
1. Introduction

Iran consists of several structural/metallogenic 
belts that host world-class metallic deposits, espe-
cially Cu. The major Iranian Cu mineralized belt is 
the Uremia-Dokhtar Magmatic Arc (UDMA) with 
an extension between the northwesterly and south-
easterly parts of the country (Berberian & King, 
1981; Alavi, 1994). It hosts porphyry-Cu deposits 
such as Sar-Cheshmeh, Meiduk, Darreh-Zar, Dar-

ralou, Baghkhooshk, Kuhpanj and Sarkuh (McInnes 
et al., 2005; Alipour-Asll, 2019) and related types of 
copper mineralization types, especially Manto-type 
Cu deposit and vein mineralization (Aghazadeh 
et al., 2015; Rezaei et al., 2015; Jebeli et al., 2018). 
However, volcanic-hosted, strata-bound Cu de-
posits named “Manto type” are explored in many 
parts of the UDMA and other structural zones, as 
depicted in Figure 1 (Samani, 1998; Boveiri et al., 
2013; Abolipour et al., 2015; Maghfouri & Movah-
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Abstract

The Kushk-e-Bahram Manto-type Cu deposit is located in central Iran, within Eocene to Oligo–Miocene volcanic strata 
which occur in the central part of the Uremia-Dokhtar Magmatic Arc (UDMA). Propylitization, silicification, argilliza-
tion and carbonatization are the main types of alteration to have affected the pyroclastic and volcanic rocks. There are 
high amounts of oxide minerals, including malachite, azurite, hematite, magnetite and goethite. Three types of primary 
FIs have been determined in the Kushk-e-Bahram deposit, namely; I: two-phase liquid-rich FIs (L+V), II: mono-phase 
liquid FIs, III: two-phase vapour-rich FIs which have been identified based on petrographical studies. Based on FI stud-
ies of co-existing quartz and calcite, homogenization temperatures (Th) must have been between 67 and 228°C, with 
an average of 158°C. Moreover, salinity is between 14.0–30.3 wt% NaCl, equivalent to a 19.6% average. Fluid density 
values vary from 0.8 to 1.1 gr/cm3. Based on FI data and related diagrams, the depth of their trapping was estimated to 
be <200 m and ore formation occurred at pressures of <50 bars. Consequently, mineralogy, host rock and FIs character-
istics in the Kushk-e-Bahram deposit are similar to the Manto-type Cu deposits in Mesozoic-Cenozoic volcanic belts of 
Iran and South America.
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ednia, 2015; Salehi & Rasa, 2016; Rajabpour et al., 
2017). The Manto-type deposits have high-grade 
Cu and are suitable for ore excavation. Since 2000, 
many Manto-type Cu deposits have been studied 
and explored such as Buena Vista, Susana-Linace, 
Mantos de La Luna and El Soldado in Chile (Boric 
et al., 2002; Kojima et al., 2003, 2009). These depos-
its are the second largest copper resources of Chile, 
after its huge porphyry-Cu deposits (Wilson & Zen-
tilli, 2006). Campus (1980) differentiated Mesozoic 
Manto-type Cu mineralization into two classes, in-
cluding sediment-hosted (e.g., Carrillo-Rosua et al., 

2014) and volcanic-hosted (e.g., Wilson & Zentilli, 
2006; Ramirez et al., 2006).

The most important Iranian Manto-type Cu de-
posits are the Kesht Mahaki (Boveiri et al., 2013), 
Abbas-Abad (Maghfouri & Movahednia, 2015; Sale-
hi & Rasa, 2016), Veshnaveh, Kashkouieh, Kuh-Pang 
and Narbaghi in the UDMA (Abolipour et al., 2015; 
Fazli et al., 2015; Rajabpour et al., 2017), Varzag (Al-
izadeh et al., 2013) and Ghare-Tappeh (Karami & 
Afzal, 2015), Mari (Maghfouri et al., 2016) and Kus-
hk-e-Bahram (Jebeli et al., 2018) (Fig. 1). The Iranian 
Manto-type Cu deposits occur inside Eocene volca-

Fig. 1. Geological map of the Kushk-e-Bahram deposit (by Kazemi Mehrnia, 2012)
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no-sedimentary sequences. The Eocene–Oligocene 
volcanic lithology in the Saveh district, about 104 
km southwest of Tehran, hosts several Cu deposits 
within the NW–SE belt (Samani, 1998; 2003; Ghaderi 
et al., 2016) (Fig. 1).

