Radiometric dating of the Ootun palaeosol and its implication for the age of the Shifting Sand in Ngorongoro Lengai Geopark (Arusha, Tanzania)
PDF

Keywords

Oldoinyo Lengai volcano
ash/tephra dunes
carbon-14 (14C) dating
UNESCO Global Geopark

How to Cite

Makongoro, M. Z., Vegi, M. R., Vuai, S. A. H., & Msabi, M. M. (2022). Radiometric dating of the Ootun palaeosol and its implication for the age of the Shifting Sand in Ngorongoro Lengai Geopark (Arusha, Tanzania). Geologos, 28(3), 203–215. https://doi.org/10.14746/logos.2022.28.3.0003

Abstract

The Shifting Sand is a barchan dune in Ngorongoro Lengai Geopark in Arusha, Tanzania. The geopark, a UNESCO World Heritage Site, is protected by the Ngorongoro Conservation Area Authority. The dune ranks amongst the main geosites that have been attracting numerous tourists; it formed as a result of volcanic ash eruptions that led to tephra deposition on a palaeosol (palaeosurface) in the Ootun area. The easterly winds modified the ash into dunes and headed to the Olduvai Gorge area. The age of the Shifting Sand dune is not known in detail. In the present study, we employ the radiocarbon (14C) dating method to date a subsurface palaeosol bed in the Ootun area where the tephra (i.e., original Shifting Sand materials) was originally deposited. An Accelerator Mass Spectrometer was used to determine the carbon-14 date of the palaeosol so as to estimate the age of the Shifting Sand dune, and an Energy Dispersive X-ray Fluorescent Spectrometer to determine the chemical composition of the Shifting Sand material and the tephra bed for correlative purposes. A radiocarbon (14C) date of 2510 ± 30 years BP for the Ootun palaeosol was obtained to estimate the minimum age of the Ootun subsurface tephra deposited in the area; since then, this started to move westwards towards the Olduvai Gorge area, where it is today defined as the Shifting Sand. The current findings add educational value to the Shifting Sand in Ngorongoro Lengai Geopark and improve our understanding of the eruption history of the Gregory Rift volcanoes.

https://doi.org/10.14746/logos.2022.28.3.0003
PDF

References

Alloway, B.V., Larsen, G., Lowe, D.J., Shane, P.A.R. & Westgate, J.A., 2007. Tephrochronology. [In:] A.E. Scott (Ed.): Quaternary Stratigraphy. Encyclopedia of Quaternary Science. Elsevier, Oxford, pp. 2869–2898. 10.1016/B0-44-452747-8/00075-2 DOI: https://doi.org/10.1016/B0-44-452747-8/00075-2

Belsky, A.J. & Amundson, R.G., 1986. Sixty years of successional history behind a moving dune near Olduvai Gorge, Tanzania, Biotropica 18, 231–235. 10.2307/2388490 DOI: https://doi.org/10.2307/2388490

Cas, R.A.F. & Wright, J.V., 1987. Volcanic successions-modern and ancient. Chapman & Hall, 528 pp.10.1007/978-94-009-3167-1 DOI: https://doi.org/10.1007/978-94-009-3167-1

Cowie, J.D., 1964. Aokautere ash in the Manawatu district, New Zealand. New Zealand Journal of Geology and Geophysics 7, 67–77. 10.1080/00288306.1964.10420157 DOI: https://doi.org/10.1080/00288306.1964.10420157

Dominguez, L., Bonadonna, C., Forte, P., Jarvis, P.A., Cioni, R., Mingari, L., Bran, D. & Panebianco, J.E., 2020. Aeolian remobilisation of the 2011-Cordón Caulle tephra-fallout deposit: example of an important process in the life cycle of volcanic ash. Frontiers in Earth Science 7, 343. 10.3389/feart.2019.00343 DOI: https://doi.org/10.3389/feart.2019.00343

Eder, W. & Patzak, M., 2004. Geoparks – geological attractions: A tool for public education, recreation and sustainable economic development. Episodes 27, 162–164. 10.18814/epiiugs/2004/v27i3/001 DOI: https://doi.org/10.18814/epiiugs/2004/v27i3/001

