Calibrated geochemical ages of the Baltic Artesian Basin groundwater
PDF

Keywords

groundwater dating
isotope geochemistry
radiocarbon
radiokrypton

How to Cite

Samalavičius, V., & Arustienė, J. (2022). Calibrated geochemical ages of the Baltic Artesian Basin groundwater. Geologos, 28(3), 179–189. https://doi.org/10.14746/logos.2022.28.3.0001

Abstract

For the present study, geochemical ages were derived from radiocarbon and radiokrypton age calibration with groundwater chemical contents (Na+, K+, Mg2+, Ca2+, Cl−, SO42−, HCO3−). Geochemical ages may fill the dating gap (40–150 ka) between the isotope techniques mentioned. A case study of groundwater in the Baltic Artesian Basin has involved geochemical age calibration, data filtering (such as regional subdivision of the basin for more accurate results) and geochemical dating of groundwater of unknown age. Various approaches to interpretations of geochemical age results could be used. Bicarbonate and sulphate are sensitive to the hydrochemical environment and should be omitted from geochemical age calculations. Modern fresh groundwater samples should also be excluded from calibration in order to obtain more reliable trend lines. Calcium-sodium cation exchange occurs in deep aquifers and may be used for geochemical age determination of fossil groundwater.

https://doi.org/10.14746/logos.2022.28.3.0001
PDF

References

Atkinson, A.P., Cartwright, I., Gilfedder, B.S., Cendón, D.I., Unland, N.P. & Hofmann, H., 2014. Using 14C and 3H to understand groundwater flow and re-charge in an aquifer window. Hydrology and Earth System Sciences 18, 4951–4964. 10.5194/hess-18-4951-2014 DOI: https://doi.org/10.5194/hess-18-4951-2014

Babre, A., Kalvāns, A., Popovs, K., Retiķe, I., Dēliņa, A., Vaikmäe, R. & Martma, T., 2016. Pleistocene age paleo-groundwater inferred from water-stable isotope values in the central part of the Baltic Artesian Basin. Isotopes in Environmental and Health Studies 52, 706–725. 10.1080/10256016.2016.116841127142454 DOI: https://doi.org/10.1080/10256016.2016.1168411

Banys, J., Juodkazis, V. & Mokrik, R., 1979. Regional regularities of radiocarbon distribution in groundwaters of the Baltic artesian basin. Water Resources 6, 243–248 (in Russian).

Bethke, C.M. & Johnson, T. M., 2008. Groundwater age and groundwater age dating. Annual Review of Earth and Planetary Sciences 36, 121–152. 10.1146/annurev.earth.36.031207.124210 DOI: https://doi.org/10.1146/annurev.earth.36.031207.124210

Ciężkowski, W., Gröning, M., Leśniak, P.M., Weise, S.M. & Zuber, A., 1992. Origin and age of thermal waters in Cieplice Spa, Sudeten, Poland, inferred from isotope, chemical and noble gas data. Journal of Hydrology 140, 89–117. 10.1016/0022-1694(92)90236-O DOI: https://doi.org/10.1016/0022-1694(92)90236-O

Delina, A., Kalvans, A., Saks, T., Bethers, U. & Valdis, V., 2012. Highlights of groundwater research in the Baltic Artesian Basin. University of Latvia, Riga, 156 pp.