Fluid Inclusion (FI) studies are essential tools for 
determination of the physicochemical conditions of 
the ore-forming processes in various copper depos-
its (Beane & Bodnar, 1995; Richards, 2015). In the 
present paper, data obtained from FIs have been 
collected and analysed for micro-thermometric 
characteristics in the Kushk-e-Bahram strata-bound 
deposit. The results obtained by FI have been inter-
preted and compared with other Manto-type Cu 
deposits in Iran and Latin America. The purpose of 
the present study is to determine ore genesis and 
hydrothermal evolution of the Kushk-e-Bahram Cu 
deposit on the basis of fluid inclusion studies and 
correlation with ore mineralogy, ore texture and 
structure and alteration zones.

2. Regional geological setting and 
geology of the Kushk-e-Bahram 
deposit

2.1. Geological characteristics

The UDMA is composed mainly of voluminous vol-
canic successions with minor intrusions that were 
emplaced during the Neo-Tethyan subduction under 
the Central Iranian Terrain (Berberian & King, 1981; 
Alavi, 1994; McQuarrie et al., 2003). The UDMA is 
part of the Alpine-Himalayan orogenic belt which is 
connected to the magmatic belts in Turkey and Pa-
kistan (Shafiei et al., 2009; Haschke et al., 2010; Ag-
hazadeh et al., 2015; Richards, 2015; Imer et al., 2016).

Most of the volcano-plutonic rocks in the UDMA 
were formed during the Late Paleocene and Late Eo-
cene (McQuarrie et al., 2003; Zarasvandi et al., 2015). 
This magmatic belt contains andesites, trachy-an-
desites, subordinate basalts, latites, dacites and in-
trusive rocks consisting of monzonite, granodiorite, 
quartz diorite and quartz monzonite with ages be-
tween 50–35 Ma (Alavi, 1994; Richards, 2015).

This belt hosts the main porphyry deposits of 
Iran, in particular Sarcheshmeh, Sungun, Meiduk 
and Kahang (e.g., Shahabpour & Kramers, 1987; 
Hezarkhani, 2006; Afzal et al., 2010; Richards, 2015; 
Alirezaei et al., 2017). However, there are other 
types of copper deposits such as epithermal, cop-
per veins and Manto-type deposits, especially in 
the UDMA central section. Many plutonic/volcanic 
bodies exist in the Saveh region and the central part 

of the UDMA (Rezaei-Kahkhaei et al., 2011; Rezaei 
et al., 2015; Rajabpour et al., 2017). There are several 
Manto-type Cu occurrences within the volcanic and 
pyroclastic rocks.

2.2. Geology of the Kushk-e-Bahram deposit

Copper mineralization in the Kushk-e-Bahram 
deposit occurs as veins within Eocene-Oligocene 
volcanic rocks hosted by pyroclastic and andesit-
ic units (Jebeli et al., 2018). The main mineralized 
veins are hosted by andesites and rhyolites. The 
geological characteristics of the Kushk-e-Bahram 
deposit, including its host rocks, mineralization ge-
ometry, ores and hydrothermal alteration zones re-
semble Manto-type Cu mineralization elsewhere in 
the Saveh region (Rajabpour et al., 2017; Jebeli et al., 
2018). Several works, inclusive of geological map 
generation, XRD and XRF analysis, petrographical 
and mineralographical studies, have been carried 
out in this area. In the past, there were some small-
scale mining activities; currently, exploration is un-
der way. In addition, there are nine boreholes for 
subsurface exploration (Jebeli et al., 2018).

