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1. MONOMATHEMATICS AND POLYMATHEMATHICS

There are two types of mathematical theories. Theories of the first type start with a spe-
cific mathematical structure, given in advance. This structure is well recognized in math-
ematical investigations. It is said in this case that we have deep intuitions about it and we 
want to develop a theory which is supposed to formalize these intuitions. Examples of such 
structures are: natural numbers, real numbers, geometric Euclidean space and the universe 
of all sets. You may call this monomathematics (Tennant 2000). The other type, polymath-
ematics, deals with classes of structures, with no single specific structure fixed in advance. 
This is the case of, e.g.: abstract algebra, general topology, graph theory, and numerous 
other subareas of mathematics.

We may talk about intended models in monomathematics. T he intended model of 
a theory T is the mathematical structure for the description of which the theory T was for-
mulated. This characterization has a pragmatic character. It may happen that T has only 
one model, up to isomorphism (i.e. all its models are isomorphic, in which case we say 
that T is categorical). It may happen that all models of  are semantically indistinguishable,  
i.e. elementarily equivalent; in this case we say that T is complete. If T is complete, then 
for any sentence ψ from its language: either ψ or the negation of ψ is a consequence of T. 
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If a theory is categorical, then it is complete, but not vice versa. We say that a theory T is 
κ-categorical, where κ is an infinite cardinal, if all models of T of power κ are isomorphic.

Thus, in the case of monomathematics we are looking for categorical (categorical in 
power) or complete theories which can then characterize the intended model in a unique 
way, either algebraically (via isomorphism) or semantically (via elementary equivalence). 
As it happens, this goal is hard to achieve, due to some metamathematical facts. Anyway, we 
may look for some metamathematical characterization of intended models, pointing at some 
properties distinguishing them from all other possible models of the investigated theory.

We do not talk about intended models in polymathematics. Rather, we are looking for 
some representation theorems characterizing all models of a theory (as e.g. the Cayley Rep-
resentation Theorem stating that every group is isomorphic to some group of permutations, 
the Stone Representation Theorem saying that every Boolean algebra is isomorphic to a field 
of sets, etc.).

2. EXPRESSIVE POWER OF A LOGICAL SYSTEM

Possibilities of unique representation of intended models depend on the language and 
logic in question. The first order logic (FOL) has very poor expressive power: one cannot 
define in it several uppermost important mathematical concepts, as e.g. these of infinity or 
continuity. Due to the Lӧwenheim-Skolem-Tarski Theorem no consistent theory (without 
finite models) in the language of FOL is categorical. Some theories in FOL are categorical in 
particular powers, but in general the notion of categoricity seems to be rather a mathemati-
cal concept and not a purely logical one. Ryll-Nardzewski Theorem provides necessary and 
sufficient conditions for ℵ0-categoricity and Morley Theorem provides an answer for the 
uncountable case (if a theory is categorical in some uncountable power, then it is categorical 
in all uncountable powers).

But FOL has many properties desirable from a logical point of view, e.g. it is complete 
and compact. One may say that FOL has great deductive power. On the other hand, logical 
systems stronger than FOL (second order logic, infinitary logics, logics with generalized 
quantifiers) usually have considerably great expressive power, but not all fundamental de-
ductive properties of FOL have immediate counterparts in these strong systems. Rather, we 
must coin new concepts of completeness or compactness applicable in these cases. In this 
sense, strong logical systems have poor deductive power (compared with that of FOL).

Several mathematical structures can be characterized up to isomorphism in the full sec-
ond order logic. However, this logic does not admit any effective deductive system, so the 
ordinary completeness fails in this case. It is a Logician, who cares a lot about completeness. 
The Mathematicians prefer to have categorical descriptions of mathematical structures (in 
particular, their intended models) and do not worry that much about completeness of the 
underlying system of logic.

3. LESSONS FROM METATHEORY

The Lӧwenheim-Skolem-Tarski Theorem says that FOL does not distinguish infinite 
powers. There are several other limitative theorems which describe what is and what is 
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not possible in a given system of logic. For example, the Lindstrӧm Theorem says that no 
logic satisfying both: the Completeness Theorem (or the Compactness Theorem) and the 
Downward Lӧwenheim-Skolem Theorem is stronger than FOL. Further examples of limita-
tive theorems may concern particular theories formulated in one or another system of logic. 
The well known examples are results about incompleteness and undecidability of theories, 
most notably the first order Peano arithmetic PA and the first order axiomatic set theory ZF. 
We are not going to report here on these results; they can be found in any advanced logic 
textbook.

For our purposes it is sufficient to note that as a consequence of these limitative theo-
rems we obtain theorems on existence of non standard models of theories belonging to 
monomathematics. Hence our hope to win categorical or at least complete characterization 
of intended models appears in these cases unjustified. For example, Peano arithmetic PA has 
continuum pairwise elementarily non-equivalent (and hence also pairwise non-isomorphic) 
countable models. Only one of them (the one defined in the known way in set theory) is 
standard and coincides with the intended model. Actually, PA has in any infinite cardinality 
κ the maximum possible number of pairwise non-isomorphic models, i.e. 2κ. Thus, PA is 
a wild theory.

The situation is even more complicated in the case of set theory ZF. This theory inherits 
the incompleteness phenomena from arithmetic PA (which is interpretable in ZF). The very 
existence of a lot of sentences independent from the axioms of ZF shows that the notions 
of set and the relation ∈ are characterized by the axioms rather weakly. If ZF is consistent, 
then it has countable models which obviously differ from the intended interpretation of set 
theory. The power set operation may be interpreted in several different ways, giving raise 
to several distinct universes of sets. We do not have a single intended model of set theory 
ZF. Rather, we still are looking for new axioms which could characterize the notion of set in 
a more complete way. Some examples are provided below.

