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Abstract 

Soft-sediment deformation structures formed by liquefaction and/or fluidisation of unconsolidated sediments due to 
seismic shocks are frequent in the Quaternary sandy, silty and clayey deposits of Lake Van. They are present in both 
marginal and deep lacustrine facies. Their morphology and interpreted genesis imply that they should be considered as 
fluid-escape structures (dish and pillar structures, flame structures and sand volcanoes), contorted structures (simple 
and complex convolutions and ball-and-pillow structures) and other structures (disturbed layers and slump structures). 
The most recently formed structures are related to the October 23rd, 2011 Van-Tabanlı (Mw 7.2) earthquake. The exist-
ence of seismites at various stratigraphic levels in the lacustrine deposits is indicative of tectonic activity that frequently 
triggered earthquakes with magnitudes of 5 or more, affecting the Lake Van Basin.
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1. Introduction

Seismic events can be recorded in sedimentary 
successions as seismites, layers characterised by 
earthquake-induced soft-sediment deformation 
structures, including convolutions, dish and pil-
lars, flame structures, and sand volcanoes (see, for 
instance, Valente et al., 2014, this issue). Seismites 
are formed by liquefaction and/or fluidisation 
of water-saturated, unconsolidated, and non-co-
hesive sediments due to seismic shocks (Seilach-
er, 1969; Lowe, 1975; Van Loon, 2014a, this issue). 
Seismites exist in many sedimentary environments 
such as lacustrine, fluvial, transitional, and marine 
environments (Seilacher, 1969; Seed & Idriss, 1982; 
Obermeier et al., 1989; Ringrose, 1989; Moretti et al., 
1995). Inner basins and lakes are the most suitable 
environments for the formation of seismites as the 
various depositional subenvironments and sedi-
mentary facies are commonly highly susceptible 
to deformations (Sims, 1975; Hempton et al., 1983; 

Seilacher, 1984; Ringrose, 1989; Ricci Lucchi, 1995; 
Alfaro et al., 1997; Rodriguez-Pascua et al., 2000; 
Bowman et al., 2004; Moretti & Sabato, 2007; Taşgın 
& Türkmen, 2009). Seismites resulting from earth-
quakes with a magnitude M≥5 (Fukuoka, 1971; At-
kinson, 1984; Ambraseys, 1988) can sometimes be 
used to determine the location and frequency of the 
seismic activity in a region (Allen, 1975; Sims, 1975; 
Hempton et al., 1983; Scott & Price, 1988; Ringrose, 
1989). 

Seismites occur frequently in the Quaternary 
lacustrine deposits of the Lake Van Basin in east-
ern Turkey. The most recent seismogenic structures 
(sand volcanoes) formed during the Van-Tabanlı 
earthquake (Mw 7.2), which seriously damaged Van 
City and its close vicinity on October 23rd, 2011. 

The purpose of the present contribution is to 
define and classify the seismogenic structures in 
the lacustrine deposits of the Lake Van Basin and 
to discuss the importance of these structures with 
respect to regional tectonics. 
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2. Geological setting 

Lake Van Basin is located on the East Anatolian 
Plateau that was formed by a collision between the 
Eurasian and Arabian Plates in the eastern Medi-
terranean region (including Turkey) (Şengör & Yıl-
maz, 1981) (Fig. 1A). The basin developed in the 
Late Pliocene and took its recent shape by the vol-
canism that was active during the Quaternary (De-
gens et al., 1984). The basement, consisting of Bitlis 
metamorphic rocks, Late Cretaceous ophiolites, and 
Tertiary deep-marine sediments (Van Formation), 
is unconformably overlain by Quaternary volcan-
ics and lacustrine sediments of the same age (Lake 
Van Formation). The basin infilling ends with Late 
Quaternary travertines and recent unconsolidated 
fluvial sediments (Acarlar et al., 1991).

Lake Van is the largest sodic lake in the world 
(Kempe et al., 1978). It originated 500 ka ago (Litt et 
al., 2009). The water level of Lake Van experienced 
significant fluctuations since its formation (Degens 

et al., 1978; Kuzucuoğlu et al., 2010). Ancient depos-
its of the lake occur also east of the lake, proving 
that it was previously larger than nowadays (Üner 
et al., 2010) (Fig. 1B).