On the basis of geological data, including surface 
and subsurface data for this deposit, the main rock 
types are pyroclastic tuff, andesite tuff and pyro-
clastic andesites (Fig. 1). The quartz-suphide veins 
are small and include chalcopyrite, pyrite and bor-
nite, whereas the gangue minerals include calcite, 
quartz, chlorite and sericite. In addition, oxidized 
copper ores, characterised by malachites and minor 
azurite, occurs in veins in this area. Ore textures 
include microgranular, intergranular, porphyritic, 
glomeroporphiritice, microporphyritic, microlithic, 
spheroidal, vein-veinlet, open-space filling, replace-
ment and laminated, coloidal and comb textures.

This Manto-type Cu deposit occurs within Eo-
cene-Oligocene volcanic rocks of the UDMA and 
regional faults consisting of the Takhte-Chaman, 
Abbas-Abad and Kushk-e-Nosrat affected this min-
eralization (Fig. 1). The trend of the major faults is 
WNW to ESE, with several associated small faults 
trending NW to SE (Amidi et al., 2006).

2.3. Mineralization

The Kushk-e-Bahram deposit is strata bound and oc-
curs within the upper member of the Eocene volcanic 
series. Cu and Ag means are equal to 6310 ppm and 
0.263 ppm, respectively (Jebeli et al., 2018). Major ore 
minerals are chalcopyrite, chalcocite, bornite, covel-
lite and digenite. Main and high-grade ore bodies 
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are related to hydrothermal breccias which are asso-
ciated with silicic and argillic alteration zones. These 
breccias consist of hydrothermal features with a ma-
trix that is composed mainly of ore/gangue minerals 
and altered angular to subrounded rhyodacite frag-
ments (Fig. 2F). Low-grade copper mineralization 
extends from structures into the altered host rocks 
as fillings of voids. Three mineralization stages have 
been recognised in the Kushk-e-Bahram deposit. In 
the first stage, pyrite formed under decreasing con-
ditions in the host rock. In the main mineralization 
(i.e., second) stage, pyrite was replaced by primary 
copper sulphide minerals such as chalcopyrite and 
bornite. Finally, in the third (supergene) stage, cop-
per sulphide minerals were replaced by secondary 
copper sulphide minerals (chalcocite, covellite and 
digenite) and oxide minerals (malachite, azurite, 
goethite and hematite).

2.4. Alteration

The main mineralized zones are associated with 
high intensity silicification which extends into the 
rhyolitic and andesitic rocks. Silicification consists 
of quartz and local advanced argillic alteration. 
They are surrounded by an intermediate argillic 

alteration zone. These quartzs consist of a ground-
mass of microcrystalline anhedral to subhedral 
grains with disseminated pyrite, chalcopyrite and 
bornite (Fig. 2A–C). The argillic alteration includ-
ing kaolinite, pyrophyllite and dickite, is extensive 
within the mineralized zones. This generated sec-
ondary porosity in the form of irregular voids and 
cavities, which are generally infilled by alunite, 
pyrite, chalcopyrite, bornite and barytes (Fig. 2D). 
Petrographical studies show that this material is 
an admixture of alunite with quartz, dickite and 
kaolinite/pyrophyllite. There are hydrothermal 
disseminations of secondary quartz crystals with 
comb texture and quartz aggregates were replaced 
instead of feldspar phenocrysts (Fig. 2E). Carbon-
atization alteration developed in the form of both 
carbonate veins and fine-grained disseminated car-
bonates in all host rocks (Fig. 2F). Propylitic alter-
ation is present throughout the Kushk-e-Bahram 
deposit with replacement of mafic minerals by chlo-
rite, as depicted in Figure 2F.

2.5. Paragenetic sequence

The initial hydrothermal activity included argillic 
alteration and deposition of pyrites and chalcopy-

Fig. 2. A – Association of intergranular quartz grains with disseminated pyrite and chalcopyrite; B – Quartz crystals in 
vesicular texture; C – Secondary quartz crystals in comb texture; D – Fine-grained sericite crystals along fractures 
with pyrite and chalcopyrite; E, F – Replacement of plagioclase crystal with calcite. Abbreviations: Cal = calcite, Cc = 
chalcocite, Goe = goethite, Plg = plagioclase, Qtz = quartz, Ser = sericite, Azu = azurite
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rites. The chalcopyrite replaced pre-existing pyrite 
and also it was replaced by Cu-rich ores especially 
bornite and chalcocite at this stage. The major min-
eralization stage was followed by an overprint of 
the propylitic alteration zone. The process of super-
gene enrichment created an extensive replacement 
of sulphidic copper minerals by malachite, azurite 
and oxidic copper ores (Jebeli et al., 2018) (Table 1).

3. Analytical methods

In the present study, fluid inclusion (FI) micro-ther-
mometric characteristics have been analysed on 
the basis of eight samples collected from the silicic 
ore-bearing veins of drill cores in the Kushk-e-Bah-
ram deposit. Eight double-polished sections (100 
μm thickness) have been selected as based on sul-
phide-quartz veins in cores within andesitic and 
pyroclastic rocks. These samples have been pre-
pared for micro-thermometric analysis in order to 
achieve a preliminary estimate of the temperatures 
and salinities of the ore-forming fluid. Convention-
al methods (Roedder, 1971) and a Linkam THMS 
600 heating-freezing stage (between −196°C and 
+600 °C) installed on an Olympus TH4-200 micro-
scope stage have been used in the Mineral Process-
ing Research Centre (IMPRC) at Karaj (Iran). The 
precision is estimated to be ± 0.2°C on freezing, ± 

2°C below −94.3°C and about ± 6°C above +414°C 
for heating. This stage has been calibrated at low 
temperatures with n-Hexane (−94.3°C) and calibra-
tion at (+414°C) by Cesium nitrate. The FI salinity 
was calculated by the final ice melting temperature 
(Tmice) and formula of Bodnar (1993).

4. Discussion and results

4.1. Fluid inclusion types and occurrence

Roedder (1984) and Shepherd et al. (1985) classified 
FIs into primary, secondary and pseudo-secondary. 
The FIs formed in quartz crystals were delineated 
both as primary in origin, and secondary occurring 
in micro-fractures of the quartz veins which collect-
ed from mineralized cores (Roedder, 1984; Esmaeli 
et al., 2015). The results obtained by petrographical 
data, microthermometric studies and phases detect-
ed at room temperatures indicate three types of Fis 
in these samples. These samples have been collect-
ed from andesitic and rhyolitic rocks with sulphidic 
minerals, including pyrite, chalcopyrite, covellite 
and chalcocite. The FIs types are expressed in the 
following forms (Fig. 3):
 – I: two-phase liquid-rich (L + V)
 – II: mono-phase liquid
 – III: two-phase vapour-rich (V+L).

Table 1. Mineral assemblages and paragenetic sequence in the Kushk-e-Bahram deposit

Minerals/Texture

Pre- 
Mineralization Mineralization Post-Mineralization

Volcanism
Diagenesis Supergene

Early Late Sulphide Oxide

M
in

er
al

s 

Bornite
Chalcocite
Chalcopyrite
Covellite
Digenite
Hematite
Azurite
Malachite
Zeolite
Calcite
Chlorite
Pyrite
Silica

Te
xt

ur
es

Disseminated
Vein-Veinlet
Open Space 
Filling
Replacement
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Type I FIs are more abundant (≈ 85%) than the 
other types in the quartz veins of the study area. 
The liquid volume of type I FIs are between 75 and 
80% of their content. The FIs featured in both irreg-
ular and regular shapes such as ellipsoids with siz-
es of 5–20 μm (maximum dimension) without any 
differences for salinity, homogenization tempera-
tures and gas/liquid ratio.