There is still another possibility for the future of set theory. At the present moment it is 
customary to base all mathematical investigations on set theory. But we may not exclude 
that a time will come when we will treat different models of set theory in the same way as 
today we treat, say, different topological spaces. Notice that Thoralf Skolem and John von 
Neumann, two of the Fathers of Modern Set Theory were both very sceptical about set theo-
ry as the basis of the whole of mathematics. Zermelo’s opinion was different, of course.

4. EXTREMAL AXIOMS: EXAMPLES

Extremal axioms have been formulated in order to determine intended models in a unique 
way. They are either the axioms of maximality, or the axioms of minimality. Moreover, it 
is not only the mere volume of the universe of a model that counts: the “richness’’ of the 
structure of a model is taken into account as well.

4.1. INDUCTION

Axiom of induction may be considered either as a single sentence in a second order 
language or as an axiom schema in a first order language:
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Second order axiom: ∀X(0 ∈ X ∧ ∀x(x ∈ X → s(x) ∈ X) → ∀x(x ∈ X)), where s is the 
symbol for successor.

First order schema: ψ(0) ∧ ∀x(ψ(x) → ψ(s(x))) → ∀xψ(x), where ψ(x) is any for-
mula with one free variable of the language of Peano arithmetic.

In each of these cases induction (axiom or schema) is a certain minimality condition 
imposed on the universe of all natural numbers. The very existence of non standard models 
of (first order) PA shows that the existence of alien intruders (i.e. non standard numbers) 
cannot be prohibited by PA and FOL. There are several methods of proving the existence of 
non standard models of PA: you may use an argument from compactness, or the ultraproduct 
construction or the tree of expansions of PA, etc.

The schema of induction cannot be replaced by any finite number of axioms equivalent 
to it: PA is not finitely axiomatizable. Neither can we restrict the complexity of formulas in 
it and simultaneously keep the full force of PA.

Let  denote the standard model of PA. We know that it cannot be uniquely character-
ized in FOL either in terms of isomorphism or in terms of elementary equivalence. We can 
only distinguish it from all other countable models of PA on the metalevel:

 ––  is the only well-founded model of PA.
 ––  is a prime model of PA.
 –– Tennenbaum Theorem.  is the only recursive model of PA.

All countable non standard models of PA have the same ordinal type: ω + (ω* + ω)∙η  
(a copy of natural numbers followed by that many copies of integers as there are rational 
numbers). They differ in properties of addition and multiplication: as a consequence of the 
Tennenbaum Theorem, both these operations cannot simultaneously be given recursive defi-
nitions in non standard models.

The investigations of models of arithmetic are already highly advanced, with many very 
sophisticated mathematical tools used in them. We are not going to even roughly summarize 
these results. An interested reader is kindly invited to compare in this respect e.g. Kaye 1991 
or Hájek & Pudlák 1993.

The first axiomatizations of arithmetic, i.e. these given by Giuseppe Peano and Richard 
Dedekind were essentially second order. In such an approach you can of course determine 
the standard model of arithmetic up to isomorphism, as Dedekind did in his Kettentheorie. 
Dedekind in Was sind ud was sollen die Zahlen? (1888) was not really interested in the 
logical aspects of his system. He defined natural numbers as the least infinite set being the 
universe of a structure (N,f,1) with a function f: N → N and a distinguished element 1 outside 
the range of f.

The schema of induction was also explicitly present in Grassmann’s Lehrbuch der Arith-
metik (1861). It is claimed that already Pascal used induction. Notably, inductive arguments 
took place in Ancient Greece, in the reasoning based on infinite regress. In order to prove 
that no (natural) number has the property ψ it suffices to show that for any number n with 
the property ψ there exists a number m < n which also has ψ. If there would exist a number 
with the property ψ, then we could get smaller and smaller numbers with that property, 
which was conceived as absurd. This method was later rediscovered by Fermat.
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4.2. CONTINUITY

Investigations of continuity origin in difficulties with mathematical description of the 
geometric continuum. These difficulties were connected, among others, with: the problem 
of infinite divisibility (of the continuum itself), the question how is it possible to obtain 
the continuum out of points which do not have extension, etc. The discovery of irrational 
numbers showed that they are not included in the dense ordering of rational numbers. By 
the way, it was also a revolutionary change in the world-perspective according to which the 
ultimate structure of reality should be based on numbers. The mysterious structure of the 
geometric continuum was hidden in mathematical applications in physics, e.g. the descrip-
tion of movement, velocity or change. Today, we see the essence of these difficulties in the 
very notion of continuity.

Two early opposite positions concerning the structure of the geometric continuum were 
the following ones:

the continuum does not consist of atoms but of infinitely divisible parts (Aristotle, ––
Awerroes, Bradwardine, Kepler, Cavaglieri);

the continuum consists of (ultimately non-divisible) parts: –– atoms (Democritus) or 
non-divisible points (Plato, Pythagoras); there was also a controversy concerning the number 
of these parts –  should it be finite or infinite?

As Bradwardine wrote: Nullum continuum ex athomis integrari. The continuum should 
rather be integrated from other smaller continua of the same kind.

The view that velocity may be related to a single point (moment) was alien to Aristotle. 
This view changed to the opposite one in the Middle Ages and we find the latter in an elabo-
rated form in the work of Galileo.

Only after the rapid development of Analysis in the works of Newton, Leibniz, Euler 
and others there appeared a necessity of establishing it on solid logical background. First, 
Lagrange formulated some restrictions. Then the notions of a completely arbitrary function 
has been coined. As it is known, to that time by a function one understood a kind of a rule, 
or recipe, or algorithm according to which the value of a function was associated with each 
of its arguments.