The Lake Van Basin experienced tectonics dur-
ing the Plio-Quaternary (Koçyiğit et al., 2001). 
A N-S trending compressional regime, due to col-
lision between Arabian and Eurasian plates, is 
represented by E-W trending reverse faults, NW-
SE trending dextral and NE-SW trending sinistral 
strike-slip faults, and by N-S trending extensional 
structures (Şaroğlu & Yılmaz, 1986; Özkaymak et 
al., 2011; Koçyiğit, 2013). Several earthquakes with 
magnitudes of Mw≥5 have been recorded in the re-
gion during historical times, and also since they can 
be monitored, such as the Çaldıran Earthquake in 
1976 (Ms = 7.2) and the Van-Tabanlı Earthquake in 
2011 (Mw = 7.2), which are the best known. 

3. Types of seismogenic deformation 
structures 

The seismogenic deformation structures dealt 
with in the present contribution have been inves-
tigated for their genesis and morphological fea-
tures; on this basis they are divided into three ma-
jor groups, viz. fluid-escape structures, contorted 
structures, and other structures (such as disturbed 
layers and slump structures). 

3.1. Fluid-escape structures

Fluid-escape structures are formed by upward 
movement of pore water and/or fluidised uncon-
solidated sediment. Layers with laterally ongoing 
deformation structures of this type, intercalated be-
tween non-deformed beds, point at fluidisation due 
to earthquake-induced shock waves of sufficient 
magnitude. These structures are subdivided here 
on the basis of their morphology into dish and pil-
lar structures, flame structures and associated load-
casts, and sand volcanoes. 

3.1.1. Dish and pillar structures 
Dish and pillar structures occur in both sandy 

and silty lacustrine deposits around Lake Van. 
Dish structures are present as concave-upwards 
bent layers (Fig. 2A). The individual dishes vary in 
width from 10 cm to 1 m. The dishes are separated 
from each other by pillars. These pillars can reach 
a  height of 50 cm. They may be vertical or some-
what inclined (Fig. 2B). 

Fig. 1. Setting of the study area.
A: Location map of Lake Van and study area; B: Sim-
plified geological map showing the active faults and 
lacustrine deposits in the Lake Van Basin (modified 
from Acarlar et al., 1991; Koçyiğit et al., 2001; Üner et 
al., 2010; Koçyiğit, 2013). 
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The dish structures originated because of the lo-
cal upward movement of pore water; this upward 
movement resulted in upward bending of the sed-
iment at both sides (cf. Van Loon & Mazumder, 
2011). In between the dishes, pillar structures were 
formed (Lowe 1975). The variable shape of the dish 
structures must be ascribed to differences in the ve-
locity of the upward flowing water/sediment mix-
ture and/or the degree of consolidation. Dish and 
pillar structures have commonly been described 
from seismites (Plaziat & Ahmamou, 1998; Moretti 
et al., 1999; see also Perucca et al., 2014, this issue). 

3.1.2. Flame structures and associated loadcasts 
Flame structures also occur in both sandy and 

silty sediments of Lake Van. These structures occur 
most commonly at the boundary between silty and 
sandy layers (see also He et al., 2014, this issue). The 

flames are separated from one another by loadcasts, 
which may show a  lateral component, which con-
sequently also holds for the flame structures in be-
tween (Fig. 3). The flames tend to have a relatively 
wide basal part, from where the thickness dimin-
ishes upwards (Fig. 3A). The structures vary in size 
from a few to 30 cm. 

The flame structures are genetically closely re-
lated to the adjacent loadcasts, as loadcasts are com-
monly ascribed to conditions (e.g. reversed density 
gradients) that favour sagging, the most common 
explanation for flames is that they are formed be-
cause sediment is pushed upwards between sag-
ging loadcasts. The flames then are a  ‘byproduct’ 
of the loadcasts. In the sediments under study 
here, however, it seems that the loadcasts are the 
‘byproduct’ of the flames, which originated be-
cause of an upward injection of silty sediments into 

Fig. 2. Dish and pillar structures in lacustrine deposits of Lake Van. 
A: Dish structures with a clear concave-upward geometry; B: Dish structures separated by pillar structures.

Fig. 3. Flame structures in sandy and silty lacustrine deposits.
A: Thin, simple flame structures separating load casts from each other. Note the horizontal component; B: Complex 
flame structures bent into the same direction.
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fine-grained sandy sediments as a  result of lique-
faction due to an earthquake-induced shockwave. 
This has been described from numerous seismites 
(e.g. Visher & Cunningham, 1981; Dasgupta, 1998; 
Rodríguez-Lopez et al., 2007; Van Loon & Pisars-
ka-Jamroży, 2014). 

3.1.3. Sand volcanoes 
Sand volcanoes are present in modern lacus-

trine and flood-plain deposits of the Karasu River 
bed, due to the Van-Tabanlı earthquake (Mw = 7.2) 
which took place on October 23rd, 2011 (Fig. 4A). 
These structures occur along a  line and consist of 
coarse to fine-grained sand deposits. These cone-
shaped structures are about a  metre wide and 15 
cm in height. A craterpipe-like depression of about 
5 cm in diameter is located on the top of structure 
(Fig. 4B). 

Sand volcanoes are commonly formed by up-
ward extrusion of liquefied sands during an earth-
quake (Obermeier, 1996, 1998; Van Loon & Maulik, 
2011). The direction of the line of the sand volca-
noes can, however, not be associated with the fault 
direction that generated to Van-Tabanlı earthquake. 
The positions of the sand extrusions are therefore 
interpreted as resulting from the failure of a weak 
zone failure due to a  seismic shock coming from 
somewhere near the Karasu River. 

3.2. Contorted structures

The contorted structures are subdivided here in 
two categories: simple and complex convolutions, 
and ball-and-pillow structures. 

3.2.1. Simple and complex convolutions 
Contorted structures are present in silty and in 

coarse to fine-grained sandy lacustrine deposits, in 
the form of syncline-shaped structures (Fig. 5A, B). 
These structures sometimes form simple convolu-
tions and in other cases complex convolutions (see 
also Sarkar et al., 2014, this issue). The simple con-
volutions have a simple geometry (Fig. 5A), where-
as complex convolutions are characterised by disor-
ganised internal lamination (Fig. 5B). The structures 
are up to 130 cm wide and 70 cm high.

The complex convolutions with their large 
trough-like outer boundary and their circular to 
semi-circular laminae inside are interpreted to have 
formed by plastic deformation due to liquefaction. 
The presence of undisturbed layers above and be-
low the convoluted structures indicates a  seismic 
origin for these structures (cf. Rossetti, 1999; Rod-
riguez-Pascua et al., 2000). Furthermore, the exist-
ence of more than one bend in the central part of the 
contorted structures suggests that this layer was af-
fected by more than one earthquake (cf. Bhattachar-
ya & Bandyopadhyay, 1998). 

3.2.2. Ball-and-pillow structures
The ball-and-pillow structures under study are 

characterised by spherical or semi-spherical sand 
bodies within silt-sized sediments (Fig. 6). Some 
of the structures are connected with each other, 
whereas others are isolated. The structures show 
internal lamination and have often an outermost 
layer of silt. The structures are up to 26 cm wide 
and 12 cm thick. 

The structures are interpreted to have formed by 
partial liquefaction as the result of the aggregation 

Fig. 4. The sand volcano that formed due to the Van-Tabanlı earthquake (Mw = 7.2) on October 23rd, 2011 (from Alan 
et al., 2011).
A: overview; B: Detail with the crater on top of structure.
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of unconsolidated sands during a seismic shock (cf. 
Hempton et al., 1983; Ringrose, 1989; Rossetti, 1999; 
Rodriguez-Pascua et al., 2000). 

3.3. Other structures 

The disturbed structures occur in the lacustrine 
facies where fine sand and silt alternate. The thick-
ness of these layers, which are sandwiched between 
undeformed layers, ranges from 2 to 10 cm. Later-
ally these layers pass into undeformed beds (Fig. 
7). The structures are interpreted to have formed 
by ductile deformation induced by seismic shocks 
shortly after deposition (cf. Rossetti, 1999); breccia-
tion, a  process that is commonly associated with 
earthquakes (see Van Loon, 2014b, this issue) has, 
however, not been observed. The alternation of dis-
turbed layers with undeformed strata is character-
istic for deformation-susceptible sediments in areas 
where seismic shocks are not exceptional events. 

Slump structures occur in the silty and clayey 
distal parts of the delta prograding into Lake Van. 
The slumped sediments rest unconformably on 
horizontal layers and the upper part of the slumped 
layer overlain by undeformed clay and silts. The 
maximum thickness of the slumps is 45 cm (Fig. 
8). Slump structures can originate on oversteep-
ened slopes or due to overload-induced failure or 
by plastic deformation as a result of seismic shakes 
(Rodriguez-Pascua et al., 2000). They can occur on 
very slightly inclined slopes, and the presence of 
slumps on low-gradient slopes has been attribut-
ed to seismic activity by several researchers (e.g. 
Moretti & Sabato, 2007).

4. Discussion 

The deformation of unconsolidated sediments 
requires a  trigger. Well documented triggers in-
clude overpressure due to the accumulation of sed-
iment (Lowe, 1975; Van Loon et al., 2013), storm 
waves (Molina et al., 1998; Chen et al., 2009a, 2009b; 
Chen & Lee, 2013), water-level fluctuations (Spence 
& Tucker, 1997; Chen et al., 2011) and seismic shocks 
(Seilacher, 1969; Lowe, 1975; Sims, 1975; Rosset-
ti, 1999; Rodriguez-Pascua et al., 2000; Bowman et 
al., 2004). Deformation structures in the lacustrine 
deposits of Lake Van were most probably not in-
duced by water-level fluctuation, sediment load or 
storm waves, because there is no sedimentological 
or stratigraphical evidence for such processes such 
as hummocky cross-lamination, disorganised grav-
el or uncommon event deposition.

The deformation structures under study satisfy 
all regional, sedimentological and tectonic criteria 

Fig. 5. Convolutions in the lacustrine deposits of Lake Van. 
A: Simple convolutions; B: Complex convolutions.

Fig. 6. Spherical and semi-spherical ball-and-pillow struc-
tures in a silty lacustrine seismite of Lake Van. Note 
the undisturbed under- and overlying layers.
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of seismites (Sims, 1975; Obermeier, 1998; Bowman 
et al., 2004). These are: (1) the deformation struc-
tures form within a seismically active basin, (2) de-
posits are susceptible to liquefaction, (3) layers with 
deformation structures show lateral continuity, (4) 
cyclic repetitions of deformation structures (Fig. 
9A, B), (5) the deformed beds are separated by un-
deformed levels, (6) there is no evidence for slope 
failure, (7) the deformation structures show many 
similarities to those recognised as seismites in mod-
ern deposits or in ‘seismic’ experiments. Although 
general agreement exists regarding the usefulness 
of these criteria, it should be kept in mind that they 
should be applied only if the geological context 

Fig. 9. Cyclic repetitions of seismogenic deformation structures in lacustrine deposits of Lake Van. 
A: Schematic log; B: Exposure in the field. 

Fig. 7. Disturbed layers laterally pass-
ing into undeformed layers. Black 
arrow indicates the undeformed 
parts.

Fig. 8. General view of the slump structure in very slight-
ly inclined prodelta sediments.
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does not provide counter-arguments (Moretti & 
Van Loon, 2014)

Soft-sediment deformation structures have been 
classified in various ways (Lowe, 1975; Rosset-
ti, 1999; Rodriguez-Pascua et al., 2000; Van Loon, 
2002, 2009). Most of these classifications were pre-
pared by evaluating the origin, formative mech-
anisms and morphological features. In this study, 
the soft-sediment deformations in the seismites are 
classified into three categories based on morpho-
logical features and the interpreted deformation 
processes (fluid-escape structures, contorted struc-
tures, and other structures). 

Several studies deal with the question at which 
magnitude of an earthquake and at what distance 
from the epicentre seismites can originate. The com-
monly accepted opinion is that liquefaction can be 
induced by earthquakes with magnitudes > 5 and 
that seismites then can come into being (Allen, 1986; 
Scott & Price, 1988). How far away from the epicen-
tre seismites can still originate has been the subject 
of only few studies, however. Scott & Price (1988) 
came to the conclusion that an earthquake with 
a magnitude of 7 can cause liquefaction in an area 
with a distance of 20 km from the epicentre. A max-
imum distance of 100 km would, however, be possi-
ble for earthquakes with magnitudes >8 according 
to other studies (Galli & Meloni, 1993; Moretti et al., 
1995). The influence of the depth of the earthquake 
is, however, usually overlooked in such investiga-
tions: a deep earthquake will not have the same ef-
fect as a shallower one. Sand volcanoes formed due 
to the Van-Tabanlı Earthquake (Mw = 7.2) on Octo-
ber 23rd, 2011 up to 21 km away from the epicentre. 

5. Conclusions 

Based on their shapes, sizes, and locations the 
soft-sediment deformation structures in the lacus-
trine seismites of Lake Van Basin were divided into 
three groups: fluid-escape structures, contorted 
structures, and other structures. 

Lake Van Basin formed in a  tectonically active 
region. Seismites formed within sandy, silty and 
clayey lacustrine deposits are present at different 
levels west and north of the basin. The widespread 
occurrence of seismites at different levels indicates 
that the Lake Van Basin and its close vicinity were 
subject to frequent earthquakes with magnitudes ≥5 
during the Late Quaternary. Taking the locations of 
these seismites and faults in the region into con-
sideration, it must be deduced that several faults 
caused the shocks that led to the origin of the seis-
mites. 
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