the reduction of the data through its 
mapping onto a lower-dimensional subspace. Ultimately, a separate IR as­
sessment of the individual elements is carried out, in accordance with the 
principles of IR evaluation for a multi-dimensional/ vectorial process.

The use of this algorithm to analyse music makes it necessary to create an 
anticipation profile. This is because the properties of music, as a signal evolving 
over time, cannot be summarised as a single ‘anticipation number’. The use of

6 Dubnov, ‘Spectral’, 66.



this method of analysis is extended to a non-stationary case through the use of 
IR in a time-varying fashion.? In this phase in the research, the music is pre­
sented by means of a sequence of spectral envelopes, shown as spectral or cep- 
stral coefficients. These vectors are then grouped into macro-frames and sub­
jected to separate IR analyses, through which we obtain a single value for each 
macro-frame. Dubnov employs the term ‘anticipation profile’ to describe the 
graph of the evolution of the IR over a period of time corresponding to the dura­
tion of the music, and so an IR time graph. It should be added that cepstral co­
efficients are a representation of the spectral composition of the sound signal.8 
The cepstrum has come to be defined as the reverse of the Fourier transform 
from the logarithm of the absolute value of the Fourier transform of the signal, 
which is shown by the expression C = F*1{log( | F{x(n)} |)}. The advantage of this 
approach is the ability to capture various details of the signal’s spectrum in a 
single representation. Hence, for example, the first cepstral coefficient corre­
sponds to the energy of the signal, and lower coefficients capture the shape of 
the spectral envelope, whilst higher cepstral coefficients show spectral peaks 
corresponding to pitch or other long-term correlations of the signal. The choice 
of the cepstrum part makes it easy to control the type of spectral information, 
which we would like to regard as IR analysis.

By means of various parameters of analysis, anticipation profiles can be 
used to examine many aspects of music. The length of the frames required 
depends on the music: for example, approximately 3 seconds for solo and 
chamber music, and approximately 30 seconds for a complex orchestral tex­
ture. A crucial insight into the structural features of music is obtained by 
comparing the course of IR time graphs -  observing the ridges and valleys 
and the falling and rising of the curves -  with the surface of the music con­
nected with the principal sections marked in the score and analysed from the 
perspective of music theory. As Dubnov stresses, the method of spectral an­
ticipation, based on vector-IR analysis and anticipation profile, captures es­
sential aspects of a musical structure.

2. Memory-based models

Many models that are designed to create the possibility of gaining 
insight into the mechanisms governing the perception of music employ abstract 
structures, built for the needs of specific research and applied to those models, 
as the analysed material. In a memory-based model, it is proposed that struc­
tures deriving from previously heard music be used. This procedure is based on

7 Dubnov, ‘Spectral’, 75.
8 Alan V. Oppenheim and Ronald W. Schafer, Discrete Time Signal Processing (New 

Jersey, 1989).



the results of psychological tests,« indicating the effect of the storing of the cog­
nitive schemata of the heard music in the memory and a greater ease in activat­
ing them when the music that forms those schemata is more often available to 
the listener. The research material used in the memory-based models described 
by Rens Bod10 is the Essen Folksong Collection, the musical parameters of 
which -  such as pitch, duration, time signatures and explicit phrase markers -  
are specially encoded, which favours the use of this collection for research em­
ploying computational technique. However, the format of this collection con­
tains no indications as to the hierarchic dimension of the structures, for in­
stance phrase-internal structures, such as subphrases or motives, and phrase- 
external structures, like periods and segments. To illustrate this procedure, 
reproduced below is the notation of the song marked in the Essen Folksong 
Collection as K0029, ‘Schlaf Kindlein Feste’, and the encoded representation of 
five phrases from that song, put forward by Bod:11

S( P(3 _2 2 i_-5 ) P(-5 3 3 2 2 i_-5 ) P(i3 3 3 5 4 3 2 ) P(i3 3 3 5 4 3 2 _) P(3 _2 2 i_-5_) )

S -> PPPPP
P -» 3_221_-5
P -> -5 3 3 2 2 i_ - 5  

P -> 1 3 3 3 5 4 3 2  

P -> 1 3 3 3 5 4 3 2 _
P -» 3 _221_-5_

The essence of this research proposal is the modelling of the musical seg-
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9 Jenny R. Saffran, Michelle M. Loman and Rachel R. Robertson, ‘Infant Memory for 
Musical Experiences’, Cognition 77 (2000), B16-23.

10 Rens Bod, ‘Memory-Based Models of Melodic Analysis: Challenging the Gestalt Prin­
ciples’, Journal o f New Music Research 31/1 (2002), 27-36.

11 Bod, ‘Memory-Based’, 29 and 30.



mentation of the sound material that occurs while listening to music. The ob­
served ambiguity of this mechanism concerns the divergence that frequently 
arises between several differently grouped sound structures that may be com­
patible with the sequence of notes recorded in the score, on one hand, and the 
structure perceived by the listener, apprehended in the form of just a single 
detailed specific structure, on the other. The modelling of the musical segmen­
tation of a given work of music is based here on a linguistic approach to the 
musical work, with the consequent use of research methods/techniques that 
have come to be called ‘grammar techniques’. One crucial feature of this type of 
modelling is the twofold use of the body of research material Part of the collec­
tion serves as a training set, and the rest as a test set. In the training set, all the 
phrases of a song are notated in the form of annotation strings, with the phrase 
ends marked by setting the representation of the phrase in brackets. In this way, 
the phrases are legible for a memory-based parser.12 The training set is used 
here as the basis for machine learning, in which the process of learning a system 
is designed to attain certain results based on fragmentary knowledge. In this 
way, the process itself is improved; as a result, new notions may arise or an in­
ductive inference be obtained. It should also be mentioned that the grammars 
used here are ‘context-free grammars’, characterised by the fact that all the 
rules for deriving expressions are given the form A —> T, where A  is any nonter­
minal symbol and its signification does not depend on the context in which is 
occurs, and T is any sequence (even empty) of terminal and nonterminal sym­
bols. In this notation, the symbol —> denotes the act of derivation, that is, re­
placing a variable with the right side of the production for that variable, where 
productions are the rules linking variables to one another.

The memory-based models described by Bod, analysing the musical seg­
mentation of the sound material, are based on the Treebank grammar tech­
nique, the Markov grammar technique and a technique combining the 
Markov grammar technique proposed by Collins13 with Bod’s Data-Oriented 
Parsing technique.14

The Treebank grammar technique essentially involves reading all the con­
text-free rewrite rules from the structures of the training set, and then indi­
cating for each rule the probability proportional to the frequency at which 
that rule occurs in the training set. Determined for each rewrite rule is a 
probability, the result of dividing the number of occurrences of a particular 
rule in the training set by the total number of the occurrences of the rules

12 Thanks to the parser, computers are capable of transforming a human legible text 
into a data structure suitable for further processing.

13 Michael Collins, ‘Head-Driven Statistical Models for Natural Language Parsing’, 
Ph.D. thesis (University of Pennsylvania, 1999).

14 Rens Bod, Beyond Grammar: An Experience-Based Theory o f Language (Cam­
bridge, 1998).



which develop the same nonterminal as the rule in question. Thus, in the ex­
ample given above, the value of the probability of the rule, for example, corre­
sponding to the second phrase, that is, P —*■ -53322i_-5, is 1/5, since of all the 
five rules that develop this nonterminal P, this is the rule which occurs only 
once. As Bod emphasises, the Treebank grammar obtained from the training 
set in this way corresponds, in turn, to the Probabilistic Context-Free Gram­
mar (PCFG),1» in which it is assumed, above all, that context-free rules are 
statistically independent. Hence, taking into account the probabilities of the 
individual rules, one can calculate the probability of a parse tree as a product 
of the probabilities of each rule applied in that tree.

In this kind of research approach, there exists the problem of data sparse­
ness, which is linked to the sporadic occurrence of some of the rules in the 
training set. This makes it more difficult to estimate their observed probabili­
ties in their actual population of probabilities. In such instances, one may 
employ the Good-Turing method, involving the estimation of the expected 
population frequency of a particular type f  * by adjusting frequency f  to its 
observed sample frequency. The use of this method brings a new parameter to 
the research, namely n f, the frequency of frequency f, denoting the number of 
types that occur f  times in the observed sample. In such cases, the adjusted 
frequency f  * is calculated from the following formula:

/*=</+!)- ^

This enables us to calculate the probabilities of context-free rules in the Tree­
bank grammar from their adjusted, but not observed, frequencies.16

The Markov grammar technique seems a more solid model, since it enables 
probabilities to be calculated for every possible context-free rule, and not just 
for those rules which are seen in the training set. The essence of this technique 
is the decomposition of the rule and its probability by means of the Markov 
process, the starting point of which is the assumption of the presence of a se­
quence of events, with the probability of each event dependent solely on the 
result of the previous event. This means that a third-order Markov process will 
estimate probability p  of rule P—>12345 according to the following equation:

p(P -» i234 5)= p (i)x  p (2 |i)x  p (3 |i,2 )x  p (4 |i,2 ,3 )x  p(5|2,3,4)x p(EN D  13,4,5) ,17

‘5 Taylor L. Booth, T. ‘Probabilistic Representation of Formal Languages’, Proceedings 
of the Tenth Annual IEEE Symposium on Switching and Automata Theory (Canada, 1969) 
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4569592, accessed 3 No- 
vemeber 2011; Eugene Chamiak, Statistical Language Learning (Cambridge, 1993).

