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Abstract

Structural and petrographic study applied to the gneisses from the eastern part of the Orlica-Snieznik Dome, indicate
that two different types of gneiss are present. The Snieznik gneisses are porphyrithic granites, constricted and sheared
into L-S tectonites, most commonly with augens; the Gierattéw gneisses are sheared migmatites, porphyroblastic gneis-
ses and banded gneisses, with two sets of metamorphic foliation, intrafolial folds and lensoid leucosome aggregates or
metamorphic porphyroblasts. Both lithologies were later zonally sheared and transformed into more or less deforma-
tionally advanced mylonites, difficult to be distinguished from one of the two types. Identification of the Snieznik and
Gieraltow gneisses is possible only between zones of the late (Variscan) shearing, in which the original, pre-kinematic

structures are preserved.
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1. Introduction

The Orlica-Snieznik Dome is a tectonomet-
amorphic unit in between the West and East
Sudetes of Poland (NE Bohemian Massif).
The dome is built of various metasediments
(Mlynowiec-Stronie Formation) and gneisses,
divided into the Snieznik and Gierattéw types
(Fig.1). The shearing style and NE-SW orien-
tation of the Moldanubian Fault and Thrust
Zone, located at the eastern end of the Orlica-
Snieznik Dome (Fig. 1), is found in rocks of the
crystalline basement of the dome (Don et al.,
1990; Lange et al., 2002). This tectonic over-
print, which is related to a late stage of Var-
iscan orogenesis (Schulmann & Gayer, 2000),
caused unification of the gneisses in the region.
All lithologies can now be recognised as L-S/S-
L tectonites that are more or less advanced in

deformation. They macroscopically vary with
respect to the grain size, the colour of the rocks
and the presence of shear structures (Teis-
seyre, 1957; Borkowska, et al.,1990; Sawicki,
1995; Don et al., 2003). However, such features
are in themselves no reason to distinguish two
groups of gneisses.

Both types of gneiss have a similar min-
eralogical composition; the geochemical and
isotopic characteristics give the impression of
being identical (see the review in Lange et al.,
2005). Radiometric datings of zircons (Turniak
etal., 2000; Lange al., 2005) yielded two ages, in-
terpreted as the time of intrusion of a common
gneissic protolith (~500 Ma ago), and metamor-
phism which overprinted the older rocks exclu-
sively during the Variscan orogeny (~340 Ma
ago). Geochemical and isotopic convergence,
as demonstrated recently (Turniak et al., 2000;
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Fig. 1. Geological map of the
eastern part of the Orlica-
Snieznik Dome (modified

Lange et al., 2002, 2005), implies a similar prov-
enance and structural history of the Snieznik
and Gieraltow gneisses (Schulmann & Gayer,
2000; Aleksandrowski & Mazur, 2002; Don et
al., 2003). The original distinction between the
gneisses in the Orlica-Snieznik Dome became
even more complicated and was finally aban-
doned (Gawlikowska & Opletal, 1997). This tec-
tonometamorphic model, which seems coherent
at first sight, cannot be proven in the field, and is
even more difficult to prove in the Miedzygorze
‘transitional zone’ (Teisseyre, 1957), in which the
Snieznik and Gieraltéw gneisses alternate. Near
the village of Miedzygérze, Dumicz (1989) dis-
covered that some Gieraltow gneisses are older
whereas other occurrences are younger than the
Snieznik gneisses. Furthermore, the Gierattow
gneisses form isolated enclosures within the
Snieznik gneisses from this location (Teisseyre,
1957, 1964, 1980; Grzeskowiak & Zelazniewicz,
2002; Grzeskowiak, 2004).

after Don, 2001).

The gneisses occuring in the eastern part of
the Orlica-Snieznik Dome really differ from each
other with respect to their types and sequence of
deformation (recognizable at a macro-scale) as
well as regarding their petrographical charac-
teristics (recognizable at a micro-scale), so that
these features can be used as criteria to distin-
guish between them. The structural and petro-
graphical characteristics of the gneissic suite in
the Miedzygorze area are presented here with
the objective to demonstrate that the gneisses
that form the core of the Orlica-Snieznik Dome
have a different genesis and a more complex
tectonothermal evolution than in the commonly
accepted, simple Variscan model.

2. Previous studies

The gneisses of the Miedzygorze Antiform
have been studied ever since Fischer (1936) in-



Gierattéw versus Snieznik gneisses - what is the real difference? 73

troduced the first lithostratigraphical scheme.
He proposed an Early Proterozoic age for the
granite intrusion, which was contaminated
with material from the Archaean metasedi-
ments (Mlynowiec Formation) in which it
intruded, and became transformed into the
present-day Gieraltow gneisses. Another gran-
ite protolith of the Snieznik gneisses intruded
during the Caledonian orogenesis, subse-
quently metamorphosing the sediments of the
Early Palaeozoic Stronie Formation. Many au-
thors followed Fischer’s terminology but often
with meanings that differed from the original
one, and they placed the various rock units in
different stratigraphic orders, following their
own interpretation of origin and tectonometa-
morphic evolution. While a similar age (Early
Cambrian - Early Ordovician) and genesis
(back-arc basin) for the metasediments in the
Orlica-Snieznik Dome is commonly accepted
(Gunia, 1996; Koszela, 1997; Kroner et al., 2001;
Jastrzebski, 2005; Murtezi, 2006; Jastrzebski et
al., 2010), the geological interpretations of the
gneisses are controversial and differ widely.

Neither Smulikowski (1960, 1979) nor
Koztowska-Koch (1973) has found a genetic
or stratigraphic argument to distinguish be-
tween the Gierattow and Snieznik gneisses;
they considered the latter as an only more ma-
ture product of the metasomatic granitisation
of mica schists and paragneisses (Stronie and
Mlynowiec Series). Mapping of the Polish (Don,
1964; Don et al., 2003) and Czech (Opletal et al.,
1980; Gawlikowska & Opletal, 1997) parts of the
Orlica-Snieznik Dome resulted in a complete
reversal of the stratigraphic order. The Snieznik
gneisses became considered as “gneissification
product of the granite intruding into already de-
formed supracrustal Stronie Series” (Don, 1964).
Subsequent deformation and migmatisation of
both the Snieznik gneisses and the Stronie Series
resulted in the development of the youngest,
migmatitic Gieraltéw gneisses, which synkin-
ematically intruded both the Stronie Formation
and the Snieznik gneisses in the form of diapirs
(Don, 2001). A younger origin of the Gieraltéw
gneisses is supported by the existence of “transi-
tional zones” (smaller grain-size and lighter col-
ours) between the Snieznik and the Gierattéw
gneisses.

Based on field observations, Oberc (1957,
1972) and Dumicz (1988, 1989) demonstrated
that two types of the Gierattéw gneisses differ
in age: one is older and one is younger than the
Snieznik gneisses. The younger type has been
interpreted as zonally, dynamically deformed
and then recrystallised Snieznik gneiss. Ac-
cording to the fold classification of Dumicz
(1988), the two oldest group of folds have a N-S
orientation, while the overprinted folds (F3)
have a NW-SE direction. Further strain over-
printing occurred under a more brittle regime.
All these processes were assigned to the Varis-
can deformational event, which occurred un-
der conditions of amphibolite-facies metamor-
phism and local migmatisation (Borkowska,
1996). The complicated structural relationship
between the rocks of the Orlica-Snieznik Dome
was also pointed out by Teisseyre (1957, 1964,
1980), who reported the existence of isolated
enclosures of Gieraltow gneisses within the
Snieznik gneisses. A petrological study proved
the existence of several types of enclaves
within the Snieznik host rock (Grzeskowiak &
Zelazniewicz, 2002).

This complex relationship seems to be ig-
nored by most recent authors, who tend to
base their conclusions on geochemical and
isotope data. Kroner et al. (2001) and Lange et
al. (2002, 2005) found only exceptional differ-
ences in the geochemical composition of the
gneisses. They propose that the two groups of
gneisses derived from the same protolith, i.e.
one large batholith, and that the differences be-
tween them are due to later deformation and
migmatisation. However, earlier geochemi-
cal analyses (Borkowska et al., 1990) demon-
strated remarkable differences in the amount
of both major and trace elements (Si, Al, Mg,
Na and Ba, Sr). These data imply that either two
separate protoliths (Borkowska et al., 1990) or
one protolith that was chemically diversified
by intrusive processes (Borkowska, 1996).