4.1.1. Fluid inclusion petrography
The Fluid Inclusion Assemblage (FIA) method is 
applied on quartz (Qz) samples in order to calcu-
late temperatures during formation of the depos-
it. Two types of Fis have been investigated in the 
Kushk-e-Bahram deposit: liquid-rich (LV) and va-
pour-rich (VL) at room temperatures, without de-
tectible CO2 or CH4. Primary FIs are scattered along 
growth zones and denote the fluid from which the 
host mineral precipitated, as depicted in Figure 3. 
Inclusions introduced to be pseudo-secondary FIs 
are inaccessible or existed in clusters along trails 
in random distribution. Furthermore, these FIs 
occurred within crack planes that end abruptly 
against grain boundaries (Fig. 3A–F). About 90% of 
the FIs are of the LV type. They were generated in 
rounded shapes and negative crystal in many cases 
but some of them have polygonal shapes, includ-
ing irregular to tabular, as illustrated in Figures 

3A–B. The LV inclusions, with 60 to 90 vol% of liq-
uid at room temperatures, homogenise to a liquid 
phase. The LV type has been observed in quartz 
and calcite. A co-existence of the VL and LV types 
would indicate that boiling occurred generally, as 
depicted in Figure 3D–F. Micrometric measure-
ments have been performed on the LV FIs. It shows 
necking down and leakage which did not occur 
and had almost the same ratio. The VL inclusions 
contain 70–90 vol% vapour bubbles with rounded 
shapes (oval and elongate), ranging in sizes be-
tween 5 and 25 μm inclusion and homogenise to a 
vapour phase.

4.2. Microthermometry results

The Fis of Type I were homogenised to a liquid 
state at temperatures between 67 and 228°C (with a 
mean of 158°C), as documented in Table 2 and Fig-
ure 4. The salinity values varied between 14.0 and 
30.3 wt% equivalent of NaCl (see Fig. 5). The first 
ice melting temperatures (Te) were between −45 
and −60°C, with a mean of −54°C. Based on these 
temperatures, these Te/Tfm data do not reflect the 
H2O-NaCl system. The Te of H2O-NaCl is −21.2°C. 
Furthermore, below −49°C the dominant compo-
nents are Mg and Ca, which accompany Na (Shep-

Fig. 3. Photomicrographs of fluid inclusion assemblages (FIs) of the three stages of mineralization (at room tempera-
tures, in plane-polarized light)
A – Primary two-phase liquid-rich (L > V) FIs hosted by quartz; B, C – Co-existing primary vapour- and liquid-rich 
FIs in quartz, indicating boiling; D – Densely distributed pseudo-secondary liquid-rich type inclusions restricted 
to recrystallized quartz and primary two-phase liquid-rich (L > V) FIs; E – Primary two-phase liquid-rich fluid 
inclusion hosted by quartz; F – Pseudo-secondary liquid-rich type inclusions trapped in quartz (L > V) FIs. Abbre-
viations: L = liquid, V = vapour, PS = pseudo-secondary fluid inclusions
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herd et al., 1985). Furthermore, this temperature is 
close to eutectic temperatures of H2O–NaCl– CaCl2 
(Shepherd et al., 1985). In addition, these Te values 
have revealed the presence of Na+ and Ca2+ as ma-
jor cations in the ore-forming fluid with Cu2+. Type 
II inclusions are very low in samples; there are no 
microthermometric data.

4.3. Evolution path of ore-forming fluids and 
deposition mechanism

Mixing and boiling processes can be introduced as 
major factors in controlling fluid evolution for ore 
deposition in this deposit (Fig. 6). One of the essen-
tial pieces of evidence for boiling is the existence 
of FIS of types I and III in these samples (Roedder, 
1984; Calagari, 2004; Yao et al., 2012). Moreover, flu-

id mixing (Simmons et al., 2005) and cooling (Ulrich 
et al., 2002; Redmond et al., 2004) could be another 
important factor for copper deposition based on a 
high range of salinities and Th (Oyarzun et al., 1998; 
Wang et al., 2013). Based on homogenization tem-
peratures (Th) and salinities, the density of fluids 
varied between 0.8 and 1.1 gr/cm3 and increased in 
direct relationship with salinity values (Roedder, 
1984).