The program of arithmetization of Analysis belongs to XIX century. According to it, 
one obtains an arithmetical representation of the continuum and the arguments, as well as 
the values of the investigated functions vary in arithmetic domains. Already in the works of 
Gauss and Cauchy we find representations of the most important concepts of Analysis: these 
of limit and continuity. Bolzano showed that a continuous function takes all the intermedi-
ate values between any given two of its values. He also explicitly expressed the view that 
the continuum consists of points. The highest degree of precision in Analysis was reached 
in the works of Weierstrass. Here we find the well known ε – δ convention and the explicit 
use of quantifiers. In the second part of XIX century several theories of real numbers were 
proposed, e.g.: Méray (1869), Cantor (1872), Heine (1872), Dedekind (1858, published in 
1872), Weber (1895). In 1890 Schwartz proved in a precise way that if the derivative of f is 
everywhere equal to 0, then f is a constant function. This fact was taken as a dogma, without 
proof, in Newton’s system.
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Dedekind’s theory of real numbers is based on the notion of cut of the set  of all ra-
tional numbers with their usual ordering <. Recall that a pair (A, B) of subsets of  is a cut, 
if A ∪ B =    and for all a ∈ A and b ∈ B we have a < b. The ordering of , though dense, 
does contain gaps, in the sense that there are cuts (A, B) with no greatest element in A and no 
smallest element in B. Dedekind’s idea was to associate a new number with each cut of   .  
This completion of    gives the set of all real numbers. Dedekind’s theory required two aux-
iliary components: theory of rational numbers and theory of sets. The first was provided by 
Weber in 1895, who based the theory of rational numbers on the arithmetic of natural num-
bers. The second originated in the Cantor’s set theory (1872, 1883). The first axiomatization 
of set theory was given by Zermelo in 1908. Peano gave his axiomatization of the arithmetic 
of natural numbers in 1889.

Another well known construction of real numbers is that proposed by Cantor. Here real 
numbers are understood as abstraction classes of sequences of rational numbers satisfying 
the Cauchy condition.

Do we now finally have a complete representation of the geometric continuum? Should 
it be simply represented by the continuous ordering of the real numbers? Well, at the present 
moment Analysis is soundly based on the structures of real and complex numbers. The no-
tion of an infinitely small magnitude can be represented in a precise way in the non standard 
analysis. However, some problems still remain open, just to mention the Continuum Hy-
pothesis, which cannot be either proved or refuted in the Zermelo-Fraenkel set theory.

4.2.1. ALGEBRA

There are two methods of construction of number systems: genetic and axiomatic. In the 
first case we begin with natural numbers (together with addition and multiplication of them) 
and then we construct the other number systems: the integers, rational, real and complex 
numbers, in each case with the corresponding arithmetical operations on them. These step-
by-step extensions are connected with the fact that some arithmetical operations are not in 
general applicable in the “smaller” number system (as e.g. subtraction of natural numbers, 
division of integers) and we construct a “larger” system in which these operations are appli-
cable. The second, axiomatic method begins with a list of axioms which should be satisfied 
by all objects belonging to the number system in question. Thus, we have separate axiom 
systems for, e.g., natural numbers and real numbers.

The axiom schema of induction is an example of an extremal axiom of minimality, as 
we have seen. On the other hand, it is the Axiom of Continuity (synonymously: Axiom of 
Completeness) which is an extremal axiom specific for the real numbers: it is an axiom of 
maximality, in turn. The Axiom of Continuity is added to the usual axioms of an ordered field  
(R, + ,⋅, 0, 1, <) and may have e.g. one of the following forms (cf. Błaszczyk 2007: 306):

For any cut 1.	 (A, B) in (R, <) either in A there exists the greatest element, or in B there 
exists the smallest element.

Any non-empty bounded from above subset 2.	 A ⊆ R has the lowest upper bound in R.
Any infinite and bounded subset 3.	 A ⊆ R has a limit point in R (in order topology).
(4.	 R, +, ⋅, 0, 1, <) is an Archimedean field and for any sequence (an) ⊆ R there exists 

a ∈ R such that lim an = a.
n→∞
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(5.	 R, +,⋅, 0,1,<) is an Archimedean field and for any descending chain of closed inter-
vals (An) we have ⋂n An ≠ ∅.

The roots of the theory of real numbers possessing such continuity properties can be 
found, among others, in:

David Hilbert. •	 Über den Zahlbegriff (1900).
Georg Cantor. •	 Über die Ausdehnung eines Satzes aus der Theorie der trigonome-

trischen Reihen (1872). This was later developed in § 9 of Über unendliche lineare Punkt-
mannigfaltigkeiten (1883).

Richard Dedekind. •	 Stetigkeit und irrationale Zahlen (1872).
Eduard Heine. •	 Die Elemente der Functionenlehre (1872).

Despite some differences in formulation or the basic constructions, all these approaches 
have some properties in common, e.g.:

A clear distinction is made between the •	 geometric continuum and the set of all real 
numbers.

The introduction of real numbers is accompanied by definitions of arithmetic opera-•	
tions on them.

The authors explicitly state that there are no rigorous proofs that the structure of real-•	
ity, space, time, degrees of intensiveness of features, etc. has indeed a continuous nature. 
It may well be the case that the reality has ultimately a discrete nature and the concept of 
continuity is a free projection of the mind, present in mathematical constructions only.

Now, what about the intended model of a continuous number system, like the real num-
bers? One can prove several isomorphism theorems which characterize the corresponding 
systems up to isomorphism, by taking into account: arithmetical operations, ordering and 
topological properties of the systems in question. Here are a few most known examples ( , 
, ,  correspond, respectively, to: real numbers, complex numbers, quaternions and octo-

nions; in each of the theorems below a suitable structure on these sets is presupposed):

Frobenius Theorem•	 . Each associative algebra with division over  is isomorphic ei-
ther with , or , or .

Hurwitz Theorem•	 . Any normed algebra with division is isomorphic either with , or 
, or  or .