Not only the genesis of the gneissic rocks
stands controversial. Also the time and char-
acter of their tectogenesis has raised confusion.
Some researchers held exclusively or predomi-
nantly Variscan events responsible (Dum-
icz, 1988; Smulikowski 1979; Teisseyre, 1964,
1980; Matte et al., 1990, Turniak et al., 2000,
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Schulmann & Gayer, 2000; Aleksandrowski
et al., 2000; Aleksandrowski & Mazur, 2002),
whereas others argue for some contribution
of pre-Variscan deformation, not everywhere
and not completely overprinted by the Varis-
can (Visean) event (Opletal et al., 1980; Don et
al., 1990; Oliver et al., 1993; Prikryl et al., 1996;
Franke & Zelazniewicz, 2000; Don, 2001; Kron-
er et al., 2001; Grzeskowiak & Zelazniewicz,
2002; Lange et al., 2002, 2005; Grzeskowiak et
al.,, 2005; Murtezi, 2006; Zelazniewicz et al.,
2006). Neither the traditional methods (Rb-Sr,
U-Pb, Pb-Pb applied to the whole rock or indi-
vidual minerals) nor U-Pb SHRIMP dating of
zonal zircons from the Orlica-Snieznik Dome
gneisses allow, however, to conclude the con-
troversy, because they provide evidence for
events both approx. 500 Ma and approx. 340
Ma ago (see Turniak et al., 2000; Lange et al.,
2005; Brocker et al., 2009). A Late Cambrian -
Early Ordovician intrusion, originated from
one large and chemically homogeneous batho-
lith, and diversified during the Variscan meta-
morphism and deformation seems now the
common interprepation. In fact, the Variscan
overprint is believed to be responsible for all
tectonometamorphic processes in the Orlica-
Snieznik Dome, such as migmatisation, myloni-
tisation and tectonic emplacement of eclogites
into the gneissic environment (e.g. Schulmann
& Gayer, 2000; Lange et al., 2002; Brocker et al.,
2009).

3. Analytical techniques

In order to establish diagnostic differences
between the Gierattéw and the Snieznik gneiss-
es, field and laboratory studies were carried
out, dealing with the structure, mineralogy and
petrography of the gneisses in the eastern part
of the Orlica-Snieznik Dome. Particular empha-
sis was put on the ‘transitional zone” around
Miedzygoérze (Fig. 1), in which the two types
of gneisses alternate with each other. Field ob-
servations were focused on the minerals” rela-
tionships and the kinematics of deformation.
The array and orientation of the mesostruc-
tures were examined in order to reconstruct

the chronology and direction of successive de-
formation events. The regime was established
on the basis of mesostructural characteristics,
such as the asymmetry of folds, porphyroclasts
and porphyroblasts, SC” structures, shear and
fault-plane kinematic indicators (see Passchier
& Trouw, 1996; Ramsay & Huber, 1987). The
metamorphic terms used in this contribution
follow the IUGS (Brodie et al., 2007).

The petrology of 53 (oriented) polished thin
sections was studied in order to establish how
mineral assemblages changed with successive
tectonic structures. The textures of the minerals
were studied with particular focus on defor-
mation mechanisms (dynamic recrystallisation
versus static recrystallisation, twinning and re-
covery processes; see Passchier & Trouw, 1996).
The chemical composition and compositional
zonation of minerals (over 7000 spots) were an-
alysed using an Electron Probe Microanalyser
CAMECA SX-100 with 4 spectrometers (Insti-
tute of Geochemistry and Petrology of Warsaw
University). Beam conditions for the analysed
feldspars and micas were set on a 10 nA cur-
rent and an acceleration voltage of 15 kV. The
analyses of garnets, allanites, epidotes and ti-
tanites were performed under an acceleration
voltage of 15 kV and a beam current of 20nA.
A focused beam was used for most analyses,
except for Na-feldspars and white micas (defo-
cused beam of 2-5 um) to avoid element diffu-
sion during electron bombardment.

In the following, the feldspars are subdivid-
ed into plagioclases (Ab-An), alkali feldspars
(Or-Ab) and secondary albites (composed of
Ab>90%) developed in a form of rims over
more calcic grains.

4. Petrography and structural
record

In the Miedzygoérze Antiform, four types of
gneisses can be distinguished among the gneis-
sic rocks mapped as belonging to the Snieznik
and Gieraltéw gneisses or complexes (Don et
al., 2003). Their characteristics are presented
below.
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4.1. The Snieznik (augen) gneisses

Rocks composed of quartz, alkali feldspar,
plagioclase [An, ], biotite, white mica, sec-
ondary albite and garnet, apatite, titanite, ti-
tanomagnetite and allanite as accessories, can
be identified as coarse- to medium-grained,
porphyrytic to even-grained L>S, L-S, L<S tec-
tonites, with characteristic rodding lineation
and one single mylonitic foliation (separate
layers of alkali feldspar, quartz and plagioclase
+ mica). The foliation anastomoses the alkali-
feldspar megacrysts of clearly porphyroclastic
origin (Fig. 2A). Microstructural features such
as hypauthomorphic shape and growth zona-
tion support a magmatic origin of the meg-
acrysts and consequently the host rocks. Along
with an increase of shearing, the size of the
grains becomes smaller and the porphyroclasts
taper off. No signs of any deformation and/or
metamorphism prior to the one ascribed are
present. Thus, the constriction followed by the
apparent flattening, under high-temperature
and low-pressure (HT/LP) conditions, should
be regarded as the first recognisable stage of de-
formation (and metamorphism) in the rocks un-
der study. Itis proposed to use the term ‘Snieznik
augen gneisses’ (or ‘Snieznik gneisses’) exclu-
sively for rocks with:

- a subhorizontal, N(E)-5(W) trending, pene-
trative stretching lineation of rodding type,
defined by monomineral rods of quartz or
potassium feldspar stretched in a ductile
state, and plagioclase + mica streaks (Fig.
2A); in the XZ section of the local-strain el-
lipsoid, asymmetric tails indicate both “top-
to-the-N" and “top-to-the-S” shear, but most
commonly the tails are symmetrical;

- a single, subhorizontal mylonitic foliation
formed by separate layers of high-temper-
ature (HT) recrystallised quartz, alkali-
feldspar and plagioclase with mica (Fig.
2A); locally S-C" bands overprint the main
foliation with a greenschist-facies mineral
assemblage (retrograded biotite, muscovite,
albite);

- monomineral augens which are sigma-
clasts composed of (hyp)authomorphic
megacrysts of potassium feldspar or quartz,
characteristically elongated, flattened and

surrounded by pressure shadows (quartz,
alkali feldspar and minor mica), with both
‘top-to-the-N” and ‘top-to-the-S” strain
markers; such augens are more or less flat-
tened porphyroclasts derived from porphy-
rocrysts occurring in the original granite
(Zelazniewicz, 1988);

- zonal grain-size reduction, flattening of the
porphyroclasts and final transformation
into typical (ultra)mylonite; shear zones
form rather thin (up to 10 m), N(W)-S(E)
trending bands which can be accompanied
with medium- to small-scale E(NE)-verging
shearing folds, or local crenulation cleav-
age; triangle-shaped dilatant sites of such
folds can be filled up by late, metasomatic
quartz segregations;

- large-scale, E-vergent buckling folds, which
developed under more brittle conditions;
this late event is observed in the whole re-
gion, and is responsible for the present-day
brachyanticlinal structure of the eastern part
of the Orlica-Snieznik Dome; both quartz
segregations in the axial-plane shear zones
and garnet-biotite-plagioclase disequilib-
rium and mica recrystallisation at the limb’s
plane point at greenschist-facies metamor-
phic conditions.