Edmunds, W.M. & Smedley, P.L., 2000. Residence time indicators in groundwater: The East Midlands Triassic sandstone aquifer. Applied Geochemistry 15, 737–752. 10.1016/S0883-2927(99)00079-7 DOI: https://doi.org/10.1016/S0883-2927(99)00079-7

Edmunds, W.M., Guendouz, A.H., Mamou, A., Moulla, A., Shand, P. & Zouari, K., 2003. Groundwater evolution in the Continental Intercalaire aquifer of southern Algeria and Tunisia: Trace element and isotopic indicators. Applied Geochemistry 18, 805–822. 10.1016/S0883-2927(02)00189-0 DOI: https://doi.org/10.1016/S0883-2927(02)00189-0

Gerber, C., Vaikmäe, R., Aeschbach, W., Babre, A., Jiang, W., Leuenberger, M., Lu, Z.T., Mokrik, R., Müller, P., Raidla, V., Saks, T., Waber, H.N., Weissbach, T., Zappala, J.C. & Purtschert, R., 2017. Using 81Kr and noble gases to characterize and date groundwater and brines in the Baltic Artesian Basin on the one-million-year timescale. Geochimica et Cosmochimica Acta 205, 187–210. 10.1016/j.gca.2017.01.033 DOI: https://doi.org/10.1016/j.gca.2017.01.033

IAEA, 2013. Isotope methods for dating old groundwater. IAEA, Vienna, 376 pp.

Juodkazis, V., 1980. Formation and consumption of the groundwater resources of Baltic States. Academy of Science, Vilnius, 176 pp. [in Russian]

Juodkazis, V., 2003. Regional hydrogeology foundations. Vilnius University Publishing House, Vilnius, 171 pp. [in Lithuanian]

Juodkazis, V. & Mikalauskas, V., 1994. Groundwater. [in:] Grigelis, A. & Kadūnas, V. (Eds): Geology of Lithuania. Science & Encyclopedia Publishing House, Vilnius, 334–398 [in Lithuanian]

Kotowski, T. & Najman, J., 2015. Results of the determination of He in Cenozoic aquifers using the GC method. Ground Water 53, suppl. 1, 47–55. 10.1111/gwat.1231125690932 DOI: https://doi.org/10.1111/gwat.12311

Levins, I., Levina, N. & Gavena, I., 1998. Latvian ground-water resources. State Geological Survey, Riga, 24 pp. [in Latvian]

Mace, E., Aalseth, C., Brandenberger, J., Day, A., Hoppe, E., Humble, P., Keillor, M., Kulongoski, J., Overman, C., Panisko, M., Seifert, A., White, S., Wilcox Freeburg, E. & Williams, R., 2017. Methods for using argon-39 to age-date groundwater using ultra-low-background proportional counting. Applied Radiation and Isotopes 126, 9–12. 10.1016/j.apradiso.2016.12.03728017500 DOI: https://doi.org/10.1016/j.apradiso.2016.12.037

Matsumoto, T., Chen, Z., Wei, W., Yang, G.M., Hu, S.M. & Zhang, X., 2018. Application of combined 81Kr and 4He chronometers to the dating of old groundwater in a tectonically active region of the North China Plain. Earth and Planetary Science Letters 493, 208–217. 10.1016/j.epsl.2018.04.042 DOI: https://doi.org/10.1016/j.epsl.2018.04.042

Mažeika, J., Martma, T., Petrošius, R., Jakimavičiūtė-Maselienė, V. & Skuratovič, Z., 2013. Radiocarbon and other environmental isotopes in the groundwater of the sites for a planned new nuclear power. Radiocarbon 55, 951–962. 10.1017/S0033822200058100 DOI: https://doi.org/10.1017/S0033822200058100

Mokrik, R., 1996. Pecularities of the formation of the isotopic composition of underground waters on the southern slope of the Baltic shield. Geologija 19, 16–25.

Mokrik, R., 1997. The palaeohydrogeology of the Baltic Basin. Vendian and Cambrian. Tartu University Press, 138 pp.