The boiling represented by microthermometric 
data in ore fluids is crucial for the determination 
of predominant pressure and temperature during 
the ore formation process. Low temperatures have 
been detected in a quartz sample as 67, 83 and 89°C. 
Furthermore, mono-phase fluid inclusion associat-
ed with necking off has been seen in a single sample 
only; this is not proper for detection of temperature. 
The total pressure determined from fluid inclusion 
may be hydrostatic, derived via the weight of the 
column of overlying fluid. This pressure can be 
lithostatic, as obtained by the weight of the over-
burden. The pressure for aqueous inclusions with 
a NaCl solution was discussed by Roedder (1980). 
Vapour pressure for fluid has been determined to 
be less than 50 bars, according to the wt% of salinity 
and Th diagram (Ramdohr, 1980) (Fig. 7A). The flu-
ids with low pressure indicate most likely a shallow 
environment under hydrostatic conditions. Howev-
er, the depth of entrapment of Fis is lower than 200 
metres, as based on the diagram of Haas (1971) (see 
Fig. 7B). If fluid denotes boiling conditions, assum-
ing a hydrological system that is accessible to the 
surface, vapour pressure can be used to estimate 
the trapping depth, as shown in Figure 2. Based 
on this assumption, the depth of the FIs trapping is 
lower than 200 metres.

Fig. 4. Histogram of homogenization temperatures of flu-
id inclusions in quartz of the Kushk-e-Bahram deposit

Fig. 6. Correlation between salinity and homogenization 
temperature, showing boiling and isothermal mixing 
for ore-forming processes

Fig. 5. Histogram of salinity of fluid inclusions in quartz 
of the Kushk-e-Bahram deposit

Table 2. Microthermometric results of FIs from the Kushk-e-Bahram Cu deposit
Salinity (wt% NaCl)ThTmTeOriginTypeSize (µm)Host mineral

13.9–30.2967–228−10 to −42.5−45 to −60PrimaryLiquid+vapor5–35Quartz
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4.4. Comparison between FI characteristics 
of Kushk-e-Bahram and Manto-type Cu 
deposits

At this stage, the particulars of the FIs from the 
deposit studied are compared with several Man-
to-type Cu deposits in Iran and Latin America, in-

cluding Madan Bozorg in northeast Iran (Salehi & 
Rasa, 2016) and Chilean deposits including Buena 
Vista, El Soldado, Suasana-Lince and Mantos de 
la lona (Boric et al., 2002; Kojima et al., 2003, 2009) 
(Fig. 8; Table 3). The homogenization temperature 
in Manto-type Cu deposits changes from 64° to 601° 
(Kojima et al., 2003); these deposits have low pres-
sure conditions close to the boiling curve. Evidence 

Fig. 7. A – Diagrams for vapour pressure of FIs on the basis of salinity and homogenization temperature (graph from 
Romdohr, 1980); B – Depth of FIs trapping (graph from Hass, 1971)

Table 3. Comparison of the Kushk-e-Bahram Cu deposit and Chilean Manto-type deposits

Deposit characteristics Chilean Manto-type Cu deposits Kushk-e-Bahram Cu deposit
Age of sequence Jurassic – Lower Cretaceous Late Eocene
Tectonic setting Back-arc basins, island-arc, continental-arc Back-arc basins
Depositional environment Shallow marine, submarine, subaerial Shallow marine, submarine, volca-

nic  
Age of mineralization Epigenetic Epigenetic
Host/associated rock types Amygdaloidal andesite flow, basaltic lava Andesitic basalt, andesitic tuff and 

rhyolite, tuff, latite andesite
Deposit form Vein-veinlets, strata-bound (restricted to particu-

lar units)
Strata-bound, vein-veinlets restrict-
ed to andesite, but discordant to the 
strata