4.2. Porphyroblastic gneisses

Coarse-grained rocks of similar mineralogi-
cal composition to the Snieznik gneisses (quartz,
alkali feldspar, plagioclase [An, ], biotite,
white mica, secondary albite, and garnet, apa-
tite, zircon, titanite, allanite, ilmenite, rutile as
accessories) often contain felsic porphyroblasts
and/or augen-like lenses (Fig. 2B), because of
which these rocks are commonly but incorrect-
ly ascribed to the Snieznik gneisses (see Don
1964, 1991; Teisseyre, 1957; Smulikowski, 1960,
1979; Sawicki, 1995; Gawlikowska & Opletal,
1997). Such porphyroblastic gneisses show:

- two distinct sets of mylonitic foliation, the
first of which is expressed as small-scale
double folding (with ‘top-to-the-W’ and
then “top-to-the-E” kinematics), and the sec-
ond one is axial planar to these folds (52 in
Fig. 2B);
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- blasts/porphyroblasts  (alkali  feldspar,
quartz or plagioclase) of 0.1-15 cm, pol-
ymineral lenses (quartz + alkali feldspar)
or leucosome segregations (quartz + alkali
feldspar + plagioclase) of some dozens of
centimetres long, which mimage triangle-
shaped dilatant sites of the two sets of folds,
and which grow in compliance to the axial-
plane foliation (52) or completely disorderly
over the existing fabric (Fig. 2B);

- an elongation lineation overprinting the
metamorphic fabric; the axial-plane foliation
was rejuvenated during subsequent flatten-
ing and locally transposed to a subhorizon-
tal position; consequent shearing resulted in
the development of a second mylonitic fo-
liation, which does not deflect around meta-
morphic blasts/lenses, suggesting rigid be-
haviour of the large blasts and lenses during
deformation (Fig. 2B);

- intrafolial folds with porphyroblasts, pre-
served as flattened and elongated felsic
lenses, at first sight similar to the augens in
the Snieznik gneisses in spite of a complete-
ly different genesis;

- signs of an overprint by strong but local
shearing; the axial-plane foliation became
flattened, the grain size became smaller,
porphyroblasts tapered off, and the whole
rock transformed into a typical (ultra)my-
lonite; local HT recrystallisation erased the

earlier fabric, leaving only relics of the ear-
lier, oblique cleavage and leftovers of small-
scale folds (‘ghost structures’ recognisable
at a microscale); the porphyroblastic gneiss-
es thus became similar to the surrounding
Snieznik gneisses;

- late, large-scale, E-vergent folds developed
under more brittle conditions (greenschist-
facies conditions inferred from mica recrys-
tallisation at the limbs” plane).

4.3. Migmatites

Stromatites, metatexites, phlebites (a term
after Wimmenauer & Bryhni, 2007) and em-
brechites are composed of quartz, plagioclase
[An, ]|, alkali feldspar, biotite, white mica,
secondary albite and, as accessories, garnet,
apatite, zircon, epidote, allanite, titanite, ti-
tanomagnetite, ilmenite, rutile and prehnite.
Both the palimpsest structures and well de-
veloped migmatitic structures were erased by
the N(E)-S(W) shear deformation. Within the
migmatites, discordant amphibolitised eclog-
ite, amphibolite and granulite bodies occur as
enclosures. All types of migmatites reveal the
following common features:

- early, non-mylonitic foliation (enhanced by

SE-NW elongation lineation) evolved into

double folding in a small-scale (F1 folds

Fig. 2. Various gneiss types distinguished in the eastern part of the Orlica-Snieznik Dome, and enclaves in the Snieznik

gneisses (for location: see Fig. 1). Discontinuous lines represent either planar structures (S = foliation) or linear struc-
tures (L = lineation); points correspond to folds (F) and arrows show the kinematics of deformation.

A - Snieznik (augen) gneiss (L>S tectonite) with K-feldspar porphyroclasts originated from the porphyrithic gran-
ite. Constriction produced a rodding-type lineation (L3), and subsequent flattening resulted in the development of
mylonitic foliation (S3); B - Porphyroblastic gneiss with K-feldspar, quartz and plagioclase porphyroblasts origi-
nated from the metablastesis that occurred syn- and post-kinematically with respect to the small-scale folds (F1/
F2). A new axial plane foliation (S2) was developed; C - Migmatite (stromatite) with early foliation evolved into
small-scale folds (F1/F2) and a second foliation developed parallel to their axial planes (S2), with signs of synkin-
ematic migmatisation. Subsequent shearing towards the NE caused transposition of earlier structures (52—S3) and
consequent mylonitisation; B - Layered gneiss with relics of compositional banding S1 (S0?) and small-scale folds
(F1). The oblique planar structure S2 as the axial-plane foliation, and was rejuvenated during subsequent shearing
(52—S3); E - Felsic microgranular enclave with sharp boundaries within the Snieznik gneiss. Note that some K-
feldspar porphyroclasts grew in random directions across the enclave’s boundary, and that quartz porphyroclasts
grew inside the enclave. Th mylonitic foliation of the hosting Snieznik gneiss continues across the enclave (S3); F
- Xenolith with migmatitic fabric (including small-scale ptygmatitic folds). The most prominent axial-plane folia-
tion (S2) is usually at a high angle to the subhorizontally and moderately dipping mylonitic foliation in the sur-
rounding Snieznik gneisses (S3); G - Enclave of mesocratic gneiss with sharp boundaries with the hosting Snieznik
gneiss. Note that the K-feldspar and quartz porphyroclasts grew in random directions within the enclave and at
the enclave’s boundary. The mylonitic foliation of the hosting Snieznik gneiss continues across the enclave (S3); H -
Schlieren with diffuse contacts with the Snieznik gneiss, disrupted and transformed by partial melting and assimila-
tion processes. The mylonitic foliation of the hosting Snieznik gneiss continues across the enclave (S3).
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with ‘s’-asymmetry followed by F2 folds
with “z’-asymmetry); in many places, both
generations of folds interfere and transpose
each other (Fig. 2C);

- signs of migmatisation, syn- to post-kine-
matic in accordance with F1 and F2 folds;
neosomes (quartz + feldspars) can form ir-
regular nests, layers and curved/banded
lenses or spindles, suspended within very
fine-grained, strongly biotitic mesosomes
(mica + titanite palaeosomes). In stroma-
tites, the leucosome (neosome) extracts in
the hinge zones of folds, parallel to their ax-
ial panes (52 in Fig. 2C), and within discrete
axial-plane shear zones (also in the eclogites
and amphibolites, if present); subsequent
recrystallisation produced individual leuco-
cratic aggregates (up to 10 cm in diameter);

- overprinted N-S trending rodding lineation
(quartz + feldspars rods and mica streaks)
and subsequent shearing; mylonitic flatten-
ing affected all leucocratic aggregates turn-
ing them into porphyroclasts; along with
the local increase of flattening, transposition
of earlier foliations towards a subhorizontal
position took place (52—S53 in Fig. 2C); the
grain size became smaller, porphyroblasts
tapered off, and the whole rock became
transformed into a typical (ultra)mylo-
nite; this HT recrystallisation subsequently
erased the earlier fabric, leaving only relics
of the earlier cleavage and intrafolial folds
in the form of bended leucosome patches/
nests, disrupted into boudins;

- frequent shear zones/faults and few me-
tre-scale, E-vergent folds, developed under
more brittle conditions (greenschist-facies
conditions as inferred from mica recrystal-
lisation at the limbs” planes), which are evi-
dence of the last deformation event.

4.4. Banded gneisses

Fine-grained, aplite-looking, banded gneiss-
es (the ‘homogeneous gneisses” of Borkowska
et al., 1990 and the “aplite gneisses” of Don et
al., 2003) are composed of quartz, plagioclase
[An, ], alkali feldspar, biotite, white mica
and secondary albite, and the accessory min-

erals garnet, apatite, titanite, zircon, rutile,
titanomagnetite, ilmenite, epidote, allanite,
xenothyme and thorite. Micas do not form sep-
arate bands but their fine flakes are uniformly
dispersed in the quartz/feldspar mass, so that
within a layer they appear to be homogeneous.

Alternating bands of leucocratic (biotite-poor)

and melanocratic (biotite-rich) compositions

form regular layers 0.05-10 m thick, which
must have been inherited from the parent rock

(Fig. 2D). Within the banded gneisses, eclog-

ites occur as enclosures. The banded gneisses

show:

- relics of early, oblique foliation, expressed
by compositional banding (S1) resem-
bling the primary alternation SO (Fig. 2D),
which at a micro-scale can be recognised as
quartz (+ feldspars) (sub)grain elongation;
this banding must have evolved into tight
to isoclinal folding, presently transformed
into the ‘ghost’ structures; biotite recrys-
tallised parallel to the folds’ axial planes,
forming a second, subhorizontal foliation
S2 (Fig. 2D), slightly oblique to the quartz-
feldspathic layers; intrafolial folds are com-
monly no longer visible, and only indistinct
non-mylonitic biotite foliation exists (S2 on
Fig. 2D);

- leucosomes locally extracting in the form
of nests/layers/lenses and individual leu-
cocratic aggregates, which developed in-
dependently on foliations; the amount and
size of neosomes (quartz * feldspars) seems
to increase with diminishing distance to the
(retro)eclogite boudins (leucosome veins are
also present in eclogites themselves);

- no special structures formed during the late
NE trending shearing, except for signs of re-
juvenation of earlier planes S2—S3 (dynam-
ic recrystallisation at a micro-scale).

4.5. Enclaves within the Snieznik
gneisses

The Snieznik gneisses outcropping in the
eastern part of the Orlica-Snieznik Dome con-
tain numerous and diverse enclaves, composed
of generally lensoid, isolated bodies of meta-
granites and migmatites (stromatites).



Gierattéw versus Snieznik gneisses - what is the real difference? 79

4.5.1. Felsic microgranular felsic and

mesocratic gneisses
The most numerous are small (from one to

a few decimetres), ellipsoidal to lensoid, fel-
sic bodies, heterogeneously arranged within
the host gneisses (Fig. 2E). They have identi-
cal composition as their host rock (quartz, al-
kali feldspar, plagioclase [An, ,,], biotite, white
mica and secondary albite, and garnet, apatite,
titanite, titanomagnetite, epidote and allanite
as accessory minerals). Such enclosures can
be classified as felsic microgranular enclaves,
with typically:

- a metamorphic fabric formed by an align-
ment of minerals, which is concordant with
the mylonitic foliation (if present) in the sur-
rounding Snieznik gneisses (Fig. 2E);

- features characteristic of fine-grained ig-
neous rock (general enrichment in apatite,
quartz poikilitically enclosing plagioclase
and apatite, plagioclases with relict, irregu-
lar oscillatory zoning), suggesting a granitic
origin of the enclaves, with very limited
overprint of recrystallisation;

- sharp boundaries with the host (Fig. 2E),
across which xenomorphic to hypautho-
morphic porphyroclasts of alkali feldspar or
quartz (up to 5 cm) did grow; porphyroclasts
display magmatic microstructural features
(microcline grid or simple twinning) with-
out strain tails; the mylonitic foliation of
the Snieznik gneisses anastomoses around
the megacrysts, emulating their shape and
continuing across the enclaves themselves;
ductile deformation of feldspars and quartz
suggests a high temperature during recrys-
tallisation;

- an array of longer axes in an (S)E-(N)W di-
rection, considered as the direction of the
flow of the primary magma (LO) of the gran-
ite protolith.

4.5.2. Migmatitic gneisses

Coarse-grained migmatitic gneisses
(~stromatites), with their own, rich internal
structure form rare lensoid to boudin-like bod-
ies of a few metres. These enclaves are com-
posed of quartz, alkali feldspar, plagioclase
[An, ] Dbiotite, white mica and secondary
albite, and of the accessory minerals garnet,

apatite, titanite, zircon, epidote, allanite, ti-
tanomagnetite, ilmenite and xenothyme; the
characteristic migmatitic structure and sharp,
irregular boundaries make them easy to recog-
nize within the gneissic surroundings as xeno-
liths (Fig. 2F), with characteristic:

- complex metamorphic fabric, including
two conspicuous foliations: the older one is
strongly disharmonically folded (small-scale
folds, often ptygmatitic) and overprinted by
a later, axial-plane foliation, which shows
usually a high angle with respect to the sub-
horizontally and moderately dipping, my-
lonitic foliation in the surrounding gneisses
(Fig. 2F);

- leucosome nests/lenses extracted in the
hinges of small-scale folds, parallel to the
axial-plane foliation and randomly occur-
ring over the existing fabric; additionally,
individual, xenomorphic alkali feldspar and
quartz porphyroblasts developed over the
migmatitic fabric; in some places, strong re-
crystallisation and metablastesis completely
erased the primary, migmatitic fabric, giv-
ing the rocks a granitic outlook;

- deflection of the subhorizontal mylonitic fo-
liation in the surrounding Snieznik gneisses
around more rigid bodies of xenoliths (Fig.
2F).

4.5.3. Mesocratic gneisses

Small (several dozens of centimetres), ellip-
soidal to lensoid, mesocratic enclaves consist
of fine-grained mesocratic gneisses (quartz,
plagioclase [An, , ], biotite, alkali feldspar and
secondary albite, with garnet, apatite, zircon,
allanite, epidote, titanite, titanomagnetite, il-
menite and rutile as accessories). The mineral
composition and the sharp boundaries of the
enclaves make them similar to the xenoliths
(Fig. 2G). A few enclosures were transformed
into disrupted schlieren with extremely dif-
fuse boundaries (Fig. 2H). The mesocratic en-
claves should be considered as partially melted
xenoliths, disrupted and transformed by par-
tial melting and assimilation into restites (see
Montel & Cheilletz, 1989). They show:
- microscopical relics of an early foliation, oc-

casionally evolved into small-scale ‘ghost’

folds, pronounced by leucocratic segrega-
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tions (leucosomes?) in the hinge zones, all
strongly reworked by dynamic recrystal-
lisation; the mylonitic foliation in the sur-
rounding Snieznik gneisses tends to contin-
ue across the enclaves (Fig. 2G, H);

- porphyroclasts of poikilitic plagioclase
[An,, ,.] and alkali feldspar (hypauthomor-
phic/xenomorphic, with relics of primary
growth zonation), which pass the enclave
boundaries;

- megablasts of quartz or aggregates of quartz
and feldspars, grown in random positions
inside the enclave (Fig. 3G); they occasion-
ally show a special ocellar structure (K-
feldspar or quartz in a core surrounded by
a biotite rim);

- longer axes orientated in an E-W direction,
which is considered as the flow direction of
the primary magma (LO) of the granite pro-
tolith of the Snieznik gneiss.

5. Mineral texture and chemistry

Gneisses of the Orlica-Snieznik Dome differ
distinctly in metamorphic and pre-metamor-
phic (if present) texture, confirming structural
differences between the Snieznik gneisses and
the three other types of gneisses (porphyroblas-
tic gneisses, migmatites and banded gneisses).

Moreover, the various types of gneisses and
the gneisses from the enclaves differ in their
mineral chemistries. While the composition of
the minerals from the xenoliths and mesocratic
enclaves resembles that of the migmatites and
porphyroblastic gneisses, the minerals from
the felsic microgranular enclaves resemble the
minerals of the Snieznik gneiss. Particular at-
tention has been paid to the description of feld-
spar textures, with regard to their significance
for the reconstruction of deformational devel-
opments.

5.1. Feldspars

Elongated and flattened K-feldspar por-
phyroclasts (up to 10 cm) with tails of strain
shadows, occurring in a polymineral (plagi-
oclase + quartz + subordinate mica) matrix, are
the most characteristic feature of the Snieznik
augen gneisses. Hypauthomorphic orthoclase
megacrysts (with Carlsbad twinning) are often
affected by dynamic recrystallisation (inferred
from the presence of subgrains with undulose
extinction) and grain-boundary migration re-
crystallisation (inferred from the lobate shape
of the grains: Passchier & Trouw, 1996). Ad-
ditionally, granulation at the edges and ten-
sile fractures, filled by the recrystallised ma-

Fig. 3. Some microstructural relationships between the feldspars in various gneiss types that are distinguished in the

eastern part of the Orlica-Snieznik Dome.