Mokrik, R., 2003. The paleohydrogeology of the Baltic basin. Vilnius University Publishing House, Vilnius, 333 pp. [in Lithuanian]

Mokrik, R. & Samalavičius, V., 2022. Interpretation of the anomalous groundwater chemistry and 234U/238U activity ratio disequilibrium in the northern part of the Baltic region. Lithuanian Journal of Physics 62, 21–43. 10.3952/physics.v62i1.4645 DOI: https://doi.org/10.3952/physics.v62i1.4645

Mokrik, R. & Vaikmäe, R., 1988. Paleohydrogeological aspects of Cm-V groundwater isotope content formation in Baltic region. in: Isotope geochemistry research in Baltic and Belarus, pp. 133–143 [in Russian]

Mokrik, R., Juodkazis, V., Štuopis, A. & Mažeika, J., 2014. Isotope geochemistry and modelling of the multi-aquifer system in the eastern part of Lithuania. Hydrogeology Journal 22, 925–941. 10.1007/s10040-014-1120-6 DOI: https://doi.org/10.1007/s10040-014-1120-6

Mokrik, R., Mažeika, J., Baublyte, A. & Martma, T., 2009. The groundwater age in the Middle-Upper Devonian aquifer system, Lithuania. Hydrogeology Journal 17, 871–889. 10.1007/s10040-008-0403-1 DOI: https://doi.org/10.1007/s10040-008-0403-1

Mokrik, R., Samalavičius, V., Bujanauskas, M. & Gregorauskas, M., 2021. Environmental isotopes and noble gas ages of the deep groundwater with coupled flow modelling in the Baltic artesian basin. Lithuanian Journal of Physics 61, 53–65. 10.3952/physics.v61i1.4407 DOI: https://doi.org/10.3952/physics.v61i1.4407

Morgenstern, U. & Daughney, C.J., 2012. Groundwater age for identification of baseline groundwater quality and impacts of land-use intensification - The National Groundwater Monitoring Programme of New Zealand. Hydrogeology Journal 456–457, 79–93.10. 1016/j.jhydrol.2012.06.010 DOI: https://doi.org/10.1016/j.jhydrol.2012.06.010

Pärn, J., Raidla, V., Vaikmäe, R., Martma, T., Ivask, J., Mokrik, R. & Erg, K., 2016. The recharge of glacial meltwater and its influence on the geochemical evolution of groundwater in the Ordovician-Cambrian aquifer system, northern part of the Baltic Artesian Basin. Applied Geochemistry 72, 125–135. 10.1016/j.apgeochem.2016.07.007 DOI: https://doi.org/10.1016/j.apgeochem.2016.07.007

Pärn, J., Affolter, S., Ivask, J., Johnson, S., Kirsimäe, K., Leuenberger, M., Martma, T., Raidla, V., Schloemer, S., Sepp, H., Vaikmäe, R. & Walraevens, K., 2018. Redox zonation and organic matter oxidation in palaeogroundwater of glacial origin from the Baltic Arte-sian Basin. Chemical Geology 488, 149–161. 10.1016/j.chemgeo.2018.04.027 DOI: https://doi.org/10.1016/j.chemgeo.2018.04.027

Pärn, J., Walraevens, K., van Camp, M., Raidla, V., Aeschbach, W., Friedrich, R., Ivask, J., Kaup, E., Mart-ma, T., Mažeika, J., Mokrik, R., Weissbach, T. & Vaikmäe, R., 2019. Dating of glacial palaeogroundwater in the Ordovician-Cambrian aquifer system, northern Baltic Artesian Basin. Applied Geochemistry 102, 64–76. 10.1016/j.apgeochem.2019.01.004 DOI: https://doi.org/10.1016/j.apgeochem.2019.01.004

Paukstys, B. & Narbutas, V., 1996. Gypsum karst of the Baltic republics. International Journal of Speleology 25, 279–284. 0.5038/1827-806X.25.3.21 DOI: https://doi.org/10.5038/1827-806X.25.3.21

Paukstys, B., Cooper, A.H. & Arustiene, J., 1999. Planning for gypsum geohazards in Lithuania and England. Engineering Geology 52, 93–103. 10.1016/S0013-7952(98)00061-1 DOI: https://doi.org/10.1016/S0013-7952(98)00061-1

Purtschert, R., Yokochi, R., Jiang, W., Lu, Z.T., Mueller, P., Zappala, J., van Heerden, E., Cason, E., Lau, M., Kieft, T.L., Gerber, C., Brennwald, M.S. & Onstott, T.C., 2021. Underground production of 81Kr detected in subsurface fluids. Geochimica et Cosmochimica Acta 295, 65–79. 10.1016/j.gca.2020.11.024 DOI: https://doi.org/10.1016/j.gca.2020.11.024

Raidla, V., Kirsimäe, K., Vaikmäe, R., Kaup, E. & Martma, T., 2012. Carbon isotope systematics of the Cambrian-Vendian aquifer system in the northern Baltic Basin: Implications to the age and evolution of ground-water. Applied Geochemistry 27, 2042–2052. 10.1016/j.apgeochem.2012.06.005 DOI: https://doi.org/10.1016/j.apgeochem.2012.06.005

Raidla, V., Pärn, J., Aeschbach, W., Czuppon, G., Ivask, J., Kiisk, M., Mokrik, R., Samalavičius, V., Suursoo, S., Tarros, S. & Weissbach, T., 2019a. Intrusion of saline water into a coastal aquifer containing palaeoground-water in the Viimsi Peninsula in Estonia. Geosciences 47, 9010047. 10.3390/geosciences9010047 DOI: https://doi.org/10.3390/geosciences9010047

Raidla, V., Pärn, J., Schloemer, S., Aeschbach, W., Czuppon, G., Ivask, J., Marandi, A., Sepp, H., Vaikmäe, R. & Kirsimäe, K., 2019b. Origin and formation of methane in groundwater of glacial origin from the Cambrian-Vendian aquifer system in Estonia. Geochimica et Cosmochimica Acta 251, 247–264. 10.1016/j.gca.2019.02.029 DOI: https://doi.org/10.1016/j.gca.2019.02.029

Samalavičius, V., 2022. The groundwater isotope-geochemistry anomalies formation features in The Baltic Artesian Basin. Vilnius University, 152 pp.

Samalavičius, V. & Mokrik, R., 2016. Tritium activity trend formation in groundwater of Quaternary aquifer system, south-eastern Lithuania. Geologija. Geografija 2, 173–181. 10.6001/geol-geogr.v2i4.3399 DOI: https://doi.org/10.6001/geol-geogr.v2i4.3399

Samalavičius, V. & Mokrik, R., 2021. Noble gas characteristics of the Baltic Artesian Basin groundwater. [in:] Bioateitis, gamtos ir gyvybės mokslų perspektyvos, 46 pp. (in Lithuanian)

Sterckx, A., Lemieux, J.M. & Vaikmäe, R., 2017. Representing glaciations and subglacial processes in hydro-geological models: A numerical investigation. Geofluids 2017, 4598902. 10.1155/2017/4598902 DOI: https://doi.org/10.1155/2017/4598902

Sterckx, A., Lemieux, J.-M. & Vaikmäe, R., 2018. Assessment of paleo-recharge under the Fennoscandian Ice Sheet and its impact on regional groundwater flow in the northern Baltic Artesian Basin using a numerical model. Hydrogeology Journal 26, 2793–2810. 10.1007/s10040-018-1838-7 DOI: https://doi.org/10.1007/s10040-018-1838-7

Štuopis, A., Juodkazis, V. & Mokrik, R., 2012. The Quaternary aquifer system flow model by chemical and tritium isotope data: Case of south-east Lithuania. Baltica 25, 91–98. 10.5200/baltica.2012.25.09 DOI: https://doi.org/10.5200/baltica.2012.25.09

Sturchio, N.C., Du, X., Purtschert, R., Lehmann, B.E., Sultan, M., Patterson, L.J., Lu, Z.-T., Müller, P., Bigler, T., Bailey, K., O’Connor, T.P., Young, L., Lorenzo, R., Becker, R., el Alfy, Z., el Kaliouby, B., Dawood, Y. & Abdallah, A.M.A., 2004. One million year old ground-water in the Sahara revealed by krypton-81 and chlorine-36. Geophysical Research Letters 31, 019234. 10.1029/2003GL019234 DOI: https://doi.org/10.1029/2003GL019234

Sturchio, N.C., Kuhlman, K.L., Yokochi, R., Probst, P.C., Jiang, W., Lu, Z.T., Mueller, P. & Yang, G.M., 2014. Krypton-81 in groundwater of the Culebra Dolomite near the Waste Isolation Pilot Plant, New Mexico. Journal of Contaminant Hydrology 160, 12–20. 10.1016/j.jconhyd.2014.02.00224594409 DOI: https://doi.org/10.1016/j.jconhyd.2014.02.002

Torgersen, T. & Stute, M., 2013. Helium (and other noble gases) as a tool for the understanding long time-scale groundwater transport. [in:] Isotope methods for dating old groundwater. International Atomic Energy Agency, Vienna, 376.

Vaikmäe, R., Vallner, L., Loosli, H.H., Blaser, P.C. & Juil-lard-Tardent, M., 2001. Palaeogroundwater of glacial origin in the Cambrian-Vendian aquifer of northern Estonia. Geological Society, London, Special Publications 189, 17–27. 10.1144/GSL.SP.2001.189.01.03 DOI: https://doi.org/10.1144/GSL.SP.2001.189.01.03

Vaikmäe, R., Martma, T., Ivask, J., Kaup, E., Raidla, V., Rajamäe, R., Vallner, L., Mokrik, R., Samalavičius, V., Kalvāns, A., Babre, A., Marandi, A., Hints, O. & Pärn, J., 2020. Baltic groundwater isotope-geochemistry database. 10.15152/GEO.488.

Virbulis, J., Bethers, U., Saks, T., Sennikovs, J. & Timuhins, A., 2013. Hydrogeological model of the Baltic Artesian Basin. Hydrogeology Journal 21, 845–862. 10.1007/s10040-013-0970-7 DOI: https://doi.org/10.1007/s10040-013-0970-7

Winsberg, L., 1956. The production of chlorine-39 in the lower atmosphere by cosmic radiation. Geochimica et Cosmochimica Acta 9, 183–189. 10.1016/0016-7037(56)90048-5 DOI: https://doi.org/10.1016/0016-7037(56)90048-5

Yezhova, M., Polyakov, V., Tkachenko, A., Savitski, L. & Belkina, V., 1996. Paleowaters of North Estonia and their influence on changes of resources and quality of fresh groundwaters of large coastal water supplies. Geology 19, 37–40. 10.1016/S0262-1762(99)81256-5 DOI: https://doi.org/10.1016/S0262-1762(99)81256-5

Zuber, A., Weise, S.M., Osenbrück, K., Grabczak, J. & Ciężkowski, W., 1995. Age and recharge area of thermal waters in Lądek Spa (Sudeten, Poland) deduced from environmental isotope and noble gas data. Applied Geochemistry 167, 327–349. 10.1016/0022-1694(94)02587-2 DOI: https://doi.org/10.1016/0022-1694(94)02587-2

Zuber, A., Weise, S.M., Osenbriick, K. & Mateńko, T., 1997. Origin and age of saline waters in Busko Spa (Southern Poland) determined by isotope, noble gas and hydrochemical methods: evidence of interglacial and pre-Quaternary warm climate recharges. Applied Geochemistry 12, 643–660. 10.1016/S0883-2927(97)00020-6 DOI: https://doi.org/10.1016/S0883-2927(97)00020-6

Zuzevičius, A., Mažeika, J. & Baltrūnas, V., 2007. A model of brakish groundwater formation in the Nemunas River Valley. Geologija 60, 63–75.