Freymann, P.B. & Krell, F., 2011. Dung beetles (Coleoptera: Scarabaeidae) trapped by a moving sand dune near Olduvai Gorge, Tanzania. The Coleopterists Bulletin 65, 422–424. 10.1649/072.065.0420 DOI: https://doi.org/10.1649/072.065.0420

Gudmundsdottir, E.R., Eiriksson, J. & Larsen, G., 2011. Identification and definition of primary and reworked tephra in late glacial and Holocene marine shelf sediments off North Iceland. Journal of Quaternary Science 26, 589–602. 10.1002/jqs.1474 DOI: https://doi.org/10.1002/jqs.1474

Guilbaud, M., Alcalá-Reygosa, J., Schimmelpfennig, I., Arce, J.L. & ASTER Team, 2022. Testing less-conventional methods to date a late-Pleistocene to Holocene eruption: Radiocarbon dating of paleosols and 36Cl exposure ages at Pelado volcano, Sierra Chichinautzin, Central Mexico, Quaternary Geochronology 68, 101252. 10.1016/j.quageo.2022.101252 DOI: https://doi.org/10.1016/j.quageo.2022.101252

Hay, R.L., 1976. Geology of the Olduvai Gorge. Berkeley, California, University of California Press, 220 pp. 10.1525/9780520334229 DOI: https://doi.org/10.1525/9780520334229

Hogg, G.A., Hua, Q., Blackwell, P.G., Niu, M., Buck, C.E., Guilderson, T.P., Heaton, T.J., Palmer, J.G., Reimer, P.J. & Reimer, R.W., 2013. SHCal13 southern hemisphere calibration, 0–50,000 Years cal BP. Radiocarbon 55, 1889–1903. 10.2458/azu_js_rc.55.16783 DOI: https://doi.org/10.2458/azu_js_rc.55.16783

Kafumu, D.P., 2020. The geochemical compositions and origin of dunes in the Olduvai Gorge–eastern Serengeti plains, northern Tanzania. Tanzania Journal of Science 46, 241–253.

Keller, J. & Krafft, M., 1990. Effusive natrocarbonatite activity of Oldoinyo Lengai, June 1988. Bulletin of Volcanology 52, 629–645. 10.1007/BF00301213 DOI: https://doi.org/10.1007/BF00301213

Keller, J., Zaitsev, A.N. & Wiedenmann, D., 2006. Primary magmas at Oldoinyo Lengai: The role of olivine melilitites. Lithos 91, 150–172. 10.1016/j.lithos.2006.03.014 DOI: https://doi.org/10.1016/j.lithos.2006.03.014

Le Bas, M.J., Le Maitre, R.W., Streckeisen, A. & Zanettin, B., 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology 27, 745–750. 10.1093/petrology/27.3.745 DOI: https://doi.org/10.1093/petrology/27.3.745

Lowe, D.J., 2011. Tephrochronology and its application: A review. Quaternary Geochronology 6, 107–153. 10.1016/j.quageo.2010.08.003 DOI: https://doi.org/10.1016/j.quageo.2010.08.003

NCAA, 2018. Ngorongoro Conservation Authority. Retrieved from https://www.ncaa.go.tz/whattosee/shifting-sand 04.08.2022.

Németh, K., Cronin S.J., Stewart, R.B. & Charley D., 2009. Intra- and extra-caldera volcanoclastic facies and geomorphic characteristics of a frequently active mafic island–arc volcano, Ambrym Island, Vanuatu. Sedimentary Geology 220, 256–270. 10.1016/j.sedgeo.2009.04.019 DOI: https://doi.org/10.1016/j.sedgeo.2009.04.019

McKee, E.D., 1979. Dune forms and wind regime. [In:] E.D. McKee (Ed.): A study of global sand seas. Professional Paper 1052. US Geological Survey, US Government Printing Office, Washington, pp. 1–19. 10.3133/pp1052 DOI: https://doi.org/10.3133/pp1052

Mc Keever, P.J. & Zouros, N., 2005. Geoparks: Celebrating earth heritage, sustaining local communities. Episodes 28, 274–278. 10.18814/epiiugs/2005/v28i4/006 DOI: https://doi.org/10.18814/epiiugs/2005/v28i4/006

McPhie, J., George, P.L., Walker, G.P.L. & Christiansen, R.L., 1990. Phreatomagmatic and phreatic fall and surge deposits from explosions at Kilauea volcano, Hawaii, 1790 A.D.: Keanakakoi Ash Member. Bulletin of Volcanology 52, 334–354. 10.1007/BF00302047 DOI: https://doi.org/10.1007/BF00302047

Mitsuru, O. & Toshio N., 2003. Radiocarbon dating of tephra layers: recent progress in Japan. Quaternary International 105, 49–56. 10.1016/S1040-6182(02)00150-7

Okuno, M. & Nakamura, T., 2003. Radiocarbon dating of tephra layers: recent progress in Japan. Quaternary International 105, 49–56. 10.1016/S1040-6182(02)00150-7 DOI: https://doi.org/10.1016/S1040-6182(02)00150-7

Okuno, M., Nakamura, T., Moriwaki H. & Kobayashi, T., 1997. AMS radiocarbon dating of the Sakurajima tephra group, southern Kyushu, Japan. Nuclear Instruments and Methods in Physics Research 123, 470–474. 10.1016/S0168-583X(96)00614-3 DOI: https://doi.org/10.1016/S0168-583X(96)00614-3

Pickering, R., 1958. Oldoinyo Ogol (Serengeti Plain-East) Map. Geological Survey Department, Dodoma, Tanganyika.

Ramsey, C.B., 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360. 10.1017/S0033822200033865 DOI: https://doi.org/10.1017/S0033822200033865

Raupach, M.R. & Finnigan, J.J., 1997. The influence of topography on meteorological variables and surface-atmosphere interactions. Journal of Hydrology 190, 182–213. 10.1016/S0022-1694(96)03127-7 DOI: https://doi.org/10.1016/S0022-1694(96)03127-7

Shalabi, F.I., Mazher, J., Khan, K., Albaqshi, A., Alamer, A., Barsheed, A. & Alshuaibi, O., 2021. Influence of lime and volcanic ash on the properties of dune sand as sustainable construction materials. Materials 14, 645. 10.3390/ma14030645786679733573361 DOI: https://doi.org/10.3390/ma14030645

Sherrod, D.R., Magigita, M.M. & Kwelwa, S., 2013. Geologic map of Oldoinyo Lengai and surroundings, Arusha region, United Republic of Tanzania. US Geological Survey Open-File Report 2013-1306, Pamphlet, 65 pp. 10.3133/ofr20131306 DOI: https://doi.org/10.3133/ofr20131306

Tsoar, H., 2001. Types of aeolian dunes and their formation. [In:] N.J. Balmforth & A. Provenzale (Eds): Geomorphological fluid mechanics. Lecture Notes in Physics. Springer, Berlin, Heidelberg, pp. 403–429. 10.1007/3-540-45670-8_17 DOI: https://doi.org/10.1007/3-540-45670-8_17

UNESCO, 2022. https://en.unesco.org/global-geoparks/ngorongoro-lengai. Accesed on 05.10.2022.

Zaitsev, A.N., 2010. Nyerereite from calcite carbonatite at the Kerimasi volcano, northern Tanzania. Geology of Ore Deposits 52, 630–664. 10.1134/S1075701510070159 DOI: https://doi.org/10.1134/S1075701510070159

Zehetner, F., Gerzabek, M. H., Shellnutt, J., Ottner, F., Lüthgens, C., Miggins, D.P., Chen, C., Candra, N., Schmidt, G., Rechberger, M.V. & Sprafke, T., 2020. Linking rock age and soil cover across four islands on the Galápagos archipelago. Journal of South American Earth Sciences 99, 102500. 10.1016/j.jsames.2020.102500 DOI: https://doi.org/10.1016/j.jsames.2020.102500

Żaba, J. & Gaidzik, K., 2011. The Ngorongoro crater as the biggest geotouristic attraction of the Gregory Rift (Northern Tanzania, Africa) – geological heritage. Geotourism 24-25, 27–46. 10.7494/geotour.2011.24-25.27 DOI: https://doi.org/10.7494/geotour.2011.24-25.27