A - Snieznik augen gneiss. Elongated and flattened orthoclase porphyroclast with tails of strain shadows (quartz
+ K-feldspar + micas), tapering gradually off towards the mylonitic layer. Foliation anastomoses the porphyro-
clast, which has been dynamically recrystallised (subgrains with undulose extinction), is granulated at the edges
and possesses tensile fractures, filled by recrystallised matrix; B - Snieznik augen gneiss. The mylonitic layering is
emphasized by the bimodal grain size. The lobate grain boundaries and subgrains with undulose extinction indi-
cate dynamic recrystallisation; C - Porphyroblastic gneiss. A xenomorphic porphyroblast formed in the core of K-
feldspar and is surrounded by a plagioclase mantle and quartz rim; D - Migmatite. Fragment of a neosome (leuco-
some) domain consisting of antiperthitic blasts, quartz, K-feldspar and subordinate (chloritised) biotite. The lobate
grain boundaries, subgrains with undulose extinction indicate dynamic recrystallisation; E - Banded gneiss. Fine
flakes of biotite are uniformly dispersed in the quartz-feldspar mass, giving the rock a homogeneous appearance.
The primary foliation in the layered gneiss is formed by fine-grained, elongated, poikiloblastic quartz, plagioclase
and K-feldspar, showing evidence of dynamic recrystallisation, grain-boundary migration recrystallisation (lobate-
amoeboid shape, subgrains with undulose extinction) and static recrystallisation (isometric polygonal shape); F -
Felsic microgranular enclave. A K-feldspar porhyroclast crystallised at the enclave’s border. The hypauthomorphic
orthoclase with Carlsbad twinning and edge granulation shows signs of dynamic recrystallisation and grain-bound-
ary migration recrystallisation (subgrains with undulose extinction, lobate shape of surrounding minerals and ‘left
over grains’ of quartz); G - Xenolith. Fragment of neosome (leucosome) segregation consisting of xenomorphic
antiperthite with relics of polysynthetic twinning (in the centre). All grains display evidence of dynamic recrystal-
lisation (lobate-amoeboid subgrains with undulose extinction) and static recrystallisation (tendency to polygonal
shape); H - Mesocratic enclave. Fragment of a xenomorphic K-feldspar porphyroclast (without strain shadows)
growing inside the matrix of the enclave.
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trix (quartz, K-feldspar, plagioclase [An])
occur (Fig. 3A). The bimodal grain size also
indicates dynamic recrystallisation (Fig. 3B).
Although scarce, myrmekites occur that set
the minimum temperature conditions during
deformation at 500°C (cf. Vernon et al., 1983).
In more flattened and mylonitised varieties of
the Snieznik gneisses, the K-feldspars were de-
formed largely in a ductile manner into long,
foliation-parallel ribbons. If still present, the
parent grains occur in the central part of the la-
mella, and smaller, dynamically recrystallised
subgrains (with undulose extinction) stick out
of it. The ductile behaviour of quartz and feld-
spars indicates even higher temperature condi-
tions during deformation (~600°C according to
Passchier & Trouw, 1996).

The mylonitic layers consist of statically re-
crystallised plagioclase [An, ] (inferred from
the isometric shape of the grains) and minor po-
tassium feldspar (not twinned). Larger (>1 mm)
and xenomorphic grains of plagioclase [An,_ ]
are often poikiloblastic (mica intergrowths),
antiperthitic, strongly affected by dynamic re-
crystallisation (subgrains with undulose extinc-
tion) and bulging (‘left-over” grains of quartz).
All these features are evidence of the blastesis of
plagioclases over the earlier fabric (cf. Passchier
& Trouw, 1996). Edge albitisation commonly af-
fects all feldspars in the mylonitic layers.

The characteristic porphyroblasts in the
porphyroblastic gneisses consist of
xenomorphic K-feldspar with minor quartz
and plagioclase, showing occasionally a core-
and-mantle texture (Fig. 3C). The core parts
are occupied by K-feldspar (not twinned or
cross-hatch-twinned microcline), surrounded
by a mantle of poikiloblastic plagioclase [An,_
36] with albite twinning and then a quartz rim,
gradually passing into matrix. All grains have
been dynamically recrystallised (lobate shape,
subgrains with undulose extinction) and are
poikiloblastic (mica, quartz intergrowths).

The mylonitic layers are composed of iso-
metric grains of poikilitic plagioclase [An_ ],
polysynthetically twinned, and only scarce
xenomorphic K-feldspar. The polygonal shape
of the grains indicates static recrystallisation as
the last visible process of rock transformation.
Secondary edge albitisation affected all grains.

In some cases, plagioclase was completely re-
placed by myrmekites or forms intergrowths
with quartz, giving rise to a diablastic texture.
The ductile behaviour of quartz and feld-
spars (mylonitic separation) and the common
myrmekite texture indicate high-grade condi-
tions during deformation (500-600°C accord-
ing to Passchier & Trouw, 1996).

The migmatitic lenses growing in random
over the planar fabric are composed of xenom-
orphic quartz, K-feldspar (orthoclase without
twinning) and plagioclase [An, ] (including
antiperthite). All grains have been dynamically
recrystallised (subgrains with undulose extinc-
tion and/or traces of subgrain rotation recrys-
tallisation) and grew over the deformed matrix
(deformed mica intergrowths).

The palimpsest structures of the migma-
tites are composed of plagioclase [An, ] with
polysynthetic twinning of albite type and po-
tassium feldspar (orthoclase without twinning
and cross-hatch-twinned microcline). They
are all poikiloblastic, lobate grains developing
subgrains with undulose extinction, indicative
of grain-boundary migration recrystallisation
and dynamic recrystallisation, respectively.
Antiperthitic intergrowths are common. Sec-
ondary albite developed especially in the al-
bitic parts of the myrmekites as well as along
cleavage and twining planes of feldspars. The
presence of myrmekite in combination with
the ductile behaviour of the quartz and feld-
spars indicates high-grade conditions during
deformation (500-600°C according to Passchier
& Trouw, 1996).

The migmatitic domains are built of quartz,
plagioclase [An, ] with polysynthetic twin-
ning or antiperthite and microcline (cross-
hatch-twinning). All grains have dynamically
recrystallised, with lobate grain boundaries,
subgrains with evidence of subgrain rota-
tion recrystallisation and undulose extinction
(Fig. 3D). Individual porphyroblasts are either
xenomorphic and antiperthitic plagioclases
[An, ], overgrowing deformed minerals from
the matrix (e.g. mica, titanite) or xenomorphic
K-feldspars (without twinning or cross-hatch-
twinned).

The primary foliation in the banded gneiss-
es is built of fine-grained, elongated, poikilob-
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lastic plagioclase [An, ] and K-feldspar (or-
thoclase without twinning), showing evidence
of dynamic recrystallisation (lobate-amoeboid-
shaped subgrains with undulose extinction)
and static recrystallisation (isometrical po-
lygonal shape in Fig. 3E). Potassium-feldspar
grains occasionally form lenses 1-3 mm long,
HT recrystallised in very-fine grained aggre-
gates. Antiperthitic intergrowths are scarce,
myrmekites hardly ever occur. Secondary edge
albitisation is pervasive. The ductile behaviour
of the quartz and feldspars indicate high-grade
conditions during deformation (500-600°C ac-
cording to Passchier & Trouw, 1996).

The mylonitic foliation in the felsic micro-
granular enclaves is composed of quartz,
poikiloblastic plagioclase [An, ] with albite
twinning and orthoclase without twinning.
All grains are xenomorphic and show signs
of dynamic recrystallisation (lobate-amoeboid
shape, subgrains with undulose extinction) and
subsequent static recrystallisation (tendency to
polygonal shape). Quartz actively bulging into
feldspars indicates grain-boundary migration
recrystallisation. The common occurrence of
myrmekite in combination with the mylonitic
separation indicates high-grade conditions
during deformation (500-600°C according to
Passchier & Trouw, 1996).

The individual K-feldspar megacrysts (2-5
cm long) that crystallised inside the enclaves
and at the enclaves” boundaries, are hypautho-
morphic orthoclase (Carlsbad twinning) with-
out a mantle or strain tails (Fig. 3F). Tensile
fractures are occasionally filled by very fine-
grained quartz and plagioclase. Edge granula-
tion and subgrains (with undulose extinction)
developed only at the crystals” edges. Adjacent
plagioclases may form myrmekites convex to-
wards K-megacrysts.

The palimpsest structure in the xenoliths
is composed of fine-grained feldspars, quartz
and micas, arranged in a mylonitic way. Plagi-
oclase [An,_, ] and K-feldspar (orthoclase with-
out twinning and cross-hatch-twinned micro-
cline) are both xenomorphic and dynamically
recrystallised grains (lobate subgrains with un-
dulose extinction). The poikiloblastic texture
(quartz * mica intergrowths) indicates strong
grain-boundary migration recrystallisation.

The common occurrence of myrmekite sets the
minimum temperature conditions during re-
crystallisation at 500°C (according to Passchier
& Trouw, 1996).

Theleucosome aggregates (Fig. 3G) are com-
posed of quartz, xenomorphic and poikiloblas-
tic plagioclase [An, ] and potassium feldspar
(without twinning). All grains have been dy-
namically recrystallised (lobate-amoeboid-
shaped subgrains with undulose extinction).
Feldspars are often antiperthitically intergrown
and plagioclase is polysynthetically twinned.
Intergrowths of plagioclase and mica suggest
that feldspar blasts overgrew deformed min-
erals from the matrix. Rim myrmekites (even
inside antiperthites) are common.

The fine-grained matrix of mesocratic en-
claves consists of quartz, plagioclase [An, ]
and mica with minor K-feldspar (twinning),
arranged in a mylonitic structure. All compo-
nents show signs of dynamic recrystallisation
and grain-boundary migration recrystallisa-
tion (lobate subgrains with undulose extinc-
tion, ‘left-over’ quartz) with a conspicuous
overprint of the static recrystallisation (po-
lygonal shape of feldspars). Plagioclase is often
polysynthetically twinned and subsequently
replaced by muscovite. Myrmekites with tiny
quartz vermicules occur.

The polymineral lenses considered as rel-
ics of the migmatitic fabric are composed of
K-feldspar + plagioclase [An,, ] (in their core)
and plagioclase *+ quartz + K-feldspar (in tails),
separated from the matrix by anastomosing
mica layers. Porphyrocrysts crystallised inside
the enclaves consist of xenomorphic quartz or
hypidiomorphic orthoclase without mantles
or stress shadows (Fig. 3H). The only sign of
recrystallisation is granulation at the crystals’
edges. Megacrysts show occasionally a spe-
cial ocellar structure, formed by a felsic core
(K-feldspar or quartz) surrounded by a mafic
(biotite) rim.

5.2. Micas

The dark micas from the studied gneiss-
es are classified generally as annites (AI"' in
the range of 0.33-1.0) with #mg ratio [=Mg/
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(Mg+Fe)] in the range of 0.11-0.42. Siderophyl-
lite (AIY' up to 1.31) occurs exclusively in
migmatites bordering amphibolite boudins.
In all studied types of rocks, two groups of
biotite can be identified (Tables 1 and 2). The
first group is characterised by an increasing Ti
content from the core towards the rims of the
flakes, and in the second group the pattern is
the reverse (decrease of the Ti contents from
the core towards the rims of the flakes). The
biotites from the Snieznik gneisses as well as
the felsic microgranular enclaves and meso-
cratic enclaves are mostly aligned in accord-
ance with the mylonitic foliation and register
a decrease of the TiO, content from the cores
(max. 3.7 wt%) toward the rims of the flakes.
Sparse biotites, chaotically suspended within
the rock mass, show an indistinct increase of
the TiO, contents within the flakes. Within the
migmatites, porphyroblastic gneisses, banded
gneisses and xenoliths (within the Snieznik
gneisses), biotite flakes with increasing Ti to-
ward the rims (max. 4.84 wt% of TiO,) are ar-
ranged in accordance with the intrafolial folds
and axial-plane foliation (52), and the flakes
with decreasing Ti toward the rims are ar-
ranged parallel to the relic/transposed folia-
tion.

The white micas within all analysed gneiss-
es are commonly enriched in Si (phengites).
The phengites in the Snieznik gneisses as well
as the felsic microgranular enclaves, meso-
cratic enclaves are mostly arranged in accord-
ance with the mylonitic foliation and contain
intermediate values of Si between 3.10 and
3.25 (pfu). Flakes with a higher amount of Si
(max. 3.37 pfu) are scarce (Table 3). Within the
migmatites, porphyroblastic gneisses and lay-
ered gneisses, the phengites with the highest
amount of Si (up to 3.43 pfu) define the intra-
folial folds F1/F2 and their axial-plane folia-
tion (S2). In the xenoliths, the flakes with the
highest amount of Si (max. 3.39 pfu) are in the
same way arranged in accordance with the
ptygmatitic folds. Flakes with lower amounts
of Si occur only in the form of recrystallised
aggregates (more or less parallel to relic and
transposed foliations). The white micas in leu-
cosome extractions are muscovite (Si~3.0 pfu);
they are chaotically between feldspars.

5.3. Garnets

The scarce garnets in the Snieznik gneisses
and the felsic microgranular enclaves are atoll
to irregular in shape and are adjacent to biotite,
quartz and secondary albite or phengite. They
have a characteristic, calcium-rich composi-
tion (30-53% of andradite + grossular, 47-67%
of almandine, 0-17% spessartine, and 0-6%
of pyrope) and simple compositional zoning
(high-Ca cores versus lower-Ca rims: Table 4).
The outermost parts of the grains are always
Ca-depleted, indicating alteration at the edges
(Fig. 4A). The cores of the plagioclase blasts
[An, ] can be intergrown with small garnets,
which show a reverse zoning (high-Ca rims
versus lower-Ca cores), but the proportion of
the end-members is comparable with the com-
position of the garnets from the matrix.

In the migmatites, porphyroblastic gneisses
and layered gneisses garnets commonly occur
as atoll to irregular crystals, which border pla-
gioclase [An, ], alkali feldspar, quartz or chlo-
rite and rarely enclose quartz, chlorite or alkali
feldspar. Their composition can be recalculat-
ed to 30-55% of andradite + grossular, 45-70%
of almandine, 0-8% of spessartine, and 0-8%
of pyrope. A characteristic irregular, oscilla-
tory zoning is well visible on back-scattered
electron images (Fig. 4B). Exclusively within
the porphyroblastic gneisses, isometric garnets
are found in the matrix (30-35% andradite +
grossular). Within plagioclase porphyroblasts
[An, ], two types of garnet that are different
in composition occur as intergrowths. In the
cores of plagioclases, garnets of similar compo-
sition as those occurring in the matrix (~ 40%
andradite + grossular) are found. The external
parts of plagioclase blasts are intergrown with
more ferrous garnets (up to 73% almandine +
spessartine).

Garnets from xenoliths and mesocratic en-
claves and schlieren are roughly similar to
garnets in the porphyroblastic gneisses and
migmatites, both regarding their shape (Fig.
4C) and their compositional zoning (35-55% of
andradite + grossular, 44-64% of almandine,
0-10% of spessartine, and 0-8% of pyrope).
Furthermore, isometric garnets with a homo-
geneous composition (Fig. 4D) are found in
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Table 2. Representative microprobe analyses of biotite from the enclaves within the Snieznik gneisses (eastern part of

the Orlica-Snieznik Dome).

rock type: felsic microgranular enclave

xenolith mesocratic enclave

Ti zonation: Ti-progressive' Ti-regressive’

Ti-progressive'

Ti-regressive! ~ Ti-progressive’ Ti-regressive'

Spot : core rim core rim core rim core rim core rim core rim
SiO, 3532 3533 3522 3477 3482 3498 3527 3514 3541 3492 35.07 3493
TiO, 2.52 2.57 3.26 2.68 2.65 2.87 BI95 3.70 3.06 2.83 3.04 2.70
ALO, 15.67 1549 1732 1694 1748 1670 1692 1730 1741 1773 1729 17.63
Cr,O, 0.00 0.04 0.00 0.01 0.04 0.07 0.04 0.03 0.00 0.02 0.00 0.03
MgO 5.54 5.63 4.95 5.29 7.56 7.59 6.88 6.95 5.59 5.69 5.54 5.54
MnO 0.30 0.24 0.29 0.29 0.29 0.25 0.18 0.23 0.15 0.26 0.25 0.33
FeO 2619 2624 2581 2580 2329 2292 2214 2186 2458 2444 2520 2522
Na,0 0.04 0.05 0.08 0.07 0.11 0.08 0.09 0.12 0.06 0.10 0.08 0.06
K,0 9.38 9.45 9.45 9.70 9.41 8.97 9.58 9.34 9.55 9.64 9.63 9.46
H,0O 3.78 3.78 3.85 3.80 3.86 3.83 3.86 3.85 3.85 3.84 3.84 3.84
total 98.74 9880 10023 99.34 9949 9826 9891 9850 99.66 9945 99.93 99.74
recalculated to 22 O

Si 5.61 5.61 5.48 5.48 541 5.48 5.48 547 5.51 5.46 5.47 5.46
Ti 0.30 0.31 0.38 0.32 0.31 0.34 0.46 0.43 0.36 0.33 0.36 0.32
Al 2.93 2.90 3.18 3.15 3.20 3.09 3.10 17 3.19 3.26 3.18 3.25
Cr 0.00 0.01 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00
Mg 1.31 1.33 1.15 1.24 1.75 1.77 1.60 1.61 1.30 1.33 1.29 1.29
Mn 0.04 0.03 0.04 0.04 0.04 0.03 0.02 0.03 0.02 0.03 0.03 0.04
Fe 3.48 3.48 3.36 3.40 3.03 3.00 2.88 2.85 3.20 3.19 3.29 3.29
Na 0.01 0.01 0.03 0.02 0.03 0.02 0.03 0.04 0.02 0.03 0.03 0.02
K 1.90 1.91 1.88 1.95 1.86 1.79 1.90 1.85 1.90 1.92 1.92 1.89
total 1558 15,60 1550 15.61 15.63 1554 1547 1546 1549 1556 1555 15.55
#mg

=[Mg/ 0.27 0.28 0.25 0.27 0.37 0.37 0.36 0.36 0.29 0.29 0.28 0.28
(Mg+Fe)]

! progressive = increasing Ti-content from core to rim; regressive = decreasing Ti-content from core to rim.

the matrix (60-72% of almandine, 0-20% of
spessartine). The composition of the garnets
from the mesocratic enclaves depends on the
location of the host rock. Whenever the host
Snieznik gneisses are in direct contact with
the metasediments of the Mlynowiec-Stronie
Formation, the enclaves contain irregular and
compositionally zoned garnets that are rela-

tively Ca-poor (19-35% of andradite + gros-
sular, 68-80% of almandine, 10-17% of spes-
sartine). In enclaves of the same type from
the areas where the host Snieznik gneisses are
in contact with the migmatites, the grossular
content in the garnets reaches values identical
to that in the xenoliths (up to 56% of grossular
+ andradite).
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Fig. 4. Back-scattered electron im-
ages of garnets from some types of
gneiss distinguished in the eastern
part of the Orlica-Snieznik Dome.
The reaction rims are always Ca-
depleted.

A - Snieznik augen gneiss. Simple
pattern of compositional zoning in
garnet from a high-Ca core toward
alower-Ca rim; B - Migmatite. Os-
cillatory pattern of compositional
zoning in garnet from the medium-
Ca core toward the low-Ca mantle
and the high-Ca rim; C - Xenolith.
Reverse pattern of compositional
zoning in a garnet from a low-Ca
core toward a medium-Ca mantle
and a high-Ca rim; D - Xenolith.
an isometric and compositionally
homogeneous garnet from the ma-
trix, adjacent to apatite (ap) and
chlorite (chl). C

40% Adr+Grs

6. Discussion

6.1. A new subdivision for the gneisses
based on tectonics and petrography

The gneisses of the eastern part of the Orli-
ca-Snieznik Dome show different tectonic ev-
olutions. The common feature of migmatites,
porphyroblastic gneisses and banded gneiss-
es is the presence of deformation (primary
foliation folded at a small scale) and (ultra)
metamorphism (migmatisation/ metablastesis)
prior to the constriction and shear (connected
with the Moldanubian Thrust Zone). The N-S
rodding lineation and subhorizontal flatten-
ing (mylonitisation) are in turn first recognis-
able deformational structures in the Snieznik
gneisses, which were not affected by any de-
formation and/or metamorphism prior to the
Variscan thrusting. Overprinted shear defor-
mation caused unification of all the gneisses in
the eastern part of the Orlica-Snieznik Dome,
thus obscuring in particular the difference be-
tween the Snieznik gneisses and porphyrob-
lastic gneisses. The presence of porphyroblasts
and polymineral lenses, developed during me-
tablastesis and migmatisation, is the most mis-
leading feature. These metamorphic structures
affected by flattening, subsequently changed
into the porphyroclasts. Because of the presence
of such augen-like structures, the porphyrob-

[ 3

o
= Adr+Grs 34% Adr+Grs

reaction rim
<20% Adr+Grs

reaction rim
22% Adr+Grs
biam OS5k 5 LE

lastic gneisses have been commonly but incor-
rectly ascribed to the Snieznik group/complex
of augen gneisses (e.g. the gneisses outcrop-
ping near Ladek Zdrdj). Such ‘augens’ are in
fact large blasts (lenses), however, with hardly
ever strain shadows around them, pointing at
relatively rigid behaviour during the final de-
formation. While the porphyroblastic gneiss-
es happen to be erroneously assigned to the
Snieznik group/complex, the migmatites and
banded gneisses have always been considered
as part of the Gieraltow group/complex.

The zonal shear deformation is superim-
posed, enabling local preservation of the pre-
deformation (pre-Variscan) metamorphic fab-
ric. Wherever this occurs, the primary fabric
can be treated as an important indicator of the
genesis and provenance of the gneissic rocks
of the Miedzygorze Antiform. On the basis of
these structural and petrographical analyses,
a new subdivision of the gneisses is proposed
here.

The name ‘Gieraltéw gneisses” should be
retained, but exclusively for the migmatites,
porphyroblastic gneisses and banded gneisses
that show common features such as (1) early
foliation evolved into intrafolial folds, (2) por-
phyroblasts and / or polymineral lenses, and (3)
superimposed axial-plane foliation (S52), which
is (4) sheared or transposed into subhorizontal
position (S3).



90 Aleksandra Redlinska-Marczyriska

The name ‘Snieznik (augen) gneisses’
should be exclusively used for the gneisses of
clearly magmatic provenance (porphyroclasts
developed at the expense of porphyrocrysts),
with only a single mylonitic foliation and/for
an elongation lineation.

6.2. Sequence of deformations

The Gieraltéw gneisses record a sequence,
from D1: early foliation (S1), D2: small-scale
folding (F1, F2) accompanied by the develop-
ment of axial-plane foliation (S52) and synkin-
ematic migmatisation, toward D3: N-S con-
striction (L3) and subsequent flattening (S3)
(Table 5). The last event (D3) took place under
amphibolite-facies conditions. A similar defor-
mation path can be reconstructed for the xe-
noliths in the Snieznik gneisses. The Snieznik
gneisses registered only D3 structures (and
primary fluidal structures, D0). The magmatic
lineation LO was interpreted on the basis of the
E-W alignment of small enclaves and the same
orientation of slightly deformed K-feldspar
megacrysts, which avoided flattening. The
latest deformation in the gneisses (and meta-
sediments) of the eastern part of the Orlica-
Snieznik Dome is large-scale buckling (E- and
W-vergent F4 folds), developed under green-
schist-facies conditions.