16 Bod, ‘Memory-Based’, 30.
17 Ibid.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4569592


with the conditional probability p(END 13 ,4 ,5 ) encoding the probability that 
the rule ends after notes 3, 4 and 5. This enables us to assess the probability 
of rule P—»12345, even if it does not appear literally in the training set. The 
occurrence of data dispersal might mean that some Markov histories attain a 
particularly low, or even zero, value. Since the example equation given above 
is of a product form, even a single zero factor brings with it a zero probability 
of the whole rule. Adopted as a solution to the problem of the presence of 
data-sparseness was the linear interpolation technique, which interpolates 
the Markov history by including shorter histories in the analysis. Making use 
of Powell’s algorithm,18 enabling us to attain the optimal weights employed in 
linear interpolation, we can assess conditional probability in the Markov 
grammar technique. Ultimately, the probability of a parse tree of a particular 
musical work is calculated as a product of the probabilities of the rules that 
participate in the parse tree, like in the Treebank grammar.

It is also crucial to modelling the expectation of the correct segmentation 
of music to take account of the contexts. In the case of the Essen Folksong 
Collection, the form of contextual knowledge might be knowledge of the 
number of phrases appearing in an analysed song. A model combining the 
Markov grammar technique with Data-Oriented Parsing (DOP) makes it pos­
sible to take account of knowledge about the number of phrases when study­
ing folk songs, by making use of one fundamental characteristic of the original 
DOP technique, namely the use of every musical fragment, of any length, that 
is visible in the training set as a productive unit. If the structure of the whole 
of a given song is designated by rule S, and that song comprises, for example, 
four phrases described by rule P (with that rule taking the form P—>1 2 3 4 5 ), 
the rule of the song takes the form S—>PPPP, and then the DOP-Markov 
model, based on the history of three notes, determines the conditional prob­
ability of that rule on the basis of the following relationship:

p(P —>12345|S—>PPPP)=p(i|S—>PPPP)
xp (2 |S—>PPPP,1) 

xp (3 |S—>PPPP, 1,2) 

xp(4 |S—»PPPP, 1.2,3) 
xp(5|S—>PPPP,2,3,4) 

xp(END|S—>PPPP,3,4,5).19

In this modelling technique, as well, the most probable parse of a folk 
song is calculated by maximising the product of the rule probabilities that 
generate the analysed song.

18 Aleksander Ostanin, Metody i algorytmy optymalizacji [Methods and algorithms of 
optimalisation] (Białystok 2003).

19 Bod, ‘Memory-Based’, 32.



As the results of research show, the use of probabilistic memory-based 
models allows us to predict musical segmentation more accurately, especially 
in the case of the analysis of phrases containing intervallic leaps. The group­
ing boundaries of such phrases occur before or after large pitch intervals, and 
they can even appear between identical notes which are preceded or followed 
by such large intervals. The modelling techniques outlined above make it pos­
sible to capture the whole continuum of an analysed musical work between 
leap-phrases and phrases not displaying such a feature to the pitch organisa­
tion of the analysed work.

3. The information-dynamic approach 
to modelling

This type of modelling takes account of one crucial characteristic 
of the perception of music. Music is not a static object of observation, but a 
dynamic one; consequently, as it unfolds, it modifies the listener’s expecta­
tions and surprises, which arise from his previous experiences, current obser­
vations and future predictions in respect to the heard music. Much experi­
mental research has reinforced the conviction that listeners are capable of 
internalising statistically collected knowledge of musical structures. This abil­
ity allows statistical models to be used to create an effective foundation for 
computational methods of analysing music. The chief thesis of such an ap­
proach is the assumption that perceived qualities and subjective states, such 
as uncertainty, surprise, complexity, tension and curiosity, are closely linked 
to certain quantities of information theory, and especially with entropy, rela­
tive entropy and mutual information.20 On one hand, listening to music is 
connected with the behaviour of a dynamically evolving statistical model of 
music, which helps to form predictions as to the further course of a heard 
piece of music; on the other, it makes it possible to revise a model thus 
formed and thereby also the state of our probabilistic convictions in respect to 
present and future sound events. By following the evolution of these quanti­
ties, we can obtain a representation that captures many significant structures 
of music.

A crucial stage in modelling that is based on the observation of random 
processes is the defining of certain information measures, calculated with 
account taken of the realisation of a random process and a statistical model, 
which may be dynamically updated by analogy to the unfolding of the process.