Ostrowski Theorem•	 . Any field complete with respect to an Archimedean norm is iso-
morphic with either  or  and the norm is equivalent with the usual norm determined by 
the absolute value.

Pontriagin Theorem•	 . Any connected locally compact topological field is isomorphic 
with either , or , or .

1,2,4,8—Theorem (Bott, Milnor, Kervaire)•	 . Each algebra with division over  has 
dimension 1,2,4 or 8.

Hopf Theorem•	 . Each commutative algebra with division over  has dimension ≦ 2.

Let us recall that another Ostrowski Theorem says that any non-trivial absolute value 
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on the rational numbers  is equivalent to either the usual real absolute value or the p-adic 
absolute value.

Some further properties allow for distinctions between the above number systems, just 
take two examples:

•	  (as constructed by Dedekind) is linearly and densely ordered. This ordering is also 
continuous (as Dedekind proved). The rational numbers  form a dense countable subset of 
. On the other hand, the complex numbers  cannot be linearly ordered in such a way that 

the ordering will be compatible with the arithmetic operations.
•	  is commutative (with respect to multiplication) and  is not.

According to the theorems mentioned above there are only a few algebraic structures 
(up to isomorphism) which may serve as a basis for all usual arithmetical operations. In 
this sense, we may say that the intended models for number systems are characterized in 
a unique way. Let us only mention that non standard analysis offers still another mathemati-
cal representation of a number system (the hyperreal numbers) which is obtained from the 
“usual” real numbers by the construction of an appropriate ultrapower. The field of hyper-
real numbers is not Archimedean, and the field of real numbers is Archimedean. Among 
hyperreal numbers there are infinitely small numbers, which can be used for explication of 
some statements of classical Analysis previously formulated in a very vague manner.

Still another (second order) axiomatization of the real numbers was given in 1936 by Tar-
ski. It describes the structure (R,<,+,1), where < is a linear dense and Dedekind-complete 
ordering of R, + is the operation of addition (compatible with <) and 1 is a distinguished 
element satisfying 1<1+1. The axioms imply that this structure is a linearly ordered Abe-
lian group under addition with distinguished element 1. It is also Dedekind-complete and 
divisible. It can be shown that the axioms imply the existence of a binary operation having 
all the expected properties of multiplication.

This note is not supposed to be a complete survey of closure properties investigated in 
algebra which may show close affinity to the extremal axioms. An interested reader should 
consult any advanced book in abstract algebra in this respect. Let us close this section with 
the following sketchy remarks:

The (first order) axiomatic theory of real closed fields is complete. It admits elimina-•	
tion of quantifiers. Hence it is decidable.

Real closed fields have exactly the same first order properties as the real numbers.•	
Artin-Schreier Theorem•	 . Let F be an ordered field (i.e. with a definite ordering < on 

it). Then F has an algebraic extension, say E, called the real closure of F such that E is a real 
closed field and its ordering, say ≺, is an extension of <. Such E is unique, up to isomor-
phism.

On the other hand, the real numbers remain still a little bit mysterious. There are indeed 
many statements concerning the set of real numbers, as well as its subsets which are inde-
pendent from the axioms of Zermelo-Fraenkel set theory. The famous examples are e.g.: 
The Continuum Hypothesis, The Suslin Hypothesis, the sentence PM (all projective sets are 
Lebesgue measurable). The continuum (i.e. the cardinal number 2ℵ0) may take almost every 
value on the scale of alephs (with exception of cardinal numbers with countable cofinality, 
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as e.g. ℵω). One formulation of The Suslin Hypothesis states that each set with a linear order 
without first and last element satisfying the ccc (countable chains condition, stating that 
every antichain is at most countable) and such that the corresponding order topology is con-
nected is isomorphic to the set of all real numbers with their usual ordering.

4.2.2. GEOMETRY

Hilbert’s Axiom of Completeness from his Grudlagen der Geometrie has the following 
form in editions 2–6:

The elements (points, lines, planes) of geometry constitute a system of things which cannot be extended 
while maintaining simultaneously the cited axioms, i.e., it is not possible to add to this system of points, 
lines, and planes another system of things such that the system arising from this addition satisfies axioms 
AI–V1. 

As it is well known, the above axiom was later reformulated to the following Linear 
Completeness Axiom (Hilbert 199914: 30):

V 2 (Axiom der linearen Vollständigkeit). Das System der Punkte einer Geraden mit seinen Anordnungs- 
und Kongruenz-beziehungen ist keiner solchen Erweiterung fähig, bei welcher die zwischen den vorigen 
Elementen bestehenden Beziehungen sowie auch die aus den Axiomen I–III folgenden Grundeigeschaften 
der linearen Anordnung und Kongruenz, und V 1 erhalten bleiben.

This formulation, in turn, was replaced by the usual Axiom of Completeness for the 
real numbers system. In such a form the axiom in question must be formulated in a second 
order language. This system of geometry is categorical, i.e. it has exactly one model, up to 
isomorphism. The system of geometry presented in Borsuk & Szmielew 1975 has the fol-
lowing primitive terms:

the •	 space (understood as a set of all points),
the families of •	 lines and planes,
the three-argument relation •	 Bxyz (Bxyz is to be read: the point y lies between the 

points  x and z),
the four-argument relation •	 Dxyuv (Dxyuv is to be read: the distance between x and y 

is the same as the distance between u and v).

It can be shown that the Axiom of Completeness is independent from the other axioms 
of the system of absolute geometry (i.e. the above system without the Euclid parallel postu-
late). Thus, absolute geometry admits models which are not continuous. Moreover, absolute 
geometry is not categorical: it has the Cartesian model as well as the Klein’s model and these 
models are not isomorphic. Its extensions, obtained by either taking the Euclid parallel ax-
iom (i.e. the Euclidean geometry) or its negation (the hyperbolic geometry) are categorical.