Both the Snieznik granites and the Gierattéw
gneisses were affected by Variscan shearing
(D3), changing all the rocks into more or less
advanced (L, L-S, S-L) tectonites and (ultra)
mylonites. This shear deformation, present
in the gneisses and adjacent metasediments
(Jastrzebski, 2005; Murtezi, 2006), can, how-
ever, in no way be responsible for the migma-
tisation, as it was suggested by Turniak et al.
(2000), Don (2001), Lange et al. (2002, 2005)
and Don et al. (2003), as these processes cor-
respond to contradictory P-T conditions and
strain fields: mylonitisation requires high
pressure, whereas migmatisation is commonly
connected with some degree of decompression
and partial melt extraction. The high-T struc-
tures that occur exclusively in the Gieraltow
gneisses (migmatites, porphyroblastic gneiss-
es and banded gneisses) should consequently

be regarded as inherited from pre-Variscan
times.

6.3. Origin of the gneisses

Although the geochemical composition and
geochronological record of the Snieznik and
Gieraltow gneisses are beyond the scope of
the present contribution, some remarks con-
cerning the origin of the gneisses should be
made here. The magmatic provenance of the
Snieznik gneisses, suggested by earlier authors
on the basis of geochemical data and structural
observations (Borkowska et al., 1990; Don et
al., 1990, 2003; Don, 2001; Lange et al., 2002,
2005) is confirmed by structural and textural
features and also by the presence of several
types of enclaves. A single magmatic origin
of the Gieraltéw gneisses (Turniak et al., 2000;
Don 2001; Lange et al., 2002, 2005) is, how-
ever, unacceptable. An argument against this
hypothesis is that the reconstruction of the
original source for the migmatites and porphy-
roblastic gneisses is problematic because of the
advanced melt extraction and strong recrystal-
lisation. For the same reason, discrimination
of the tectonic settings of the metamorphic
rocks from their geochemistry (Turniak et al.
2000; Lange et al., 2002, 2005) should be consid-
ered with extreme caution. Ambiguous is the
genesis of the banded gneisses. Borkowska et
al. (1990) interpreted these rocks as the most
typical types of Gieraltow gneisses, and Don
et al. (2003) attributed them to the fine-grained
group of the Gierattéow complex. The structural
and petrographic outline of the banded gneiss-
es is similar to the Gieraltow group, but their
compositional layering is well developed and
most likely indicative of a sedimentary/pyro-
clastic origin of the protolith.

6.4. Interpretation of the chemical
diversification of the minerals

The mineral composition of the Snieznik and
Gieraltow gneisses is similar, but the chemical
composition of the minerals show meaning-
ful differences. The most noticeable differ-
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ence regards the chemical composition of the
feldspars. The plagioclase from the Gieraltow
gneisses is albite to and/esine ([An,_,.]), while
the plagioclase from the Snieznik gneisses is al-
bite and oligoclase ([An,,.]). The plagioclases
within the enclaves are either comparable with
the Snieznik gneisses (felsic microgranular en-
claves have [An, .| plagioclase) or resembling
the migmatites (the xenoliths and mesocratic
enclaves have [An_ ] plagioclases). Exsolution
textures (antiperthites) are common in all types
of the rocks, except in the banded gneisses. The
plagioclases from all types of gneiss show anor-
mal zonation (Ca-decrease from the core to the
rim of the grains), subsequently overprinted
by (sub)grain-edge albitisation. These differ-
ences can be interpreted as an effect of primary
variations in the source material (granitic prov-
enance of the Snieznik gneisses versus multi-
source genesis of the Gieraltow gneisses) and/
or the effect of metamorphic recrystallisation
(metablastesis and migmatisation). The lat-
ter would require external contamination and
enrichment of the Gieraltow gneisses during
metamorphism. The ductile behaviour of the
quartz and feldspars sets the minimum tem-
perature conditions during recrystallisation
at 500-600°C (see Passchier & Trouw, 1996),
which corresponds to amphibolite-facies meta-
morphism.

The structural dependence of the TiO, concen-
tration in the dark micas suggests differences in
temperature conditions between the Gierattoéw
gneisses and Snieznik gneisses, as the Ti con-
tent increases with increasing temperature (see
Forbes & Flower, 1974; Arima & Edgar, 1981;
Tronnes et al., 1985). The higher temperature
conditions that affected the Gierattow gneisses
possibly originated from migmatisation/metab-
lastesis.

The white micas in the gneisses of the east-
ern part of the Orlica-Snieznik Dome are most-
ly phengites (sporadically muscovites). Both
the amount of white mica and their Si-content
increase from the muscovite-out boundary at
low pressures towards higher pressures and
lower temperatures (cf. Spear, 1993). The ex-
perimentally determined (Massonne & Schrey-
er, 1987) increase in phengitic white mica and
the decrease in biotite and K-feldspar with

pressure, according to the simplified reaction
formula: phlogopite + K-feldspar + quartz +
H,O = phengite, can be used as a geobarom-
eter. The stable or decreasing Si (pfu) content
from the cores of the mica flakes towards their
rims, which is found in all gneisses, indicates
retrogressive way metamorphism. The high-
est value of Si pfu (3.43), which complies with
P = 1.1-1.6 GPa (in the assumed range of T =
400-800°C) was obtained from the Gieraltow
migmatites and the partially melted xenoliths
(mesocratic enclaves) enclosed in the Snieznik
gneisses. The highest Si content depends on
the structural context of the phengites in ac-
cordance with the D2 deformation structures.
The phengites in the Snieznik gneisses them-
selves indicate a pressure range of 0.6-1.3 GPa
(in the assumed range of T = 400-800°C). Iden-
tical results have been obtained from the felsic
microgranitoid enclaves. The phengites from
the porphyroblastic gneisses and the banded
gneisses indicate a pressure of 0.8-1.4 GPa (T =
400-800°C). As the phengite geobarometer has
been applied to rocks in which the minerals
are not in equilibrium and do not correspond
to the actual KMASH system (lack of AlLO,
phase), the results should be considered with
caution (see Massonne & Schreyer, 1987).

The garnets from the Snieznik and
Gieraltow gneisses are exceptionally Ca-rich,
and the implications have been dealt with
earlier (Borkowska et al., 1990, and referenc-
es therein). Grossular enrichment in garnets
is related to high-grade metamorphism and/
or the bulk composition of the protolith. The
oscillatory compositional zoning is due to
uninhibited diffusion of Ca, Fe, and Mg ions
during metamorphism (Spear, 1993). The gar-
net intergrowths within the porphyroblasts in
the Gieraltow gneisses and the xenoliths are
characterised by a distinct increase of the al-
mandine end-member if compared with the
garnets from the matrix. The Fe-garnets record
a considerable change in the ion admittance
during blastesis, and suggest a more complex/
longer (P)T metamorphic path of the Gieraltéw
gneisses (and the xenoliths) than holds for the
Snieznik gneisses themselves. Moreover, the
garnets from the Snieznik gneisses have a high-
er amount of the spessartine end-member (up
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to 17%) than those in the Gieraltow gneisses
(max. 8%), confirming different metamorphic
conditions for the two groups of rock, as the
spessartine content increases with decreasing
temperature (see Spear, 1993). The higher tem-
perature conditions must have occurred dur-
ing the migmatisation (and metablastesis) of
the Gieraltow gneisses. Unfortunately, all ther-
mometers requiring biotites and garnets be-
ing in equilibrium (Ferry & Spear, 1978; Bhat-
tacharya et al., 1982; Ganguly & Saxena, 1984;
Hoinkes, 1986; Berman, 1990; Dasgupta et al.,
1991) cannot be reliably applied, due to the
large amount of the grossular end-member or
the disequilibrium between garnet and biotite.
All results are thus underestimated and yield
~500-550 °C (assuming P = 0.6-1.4 GPa).
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