Radiometric dating of the Ootun palaeosol and its implication for the age of the Shifting Sand in Ngorongoro Lengai Geopark (Arusha, Tanzania)


Oldoinyo Lengai volcano
ash/tephra dunes
carbon-14 (14C) dating
UNESCO Global Geopark

How to Cite

Makongoro, M. Z., Vegi, M. R., Vuai, S. A. H., & Msabi, M. M. (2022). Radiometric dating of the Ootun palaeosol and its implication for the age of the Shifting Sand in Ngorongoro Lengai Geopark (Arusha, Tanzania). Geologos, 28(3), 203–215.


The Shifting Sand is a barchan dune in Ngorongoro Lengai Geopark in Arusha, Tanzania. The geopark, a UNESCO World Heritage Site, is protected by the Ngorongoro Conservation Area Authority. The dune ranks amongst the main geosites that have been attracting numerous tourists; it formed as a result of volcanic ash eruptions that led to tephra deposition on a palaeosol (palaeosurface) in the Ootun area. The easterly winds modified the ash into dunes and headed to the Olduvai Gorge area. The age of the Shifting Sand dune is not known in detail. In the present study, we employ the radiocarbon (14C) dating method to date a subsurface palaeosol bed in the Ootun area where the tephra (i.e., original Shifting Sand materials) was originally deposited. An Accelerator Mass Spectrometer was used to determine the carbon-14 date of the palaeosol so as to estimate the age of the Shifting Sand dune, and an Energy Dispersive X-ray Fluorescent Spectrometer to determine the chemical composition of the Shifting Sand material and the tephra bed for correlative purposes. A radiocarbon (14C) date of 2510 ± 30 years BP for the Ootun palaeosol was obtained to estimate the minimum age of the Ootun subsurface tephra deposited in the area; since then, this started to move westwards towards the Olduvai Gorge area, where it is today defined as the Shifting Sand. The current findings add educational value to the Shifting Sand in Ngorongoro Lengai Geopark and improve our understanding of the eruption history of the Gregory Rift volcanoes.


Alloway, B.V., Larsen, G., Lowe, D.J., Shane, P.A.R. & Westgate, J.A., 2007. Tephrochronology. [In:] A.E. Scott (Ed.): Quaternary Stratigraphy. Encyclopedia of Quaternary Science. Elsevier, Oxford, pp. 2869–2898. 10.1016/B0-44-452747-8/00075-2 DOI:

Belsky, A.J. & Amundson, R.G., 1986. Sixty years of successional history behind a moving dune near Olduvai Gorge, Tanzania, Biotropica 18, 231–235. 10.2307/2388490 DOI:

Cas, R.A.F. & Wright, J.V., 1987. Volcanic successions-modern and ancient. Chapman & Hall, 528 pp.10.1007/978-94-009-3167-1 DOI:

Cowie, J.D., 1964. Aokautere ash in the Manawatu district, New Zealand. New Zealand Journal of Geology and Geophysics 7, 67–77. 10.1080/00288306.1964.10420157 DOI:

Dominguez, L., Bonadonna, C., Forte, P., Jarvis, P.A., Cioni, R., Mingari, L., Bran, D. & Panebianco, J.E., 2020. Aeolian remobilisation of the 2011-Cordón Caulle tephra-fallout deposit: example of an important process in the life cycle of volcanic ash. Frontiers in Earth Science 7, 343. 10.3389/feart.2019.00343 DOI:

Eder, W. & Patzak, M., 2004. Geoparks – geological attractions: A tool for public education, recreation and sustainable economic development. Episodes 27, 162–164. 10.18814/epiiugs/2004/v27i3/001 DOI:

Freymann, P.B. & Krell, F., 2011. Dung beetles (Coleoptera: Scarabaeidae) trapped by a moving sand dune near Olduvai Gorge, Tanzania. The Coleopterists Bulletin 65, 422–424. 10.1649/072.065.0420 DOI:

Gudmundsdottir, E.R., Eiriksson, J. & Larsen, G., 2011. Identification and definition of primary and reworked tephra in late glacial and Holocene marine shelf sediments off North Iceland. Journal of Quaternary Science 26, 589–602. 10.1002/jqs.1474 DOI:

Guilbaud, M., Alcalá-Reygosa, J., Schimmelpfennig, I., Arce, J.L. & ASTER Team, 2022. Testing less-conventional methods to date a late-Pleistocene to Holocene eruption: Radiocarbon dating of paleosols and 36Cl exposure ages at Pelado volcano, Sierra Chichinautzin, Central Mexico, Quaternary Geochronology 68, 101252. 10.1016/j.quageo.2022.101252 DOI:

Hay, R.L., 1976. Geology of the Olduvai Gorge. Berkeley, California, University of California Press, 220 pp. 10.1525/9780520334229 DOI:

Hogg, G.A., Hua, Q., Blackwell, P.G., Niu, M., Buck, C.E., Guilderson, T.P., Heaton, T.J., Palmer, J.G., Reimer, P.J. & Reimer, R.W., 2013. SHCal13 southern hemisphere calibration, 0–50,000 Years cal BP. Radiocarbon 55, 1889–1903. 10.2458/azu_js_rc.55.16783 DOI:

Kafumu, D.P., 2020. The geochemical compositions and origin of dunes in the Olduvai Gorge–eastern Serengeti plains, northern Tanzania. Tanzania Journal of Science 46, 241–253.