The Axiom of Completeness is necessary for distinguishing the intended model of Eu-
clidean geometry (i.e. the Cartesian model, known from the school). By the way, notice 
that the Euclidean geometry is privileged on historical grounds and most likely on grounds 
connected with our (mostly visual) perception of the physical world on the medium scale. 
Should we be, say, clouds living in the cloudy environment (without any rigid solid bodies 
around us), then we could possibly begin with another geometric representation of reality.

The Axiom of Continuity has the following form in the case of the system of geometry 
from Borsuk & Szmielew 1975 (this is the only second order axiom of the system):
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If X,Y are non empty sets of points and there exists a point a such that p ∈ X and q ∈ Y 
imply Bapq, then there exists a point b such that p ∈ X –  {b} and q ∈ Y –  {b} imply Bpbq.

The axiomatic system of geometry proposed by Tarski has as primitive terms the predi-
cates Bxyz and Dxyuv (read as above), but it is an elementary (i.e. first order) system. Here 
the Axiom of Continuity is not a single sentence, but a schema of the following form:

∃z∀x∀y((φ(x)∧ψ(y) ) → Bxyz) → ∃u∀x∀y((φ(x)∧ψ(y)) → Bxuz),

where φ(x) is any formula in which y, z, u are not free and ψ(y) is any formula in which 
x, z, u are not free.

This system is complete and decidable. Its axioms contain only the primitive terms. It  
may be added that the system has many “nice” metamathematical properties. However,  
it also has some disadvantages from the point of view of practical applications.

Again, this note is not supposed to present any summary of applications of extremal 
axioms in geometry: we have limited ourselves to a few examples only.

Let us also marginally add that the notion of completeness is applicable in the case of 
general topological spaces. However, in this case we of course do not speak about intended 
models –  it seems that there was no one, fixed in advance complete topological space when 
the theory of such spaces was developed. Recall that by a complete topological space we 
understand any metric space in which every Cauchy sequence has the limit belonging to this 
space.

4.3. AXIOMS OF RESTRICTION IN SET THEORY

Historically, first axiom of minimality in set theory was the axiom of restriction formu-
lated by Fraenkel in 1922 and then repeated in his Einleitung in die Mengenlehre. It says, 
roughly speaking: “there are no other sets besides these, whose existence can be proven from 
the axioms of set theory.” It is thus a proposal to understand the notion of set as narrowly as 
possible. Fraenkel intended to obtain some version of completeness in set theory with this 
axiom. It should be remembered that these considerations took place before Gӧdel’s results 
about incompleteness of arithmetic (and, consequently, set theory, in which one can inter-
pret arithmetic). Fraenkel aimed also at exclusion of infinite descending ∈-chains of sets; 
this goal has been later achieved by accepting the axiom of regularity.

The idea of an axiom of restriction was criticized both by John von Neumann and Ernst 
Zermelo. On the other hand, Roman Suszko and independently John Myhill tried to attach 
a precise mathematical content to the restriction axiom in Fraenkel’s style (cf. Suszko 1951; 
Myhill 1952). The idea that each set should be associated with its name is also present later 
in Paul Cohen’s origin of the forcing method (cf. Cohen 1966).

Kurt Gӧdel’s Axiom of Constructibility (V = L, to be read: all sets are constructible) 
was not conceived as a restriction axiom, though it has a form of an axiom of minimality 
in set theory. The inner model of all constructible sets was devised in order to prove that if 
set theory ZF is consistent, then also ZF plus the axiom of choice and the Generalized Con-
tinuum Hypothesis is consistent.

Let us recall that at successor stages in building the constructible universe one makes 
use of the poorest powerset operation possible: the powerset of x contains only definable 
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subsets of x. At limit stages we take of course unions of all stages constructed so far. The 
class of all constructible sets is a minimal countable transitive model of set theory contain-
ing all ordinal numbers.

The method of inner models has its own limitations, as shown in Shepherdson 1951–
1953. However, it is a very convenient point of departure for some more subtle construc-
tions, including the celebrated method of forcing, due to Paul Cohen.

Kurt Gӧdel himself was against axioms of restriction in set theory and he overtly ex-
pressed his view in favor of axioms of maximality (Gödel 1964, quotation after Collected 
Works II, 262–263):

On the other hand, from an axiom in some sense opposite to this one [i.e. to the Axiom of Constructibility 
–  JP], the negation of Cantor’s conjecture could perhaps be derived. I am thinking of an axiom which (simi-
lar to Hilbert’s completeness axiom in geometry) would state some maximum property of the system of all 
sets, whereas axiom A [i.e. the Axiom of Constructibility –  JP] states a minimum property. Note that only 
a maximum property would seem to harmonize with the concept of set […].

It seems that nobody in the community of set theoreticians has ever seriously taken into 
account a possibility of adjoining the Axiom of Constructibility to the body of fundamental 
axioms of set theory. “Normal” mathematicians may have different opinion in this respect – 
cf. Friedman’s judgment (Feferman et al. 2000: 436–437):

The set theorist is looking for deep theoretic phenomena, and so V = L is anathema since it restricts the set 
theoretic universe so drastically that all sorts of phenomena are demonstrably not present. Furthermore, for 
set theorist, any advantage that V = L has in terms of power can be obtained with more powerful axioms of 
the same rough type that accommodate measurable cardinals and the like – e.g., V = L(μ), or the universe is 
a canonical inner model of a large cardinal.

However, for the normal mathematician, since set theory is merely a vehicle for interpreting mathematics as 
to establish rigor, and not mathematically interesting in its own right, the less set theoretic difficulties and 
phenomena the better.

I.e., less is more and more is less. So if mathematicians were concerned with the set theoretic independence 
results – and they generally are not – then V = L is by far the most attractive solution for them.

This is because it appears to solve all set theoretic problems (except for those asserting the existence of sets 
of unrestricted cardinality), and is also demonstrably relatively consistent.

Set theorist also say that V = L has implausible consequences – e.g., there is a PCA well ordering of the reals, 
or there are nonmeasurable PCA sets.

The set theorists claim to have a direct intuition which allows them to view these as so implausible that this 
provides “evidence” against V = L.

However, mathematicians disclaim such direct intuition about complicated sets of reals. Some say they have 
no direct intuition about all multivariate functions from  into !

Nevertheless, the Axiom of Constructibility, taken as a working assumption, has many 
consequences of considerable interest, in combinatorics, algebra, model theory, theory of 
recursive functions, etc. However, the Axiom of Constructibility implies e.g. the nonexist-
ence of measurable cardinals as well as the negation of Suslin hypothesis. The prize to be 
paid, if one accepts this axiom seems to be too high, compared with its alleged naturalness 
and evident economy. We prefer to stay in the Cantor’s Paradise.

The most destructive critique of minimal axioms is presented in Fraenkel et al. 1973. 
The authors formulate two axioms of restriction. The main idea captured by the first of them 
is the following.
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The First Axiom of Restriction. If  Q is a property such that each set whose existence 
follows from the axioms has this property, then every set has the property Q.

Now, the property Q should be closed with respect to the set-forming operations de-
scribed in the axioms. Thus, e.g., if x and y have Q, then {x,y} has Q, if x has Q, then ⋃x has 
Q, etc. Also the axiom schemas of comprehension and replacement can be translated into 
the suitable closure conditions with respect to Q. One can then show the following facts, 
among others:

The First Axiom of Restriction is equivalent to the conjunction of axiom of regularity •	
and the sentence saying that there are no strongly inaccessible cardinals. Obviously, all the 
consequences of nonexistence of strongly inaccessible cardinals are also provable.

If we consider set theory in a second order language with a suitable version of The •	
First Axiom of Restriction, then we can prove categoricity of such a theory.

No consequences concerning the Continuum Hypothesis can be drawn from The First •	
Axiom of Restriction.

The Second Axiom of Restriction is the conjunction of the following sentences:

All sets are constructible (in Gӧdel’s sense).1.	
There are no transitive sets which are models of ZF.2.	

It follows from 1) that all sets are well founded. As it is known from Gӧdel’s work, 
1) implies the GCH. The sentence 2), in turn, implies that there are no strongly inaccessible 
cardinals. Thus, The Second Axiom of Restriction implies the first one. Both Axioms of 
Restriction share some common features:

Each of them states that some “big” cardinals or sets with high rank do not exist: •	
First Axiom of Restriction –  inaccessible cardinal numbers; Second Axiom of Restriction 
–  transitive sets which are models of ZF.

Some complicated sets do not exist: First Axiom of Restriction –  non well founded •	
sets; Second Axiom of Restriction –  non-constructible sets.

The author’s arguments against axioms of restriction may be summarized as follows.

Analogy. “In the case of the axiom of induction in arithmetic and the axiom of com-
pleteness in geometry, we adopt these axioms not because they make the axiom systems 
categorical or because of some metamathematical properties of these axioms, but because, 
once these axioms are added, we obtain axiomatic systems which perfectly fit our intuitive 
ideas about arithmetic and geometry. In analogy, we shall have to judge the axioms of re-
striction in set theory on the basis of how the set theory obtained after adding these axioms 
fits our intuitive ideas about sets” (Fraenkel et al. 1973: 117). Observe that this argument 
has mostly a pragmatic character.

Faith. One could restrict the notion of a set to the narrowest possible only if one could 
have absolute faith in the axioms of ZF, which does not seem to be the case. Even if one had 
such a faith, it is more likely that one would look for maximality axioms (as in geometry), 
rather than for restriction axioms.
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Two more arguments against axioms of restriction are correlated with author’s attitude 
to the axiom of constructibility (cf. Fraenkel et al. 1973: 108–109):

Mathematical elegance. Axioms of restriction do not improve mathematical elegance of 
set theory, in the sense that one can prove more powerful theorems based on them. Rather, 
they may be involved only in proofs that some sets do not exist.

Platonistic point of view. Axioms of restriction are unnatural also when we consider the 
universe of all sets as an entity capable of growing, in the sense that we can always produce 
new and new sets. If an axiom of restriction forces us to accept that the universe of all sets 
is a fixed entity, then why couldn’t we consider it as a new set in a still bigger universe? 
“In other words, there is no property expressible in the language of set theory which dis-
tinguishes the universe from some ‘temporary universes’. These ideas are embodied in the 
principles of reflection, which are, mostly, strong axioms of strong infinity.” (Fraenkel et 
al. 1973: 118).

4.4. AXIOMS OF MAXIMALITY IN SET THEORY

The idea of an axiom of maximality in set theory has been investigated even before 
the formulation of set theory ZF in its present shape (cf. Baer 1928). In a sense, Zermelo’s 
demand concerning the existence of a transfinite sequence of inaccessible cardinals can also 
be viewed as an axiom of maximality (cf. Zermelo 1930). More recently, maximal axioms, 
in form of the axioms of existence of very large cardinal numbers are just one of the central 
topics in the contemporary set theory.

There are several criteria to be met when formulating new axioms (of existence of large 
cardinal numbers), among others: necessity (or non-arbitrariness) and fruitfulness in their 
consequences. Adding the axiom of infinity to (ZF minus this axiom) enables us to prove 
theorems about infinite sets. In a similar way, adding an axiom stating the existence of in-
accessible cardinals makes it possible to extend operations of set formation beyond what 
is provable in ZFC. Large cardinals axioms have decisive importance for Descriptive Set 
Theory and in this sense they appear fruitful. The same concerns their applications in, say, 
infinitary combinatorics.

Joan Bagaria recalls fundamental principles by which (according to Hao Wang quota-
tions of Gӧdel ideas in Wang 1974, 1996) new axioms of set theory should be introduced 
(Bagaria 2005: 47–48):

According to Gӧdel there are five such principles: Intuitive Range, the Closure Principle, the Reflection 
Principle, Extensionalization, and Uniformity. The first, Intuitive Range, is the principle of intuitive set for-
mation, which is embodied into the ZFC axioms. The Closure Principle can be subsumed into the principle 
of Reflection, which may be summarized as follows: The universe V of all sets cannot be uniquely charac-
terized, i.e., distinguished from all its initial segments, by any property expressible in any reasonable logic 
involving the membership relation. A weak form of this principle is the ZFC-provable reflection theorem of 
Montague and Levy (see Kanamori 1994):

Any sentence in the first-order language of Set Theory that holds in V holds also in some V∝.

Gӧdel’s Reflection principle consists precisely of the extension of this theorem to higher-order logics, infini-
tary logics, etc.

The principle of Extensionalization asserts that V satisfies an extensional form of the Axiom of Replacement 
and it is introduced in order to justify the existence of inaccessible cardinals. […]
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The principle of Uniformity asserts that the universe V is uniform, in the sense that its structure is similar 
everywhere. In Gӧdel’s words (Wang 1996: 8.7.5): The same or analogous states of affairs reappear again 
and again (perhaps in more complicated versions). He also says that this principle may also be called the 
principle of proportionality of the universe, according to which, analogues of the properties of small car-
dinals lead to large cardinals. Gӧdel claims that this principle makes plausible the introduction of measur-
able or strongly compact cardinals, insofar as those large-cardinal notions are obtained by generalizing to 
uncountable cardinals some properties of ω.

Bagaria discusses then “some heuristic principles, which may be regarded as Meta-Ax-
ioms of Set Theory, that provide a criterion for assessing the naturalness of the set-theoretic 
axioms.” Axioms in question are either axioms of existence of large cardinal numbers or 
some forcing axioms.

It is of course not possible to give even a rough summary of all the problems concerning 
axioms of existence of large cardinals in a short paper like this one. The interested reader 
is kindly invited to consult e.g., Kanamori 1994 in this respect. Below, we limit ourselves 
to few remarks pointing at some interconnections between large cardinal axioms and the 
consistency strength. We follow the presentation contained in Koellner 2010.

According to Mostowski (Mostowski 1967) there are two principles of introducing new 
axioms of infinity:

The principle of passing from potential to actual infinity1.	 . We build new sets using 
the axioms of infinity and replacement of ZF. The universe of all sets is potentially infinite 
and closed with respect to some operations. We postulate the existence of a set which itself 
is closed with respect to these operations. In this way we obtain for instance inaccessible 
cardinals.

The principle of existence of peculiar sets2.	 . Suppose that while constructing sets ac-
cording to the known operations on them we always meet sets with a certain property P. 
If there are no evident reasons which should force us to assume that all sets have P, then 
we propose a new axiom saying that there exist sets without the property P. In this way we 
obtain for example measurable cardinals.

In the last few decades several kinds of large cardinals have been investigated. Postulat-
ing the existence of a large cardinal (whose existence can not be proved from the axioms of 
ZF) is, of course, a kind of a maximality condition. But it is not only a mere demand on the 
volume of the universe of set theory: large cardinal axioms are also closely related to the 
deductive strength of the theories obtained by adjoining such axioms. Let us look at some 
very elementary examples.

Let Z0 denote ZFC without the axioms of infinity and replacement. The standard model 
for this theory is Vω. The existence of this set follows from the axiom of infinity. Let Z1 de-
note Z0 with the axiom of infinity. Then we can prove in Z1:

Z•	 0  is consistent.
There exists a standard model for •	 Z0.

The standard model for Z1 is Vω+ω. The existence of this set follows from the axiom of 
replacement. Let Z2 denote Z1 with the axiom of replacement. Then we can prove in Z2:

Z–– 1 is consistent.
There exists a standard model for –– Z1.
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The standard model for Z2 is Vκ , where κ is an inaccessible cardinal. Thus, the next axi-
om of infinity in this hierarchy will be the sentence “There exists an inaccessible cardinal.” 
The next theory, i.e. ZFC together with this sentence proves the existence of a level of the 
cumulative hierarchy which is a model for ZFC. And so on: in this way we obtain stronger 
and stronger set theories.

Let Con(PAn) denote the sentence expressing consistency of the n-th order arithmetic 
PAn. Then Con(PAn) can not be decided in PAn, but it can be decided in PAn+1. These sen-
tences are connected with the levels of the cumulative hierarchy of sets. Recall that PA1, 
i.e. the first order system of Peano arithmetic PA is mutually interpretable with ZF minus 
the axiom of infinity, because Vω, the first infinite level of the cumulative hierarchy consists 
of hereditarily finite sets which can be coded by natural numbers. However, the sentences 
Con(PAn) are not the only undecidable statements (cf. Koellner 2010: 3–4):

The trouble is that when one climbs the hierarchy of sets in this fashion the greater expressive resources that 
become available lead to more intractable instances of undecidable sentences and this is true already of the 
second and third infinite levels. For example, at the second infinite level one can formulate the statement PM 
(that all projective sets are Lebesgue measurable) and at the third infinite level one can formulate CH (Can-
tor’s continuum hypothesis). [… Here Koellner briefly summarizes Gӧdel’s and Cohen’s results showing 
together the independence of CH from ZFC – JP.]

These instances of independence are more intractable in that no simple iteration of the hierarchy of types 
leads to their resolution. They led to a more profound search for new axioms.

Due to Gӧdel’s and Cohen’s results concerning the independence of CH from ZFC one 
can see that ZFC is mutually interpretable with ZFC+CH, as well as with ZFC+¬CH. The 
situation with P M is, however, different. The method of inner models shows that ¬PM 
holds in the constructible universe L. Hence ZFC and ZFC+¬PM are mutually interpret-
able. But Shelah has shown that ZFC+PM implies the consistency of ZFC and therefore, 
due to Gӧdel’s second incompleteness theorem, ZFC+PM is not interpretable in ZFC. It 
follows that in order to establish the independence of PM from ZFC we need to assume the 
consistency of some stronger theory – namely that of ZFC plus the sentence “There exists 
a strongly inaccessible cardinal.”

This was only a  very elementary example. One considers a  plentitude of axioms of 
existence of large cardinals which have relevant impact on the independence proofs. Let us 
only add that there exists a pattern of formulating large cardinal axioms in terms of elemen-
tary embeddings. Generally speaking, one considers non trivial (i.e. different from identity) 
elementary embeddings j : V → M of the cumulative hierarchy V into a transitive class M. 
The least ordinal moved by such an embedding is called the critical point of j and denoted 
by crit(j). For example, a cardinal is measurable if and only if it is the critical point of some 
such embedding. Further conditions imposed on j and M enable us to create several sorts of 
large cardinal axioms. As Kunen has shown, there is no elementary embedding j : V → V.

The structure of degrees of interpretability of theories is very complicated. However, 
natural theories having practical mathematical applications happen to be orderly compa-
rable, which of course is only an empirical fact. Theories can be compared through large 
cardinal axioms corresponding to them (cf. Koellner 2010: 10–11):

Given ZFC+φ and ZFC+ψ one finds large cardinal axioms Φ and Ψ such that (using the methods of inner and 
outer models) ZFC+φ and ZFC+Φ are mutually interpretable and ZFC+ψ and ZFC+Ψ are mutually interpret-
able. One then compares ZFC+φ and ZFC+ψ (in terms of interpretability) by mediating through the natural 
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interpretability relationship between ZFC+Φ and ZFC+Φ. So large cardinal axioms (in conjunction with the 
dual method of inner and outer models) lie at the heart of the remarkable empirical fact that natural theories 
from completely distinct domains can be compared in terms of interpretability.

Sometimes the procedure sketched above is the only known way to compare theories, 
which provides a pragmatic justification for the investigations of large cardinal axioms.

5. INTENDED MODEL: A PURELY PRAGMATIC CONCEPT?

We have seen that FOL does not provide sufficient tools for unique characterization of 
intended models. We may characterize such models either in some stronger logical systems 
or at the level of metatheory.

This shortcoming may bother a logician, but it is not very important for the working math-
ematicians. The latter cares first of all about characterization of models up to isomorphism, 
paying less attention to logical matters. As Jon Barwise has put it (Barwise 1985: 7):

But if you think of logic as the mathematicians in the street, then the logic in a given concept is what it is, and 
if there is no set of rules which generate all the valid sentences, well, that is just a fact about the complexity 
of the concept that has to be lived with.

We have pointed at some possibilities of a purely mathematical characterization of in-
tended models: Tennenbaum theorem with respect to Peano arithmetic, isomorphism theo-
rems with respect to number systems, theorems concerning categoricity of some chosen 
systems of geometry. These characterizations are all given at the level of metalanguage. The 
same concerns the role of maximal axioms in set theory in the context of comparing theories 
with respect to interpretability. Finally, let us give one more example connected again with 
Peano arithmetic.

Let T0 = PA and let ψ0 be any sentence undecidable in T0. Further, let T00 = PA ∪ {ψ0} 
and T01 = PA ∪ {¬ψ0}. For any finite sequence σ of elements being equal either to 0 or 1 
let:

Tσ0 = Tσ ∪ {ψσ}
Tσ1 = Tσ ∪ {¬ψσ },

(where ψσ is any sentence undecidable in Tσ). We get an infinite binary tree of extensions 
of PA in this way. This tree has 2ℵ0 branches. Due to the compactness theorem the union 
of theories on each branch is consistent (under the assumption that PA itself is consistent). 
On behalf of the downward Lӧwenheim-Skolem theorem each such union has a countable 
model. No two of these models are elementarily equivalent, due to the construction of the 
tree.

If we let ψ0 to be Con(PA) and ψα to be Con(Tα) then N0, i.e. the standard model of PA is 
a model of the leftmost branch of the tree. All the other branches have non standard (count-
able) models. Each sentence of the form ¬Con(Tα) has a Gӧdel number which is a non 
standard number in the corresponding model.

We see that we can pick up the standard model of PA from all these models. But again, 
the rule underlying this choice belongs to metatheory.

The debate about intended models became vivid in the general methodology of the sci-
ences after publication of Hilary Putnam’s famous essay Models and reality (cf. Putnam 
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1980). It should be stressed that it is not only the Putnam’s model-theoretic argument (based 
essentially on the Lӧwenheim-Skolem Theorem) which is relevant at this issue. We have 
seen that much more is involved in the problem of distinguishing the intended model of 
some theory and the situation depends on the area of mathematics we are dealing with.

We did not report in this short note about several positions taken in the general method-
ology of the sciences concerning intended models. An interested reader may consult, e.g.: 
Gaifman 2004, Grobler 2006, Nowaczyk 1990, Przełęcki 1988, Woleński 1993, 2005, 
Wójcicki 1974.

The above considerations contain no essentially new original reflections. All the prob-
lems discussed here have been widely known for several years. Anyway, we think that it is 
an interesting enterprize to look collectively at the extremal axioms formulated in different 
areas in mathematics. At the present moment, the works devoted to the extremal axioms in 
general are not that numerous yet (cf. e.g. Carnap & Bachmann 1936, 1981, Hintikka 1986, 
1991, remarks on extremal axioms in several monographs on arithmetic, geometry, algebra 
and set theory). The present author works on a monograph  Extremal Axioms. Hopefully, he 
will finish it before his Ultimate End.
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