Texture Disseminations, open-space fillings, veins and 
replacement textures

Disseminations, open-space fillings, 
veins and replacement

Ore mineralogy Chalcocite, bornite, chalcopyrite, pyrite, hema-
tite, native copper

Pyrite, chalcopyrite, chalcocite, cov-
ellite, bornite, , hematite

Gangue mineralogy Calcite, quartz, epidote, hematite, chlorite and 
zeolite

Calcite, quartz, epidote, hematite, 
chlorite (zeolite)

Alteration Silicification, sericitization, proplylitic and car-
bonates

Proplylitic, argillic, sericitization, 
carbonates

Genesis 1 – Syngenetically formed volcanogenic deposits; 
2 – Epigenetically formed by magmatic emana-
tion of associated plutonic intrusions; 
3 – Epigenetic - diagenetic 

Epigenetic – diagenetic

Homogenization 64–601°C (150–300°C) 67–228°C (158°C)
Salinities 1.5–62 (15–30) 14.0–30.3 (15–30)
References Wilson et al. (2003); Wilson & Zentilli (2006); 

Kojima et al. (2009)
Jebeli et al. (2017); this study
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of boiling has also been observed in Manto-type de-
posits. The salinity of these deposits is between 1.5 
and 62 wt% equivalent of NaCl. The Kushk-e-Bah-
ram Cu deposit indicates homogenization tempera-
tures between 67 and 228°C (with a mean of 158°C) 
and the salinity values vary between 14 and 30.3 
wt% equivalent of NaCl. Based on salinity and Th 
values, the Kusk-e-Bahram copper deposit is simi-
lar to Madan Bozorg and El Soldado, which are vol-
canic-hosted Manto-type Cu deposits (Fig. 8). The 
Th and salinity values of Kusk-e-Bahram deposit is 
like that of the Chilean deposits (see Table 3).

Most microthermometric data of fluid inclu-
sions from the Kushk-e-Bahram deposit plot in the 
basinal fluid field (compare Kesler, 2005) (Fig. 9). 
Therefore, the source can be the basinal fluid that 
led to copper mineralization by leaching the volcan-
ic rocks in the area.

5. Conclusions

The Kushk-e-Bahram Manto-type Cu deposit is 
strata bound and occurs in the central part of Ure-
mia-Dokhtar Magmatic Arc. The copper deposit 
contains ore-bearing quartz veins in Eocene to Ol-
igo–Miocene pyroclastic and volcanic rocks, espe-
cially tuffs and andesitic units. The main sulphide 
minerals are chalcopyrite, pyrite, bornite, chalcocite 
and covellite, which are accompanied by hematite. 
In the early stage of mineralization, pyrite formed 
in a reduction state in the host rock. In the main 
mineralization stage, pyrite was replaced by pri-
mary copper sulphide minerals such as chalcopy-
rite and bornite. Finally, copper sulphide minerals 
were replaced by secondary copper sulphide min-
erals and oxide minerals in the supergene stage. 
FIs data indicate homogenization temperatures of 
67 to 228°C with an average of 158°C and a salinity 
range between 13.99 and 30.29 (average, 19.5) wt% 
NaCl equivalent, with pressure and trapping depth 
lower than 50 bars and 200 metres, respectively. 
The results obtained by the FIs indicate that boiling 
and mixing can be the main factors for controlling 
of quartz and sulphide mineral precipitation. Fluid 
mixing could also have occurred, particularly in the 
late mineralization stage. The homogenization tem-
peratures and salinity of FIs suggest basin brains 
as probable source of mineralizing fluids. The fluid 
inclusion studies, copper mineral association with 
abundant gangue minerals and the development 
of alteration halos, including argillic, silicic and 
propylitic zones, suggest that the Kushk-e-Bahram 
deposit is best compared to Chilean Manto-type de-
posits.
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