20 Samer Abdullah and Mark Plumbley, ‘Information dynamics’, Centre for Digital 
Music, Queen Mary, University of London, Technical Report C4DM-TR07-01, Version 1.0
-  July 18, 2007, http://www.elec.qmul.ac.uk/pe0ple/markp/2007/AbdallahPlumbley07- 
tr07-01.pdf, accessed 3 November 2011.
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By dividing the time axis into intervals of time indicating infinite past and 
future and hypothetical finite present, we can group observations of the ana­
lysed process into three random variables (Z, Y  and X), corresponding respec­
tively to three intervals of time. In effect, we obtain the observer’s probability 
distribution pxy\z■ If the random variables are discrete, then pATiz(x,y|z) de­
notes the probability of a situation in which the observer expects to notice x 
and then y, taking into account that he has already noticed z.21

In the case of measures relating to the phenomenon of perceptual sur­
prise, the negative probability logarithm

£(x|z) = -log/?x|z(x|z)

can be treated as the ‘surprisingness’ of the occurrence of x  on condition 
that z occurs.22 As indicated by Abdullah and Plumbley, the entropy of the 
predictive distribution H(X|Z=z) is a function of the observed past z, and so it 
is a measure of the observer’s uncertainty as to X  before the observation en­
sued. Averaging over the two variables the surprisingness expressed by the 
above equation, we obtain the entropy rate of the process, H(X|Z), according 
to the observer’s current model. In the context of the above considerations, 
we can obtain four information measures, which are surprisingness and its 
three averages over (X|Z=z), (Z|X=x) and (X, Z) jointly.

In the case of information-based measures of prediction, a crucial quan­
tity obtained in a model based on the observation of random processes is the 
so-called instantaneous predictive information rate (IPIR). To this end, the 
information about Y  should be considered through the observation that X=x, 
taking into account that we already know Z=z, defined as the Kullback-Leibler 
divergence (KL) between the predictive distribution over Y  before and after 
the occurrence of X=x, and so

Z(x|z) = I(X=x, Y\Z= z ) =  D(py\x=x, z =z \\Py\z = z )

where py|z=z(y)= J PxY|z=z(x,y) dx, and the expression D(-11-) is the diver­
gence KL between two distributions. As in the previous situation, this is a 
function of the observations z and x. Averaging over the prediction X|Z=z, 
that is, the calculation EX|z=zI(X|z), tells us about the quantity of new infor­
mation that we expect to receive from the next observation about the future. 
This is a useful indication of how much attention needs to be directed at the 
next event before it occurs. ‘The average of the IPIR over the preceding con­

21 Ibid.
22 Ibid.



texts Z|X=x, that is, the expectation Ez|x=x I(X|z), is the amount of informa­
tion about the future, on average, by each value in the state space of X ’23 As 
Abdullah and Plumbley indicate, averaging over both X  and Z  gives us the 
average predictive information rate (APIR) for the given random process 
model which is the average rate at which new information about the future 
arrives.

Hence the expression is reduced to the so-called conditional mutual in­
formation: I(X,Y\Z)=H(Y\Z) -  H(Y\X,Z). In this way, we again obtain a set of 
four measures, which are I(x|z) and its expectations over X, Z  and (X, Z) 
jointly. It must be added that these measures are calculated in terms of the KL 
divergence, and so they are invariant for the reversible transformations of the 
considered spaces of observation.

One farther research proposal is to obtain an information measure in a situa­
tion where an observer is making use of an openly parameterised model. This is a 
case in which the state of the observer’s convictions would also cover the probabil­
ity of distribution for the parameters 0 . It is emphasised that every observation 
could contribute to altering that state of convictions, that is, inform us about the 
parameters, the quantitative estimation of which would be made as a KL diver­
gence between a prior and a posterior distribution D(pe|X=x, Z=z|| p®|Z=z), 
which can be defined as a ‘model information rate’.24

Conclusion

In the case of information triggering a predictability of sound 
events, it is important for retaining a sort of perceptual curiosity that the mu­
sical structure display a certain balance in the revealing of predictable and 
unpredictable events. A  structure that is too predictable and ordered arouses 
perceptual tedium, whilst a structure that is too unpredictable might cause 
the listener to treat music as unstructured, or ‘random’, devoid of characteris­
tic features, and by the same stroke overly monotonous.

The selected methods of modelling music presented here are designed to 
assess the value of the predictability of perceived music. By referring to prior 
events (from the past), observing current events and creating expectations in 
respect to future events, and also assessing the information rate, these models 
take account of the real course of the listener’s perception of music. We obtain 
cognitive insight into the analysed music by employing methods of a mathe­
matical provenance, and so we have the possibility of examining music whilst 
taking account of the role of the listener, but with the use of objectivised 
methods.

23 Ibid., 5.
24 Ibid.
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