Keller, J. & Krafft, M., 1990. Effusive natrocarbonatite activity of Oldoinyo Lengai, June 1988. Bulletin of Volcanology 52, 629–645. 10.1007/BF00301213 DOI:

Keller, J., Zaitsev, A.N. & Wiedenmann, D., 2006. Primary magmas at Oldoinyo Lengai: The role of olivine melilitites. Lithos 91, 150–172. 10.1016/j.lithos.2006.03.014 DOI:

Le Bas, M.J., Le Maitre, R.W., Streckeisen, A. & Zanettin, B., 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology 27, 745–750. 10.1093/petrology/27.3.745 DOI:

Lowe, D.J., 2011. Tephrochronology and its application: A review. Quaternary Geochronology 6, 107–153. 10.1016/j.quageo.2010.08.003 DOI:

NCAA, 2018. Ngorongoro Conservation Authority. Retrieved from 04.08.2022.

Németh, K., Cronin S.J., Stewart, R.B. & Charley D., 2009. Intra- and extra-caldera volcanoclastic facies and geomorphic characteristics of a frequently active mafic island–arc volcano, Ambrym Island, Vanuatu. Sedimentary Geology 220, 256–270. 10.1016/j.sedgeo.2009.04.019 DOI:

McKee, E.D., 1979. Dune forms and wind regime. [In:] E.D. McKee (Ed.): A study of global sand seas. Professional Paper 1052. US Geological Survey, US Government Printing Office, Washington, pp. 1–19. 10.3133/pp1052 DOI:

Mc Keever, P.J. & Zouros, N., 2005. Geoparks: Celebrating earth heritage, sustaining local communities. Episodes 28, 274–278. 10.18814/epiiugs/2005/v28i4/006 DOI:

McPhie, J., George, P.L., Walker, G.P.L. & Christiansen, R.L., 1990. Phreatomagmatic and phreatic fall and surge deposits from explosions at Kilauea volcano, Hawaii, 1790 A.D.: Keanakakoi Ash Member. Bulletin of Volcanology 52, 334–354. 10.1007/BF00302047 DOI:

Mitsuru, O. & Toshio N., 2003. Radiocarbon dating of tephra layers: recent progress in Japan. Quaternary International 105, 49–56. 10.1016/S1040-6182(02)00150-7

Okuno, M. & Nakamura, T., 2003. Radiocarbon dating of tephra layers: recent progress in Japan. Quaternary International 105, 49–56. 10.1016/S1040-6182(02)00150-7 DOI:

Okuno, M., Nakamura, T., Moriwaki H. & Kobayashi, T., 1997. AMS radiocarbon dating of the Sakurajima tephra group, southern Kyushu, Japan. Nuclear Instruments and Methods in Physics Research 123, 470–474. 10.1016/S0168-583X(96)00614-3 DOI:

Pickering, R., 1958. Oldoinyo Ogol (Serengeti Plain-East) Map. Geological Survey Department, Dodoma, Tanganyika.

Ramsey, C.B., 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360. 10.1017/S0033822200033865 DOI:

Raupach, M.R. & Finnigan, J.J., 1997. The influence of topography on meteorological variables and surface-atmosphere interactions. Journal of Hydrology 190, 182–213. 10.1016/S0022-1694(96)03127-7 DOI:

Shalabi, F.I., Mazher, J., Khan, K., Albaqshi, A., Alamer, A., Barsheed, A. & Alshuaibi, O., 2021. Influence of lime and volcanic ash on the properties of dune sand as sustainable construction materials. Materials 14, 645. 10.3390/ma14030645786679733573361 DOI:

Sherrod, D.R., Magigita, M.M. & Kwelwa, S., 2013. Geologic map of Oldoinyo Lengai and surroundings, Arusha region, United Republic of Tanzania. US Geological Survey Open-File Report 2013-1306, Pamphlet, 65 pp. 10.3133/ofr20131306 DOI:

Tsoar, H., 2001. Types of aeolian dunes and their formation. [In:] N.J. Balmforth & A. Provenzale (Eds): Geomorphological fluid mechanics. Lecture Notes in Physics. Springer, Berlin, Heidelberg, pp. 403–429. 10.1007/3-540-45670-8_17 DOI:

UNESCO, 2022. Accesed on 05.10.2022.

Zaitsev, A.N., 2010. Nyerereite from calcite carbonatite at the Kerimasi volcano, northern Tanzania. Geology of Ore Deposits 52, 630–664. 10.1134/S1075701510070159 DOI:

Zehetner, F., Gerzabek, M. H., Shellnutt, J., Ottner, F., Lüthgens, C., Miggins, D.P., Chen, C., Candra, N., Schmidt, G., Rechberger, M.V. & Sprafke, T., 2020. Linking rock age and soil cover across four islands on the Galápagos archipelago. Journal of South American Earth Sciences 99, 102500. 10.1016/j.jsames.2020.102500 DOI:

Żaba, J. & Gaidzik, K., 2011. The Ngorongoro crater as the biggest geotouristic attraction of the Gregory Rift (Northern Tanzania, Africa) – geological heritage. Geotourism 24-25, 27–46. 10.7494/geotour.2011.24-25.27 DOI: