Abstract
Geological mapping undoubtedly plays an important role in several studies and remote sensing data are of great significance in geological mapping, particularly in poorly mapped areas situated in inaccessible regions. In the present study, Principal Component Analysis (PCA), Band Rationing (BR) and Minimum Noise Fraction (MNF) algorithms are applied to map lithological units and extract lineaments in the Amezri-Amassine area, by using multispectral ASTER image and global digital elevation model (GDEM) data for the first time. Following preprocessing of ASTER images, advanced image algorithms such as PCA, BR and MNF analyses are applied to the 9ASTER bands. Validation of the resultant maps has relied on matching lithological boundaries and faults in the study area and on the basis of pre-existing geological maps. In addition to the PCA image, a new band-ratio image, 4/6–5/8–4/5, as adopted in the present work, provides high accuracy in discriminating lithological units. The MNF transformation reveals improvement over previous enhancement techniques, in detailing most rock units in the area. Hence, results derived from the enhancement techniques show a good correlation with the existing litho-structural map of the study area. In addition, the present results have allowed to update this map by identifying new lithological units and structural lineaments. Consequently, the methodology followed here has provided satisfactory results and has demonstrated the high potential of multispectral ASTER data for improving lithological discrimination and lineament extraction.
References
Adiri, Z., El Harti, A., Jellouli, A., Lhissou, R., Maacha, L., Azmi, M., Zouhair, M. & Bachaoui, E.M., 2017. Comparison of Landsat-8, ASTER and Sentinel 1 satellite remote sensing data in automatic lineaments extraction: A case study of Sidi Flah-Bouskour inlier, Moroccan Anti Atlas. Advances in Space Research 60, 2355–2367. DOI: https://doi.org/10.1016/j.asr.2017.09.006
Ahmadi, H. & Kalkan, K., 2021. Mapping of Ophiolitic Complex in Logar and surrounding areas (SE Afghanistan) with ASTER data. Journal of the Indian Society of Remote Sensing 49, 1271–1284. DOI: https://doi.org/10.1007/s12524-021-01319-4
Ait Addi, A. & Chafiki, D., 2013. Sedimentary evolution and palaeogeography of mid-Jurassic deposits of the Central High Atlas, Morocco. Journal of African Earth Sciences 84, 54–69. DOI: https://doi.org/10.1016/j.jafrearsci.2013.04.002
Amer, R., El Mezayen, A. & Hasanein, M., 2016. ASTER spectral analysis for alteration minerals associated with gold mineralization. Ore Geology Reviews 75, 239–251. DOI: https://doi.org/10.1016/j.oregeorev.2015.12.008
Benammi, M. & Toto, E.A., 2005. Tectonique tangentielle Atlasique dans les bassins synorogeniques Neogenes de Ourzazate et D’aït Kandoula (bordure sud du Haut Atlas, Central Maroc). Revista de la Sociedad Geológica de España 18, 151–162.
Benammi, M., Arbi Toto, E. & Chakiri, S., 2001. Les chevauchements frontaux du Haut Atlas central marocain : styles structuraux et taux de raccourcissement différentiel entre les versants nord et sud. Comptes Rendus de l’Académie des Sciences – Series IIA – Earth and Planetary Science 333, 241–247. DOI: https://doi.org/10.1016/S1251-8050(01)01628-7
Bentahar, I. & Raji, M., 2021. Comparison of Landsat OLI, ASTER, and Sentinel 2A data in lithological mapping : A case study of Rich area (Central High Atlas, Morocco). Advances in Space Research 67, 945–963. DOI: https://doi.org/10.1016/j.asr.2020.10.037
Bentahar, I., Raji, M. & Si Mhamdi, H., 2020. Fracture network mapping using Landsat-8 OLI, Sentinel-2A, ASTER, and ASTER-GDEM data, in the Rich area (Central High Atlas, Morocco). Arabian Journal of Geo-sciences 13, 768. DOI: https://doi.org/10.1007/s12517-020-05736-6
Beygi, S., Talovina, I.V., Tadayon, M. & Pour, A.B., 2021. Alteration and structural features mapping in Kacho-Mesqal zone, Central Iran using ASTER remote sensing data for porphyry copper exploration. International Journal of Image and Data Fusion 12, 155–175. DOI: https://doi.org/10.1080/19479832.2020.1838628
Çörtük, R.M., Çelik, Ö.F., Alkan, A., Özkan, M. & Özyavaş, A., 2020. Distribution of rocks in Pınarbaşı Ophiolite from central Anatolia (Turkey) based on analysis of ASTER and Landsat-8 data. Geological Journal 55, 6810–6822. DOI: https://doi.org/10.1002/gj.3844
De Jong, C., Cappy, S., Finckh, M. & Funk, D., 2008. A transdisciplinary analysis of water problems in the mountainous karst areas of Morocco. Engineering Geology 99, 228–238. DOI: https://doi.org/10.1016/j.enggeo.2007.11.021
Domènech, M., Teixell, A., Babault, J. & Arboleya, M.-L., 2015. The inverted Triassic rift of the Marrakech High Atlas: A reappraisal of basin geometries and faulting histories. Tectonophysics 663, 177–191. DOI: https://doi.org/10.1016/j.tecto.2015.03.017
Eldosouky, A.M., El-Qassas, R.A.Y., Pour, A.B., Mohamed, H. & Sekandari, M., 2021. Integration of ASTER satellite imagery and 3D inversion of aeromagnetic data for deep mineral exploration. Advances in Space Research 68, 3641–3662. DOI: https://doi.org/10.1016/j.asr.2021.07.016
Ellero, A., Malusà, M.G., Ottria, G., Ouanaimi, H. & Froitzheim, N., 2020. Transpressional structuring of the High Atlas belt, Morocco. Journal of Structural Geology 135, 104021. DOI: https://doi.org/10.1016/j.jsg.2020.104021
Ettachfini, E.M., Souhel, A., Andreu, B. & Caron, M., 2005. La limite Cénomanien-Turonien dans le Haut Atlas central, Maroc. Geobios 38, 57–68. DOI: https://doi.org/10.1016/j.geobios.2003.07.003
Farah, A., Algouti, Ahmed, Algouti, Abdellah, El badaoui, K., Errami, M. & Ifkirne, M., 2021. Lithological mapping and automatic lineament extraction using ASTER and Gdem data in the Imini-Ounilla-Asfalou district, South High Atlas of Marrakech, Morocco. E3S Web Conference 240, 04002. DOI: https://doi.org/10.1051/e3sconf/202124004002
Garain, S., Mitra, D. & Das, P., 2021. Mapping hydrocarbon microseepage prospect areas by integrated studies of ASTER processing, geochemistry and geophysical surveys in Assam-Arakan Fold Belt, NE India. International Journal of Applied Earth Observation and Geoinformation 102, 102432. DOI: https://doi.org/10.1016/j.jag.2021.102432
Ge, W., Cheng, Q., Jing, L., Armenakis, C. & Ding, H., 2018. Lithological discrimination using ASTER and Sentinel-2A in the Shibanjing ophiolite complex of Beishan orogenic in Inner Mongolia, China. Advances in Space Research 62, 1702–1716. DOI: https://doi.org/10.1016/j.asr.2018.06.036
Hewson, R., Robson, D., Carlton, A. & Gilmore, P., 2017. Geological application of ASTER remote sensing within sparsely outcropping terrain, Central New South Wales, Australia. Cogent Geoscience 3, 1319259. DOI: https://doi.org/10.1080/23312041.2017.1319259
Himyari, S.M., Hoepffner, C. & Benzakour, M., 2001. Étude structurale du Haut Atlas Oriental (Maroc) à l’aide de l’analyse linéamentaire des images HRV (XS) de SPOT 2. Contemporary Publishing International Télédétection 2, 243–253.
Horn, B.K.P., 1981. Hill shading and the reflectance map. Proceedings of Institute of Electrical and Electronics Engineers 69, 14–47. DOI: https://doi.org/10.1109/PROC.1981.11918
Hunt, G.R., 1977. Spectral signatures of particulate minerals in the visible and near infrared. Geophysics 42, 501–513. DOI: https://doi.org/10.1190/1.1440721
Imran, M., Ahmad, S., Sattar, A. & Tariq, A., 2022. Mapping sequences and mineral deposits in poorly exposed lithologies of inaccessible regions in Azad Jammu and Kashmir using SVM with ASTER satellite data. Arabian Journal of Geosciences 15, 538. DOI: https://doi.org/10.1007/s12517-022-09806-9
Jacobshagen, V., Brede, R., Hauptmann, M., Heinitz, W. & Zylka, R., 1988. Structure and post-Palaeozoic evolution of the central High Atlas. [In:] Jacobshagen, V.H. (Ed.), The Atlas System of Morocco, Lecture Notes in Earth Sciences. Springer-Verlag, Berlin, pp. 245–271. DOI: https://doi.org/10.1007/BFb0011596
Khodadadi, F. & Arfania, R., 2017. Alteration mapping in central Urumieh-Dokhtar Magmatic Assemblage of Iran using ASTER and OLI data. Open Journal of Geology 07, 1215–1226. DOI: https://doi.org/10.4236/ojg.2017.78081
Laville, E. & Piqué, A., 1992. Jurassic penetrative deformation and Cenozoic uplift in the Central High Atlas (Morocco): A tectonic model. structural and orogenic inversions. Geologische Rundschau von Stuttgart 81, 157–170. DOI: https://doi.org/10.1007/BF01764546
Malainine, C.-E., Raji, O., Ouabid, M., Khouakhi, A., Bodinier, J.-L., Laamrani, A., El Messbahi, H., Youbi, N. & Boumehdi, M.A., 2021. An integrated ASTER-based approach for mapping carbonatite and iron oxide-apatite deposits. Geocarto International 37, 6579–6606. DOI: https://doi.org/10.1080/10106049.2021.1953617
Marzoqi, M. & Pascal, A., 2000. Séquences de dépôts et tectono-eustatisme à la limite Crétacé/Tertiaire sur la marge sud-téthysienne (Atlas de Marrakech et bassin de Ouarzazate, Maroc). Newsletters on Stratigraphy 38, 57–80. DOI: https://doi.org/10.1127/nos/38/2000/57
Masoud, A. & Koike, K., 2006. Tectonic architecture through Landsat-7 ETM+/SRTM DEM-derived lineaments and relationship to the hydrogeologic setting in Siwa region, NW Egypt. Journal of African Earth Sciences 45, 467–477. DOI: https://doi.org/10.1016/j.jafrearsci.2006.04.005
Michard, A., Saddiqi, O., Chalouan, A. & Frizon de Lamotte, D., 2008. Continental evolution: The geology of Morocco. Structure, stratigraphy, and tectonics of the Africa-Atlantic-Mediterranean Triple Junction. Lecture Notes in Earth Sciences Book Series. 424 pp. DOI: https://doi.org/10.1007/978-3-540-77076-3
Missenard, Y., Taki, Z., Frizon de Lamotte, D., Benammi, M., Hafid, M., Leturmy, P. & Sébrier, M., 2007. Tectonic styles in the Marrakesh High Atlas (Morocco): The role of heritage and mechanical stratigraphy. Journal of African Earth Sciences 48, 247–266. DOI: https://doi.org/10.1016/j.jafrearsci.2007.03.007
Morsli, Y., Zerhouni, Y., Maimouni, S., Alikouss, S., Kadir, H. & Baroudi, Z., 2021. Pegmatite mapping using spectroradiometry and ASTER data (Zenaga, Central Anti-Atlas, Morocco). Journal of African Earth Sciences 177, 104153. DOI: https://doi.org/10.1016/j.jafrearsci.2021.104153
Muavhi, N. & Mavhungu, M.E., 2020. Mapping of gold-related alteration minerals and linear structures using ASTER data in the Giyani Greenstone Belt, South Africa. South African Journal of Geomatics 9, 250–266. DOI: https://doi.org/10.4314/sajg.v9i2.17
Othman, A.A. & Gloaguen, R., 2017. Integration of spectral, spatial and morphometric data into lithological mapping: A comparison of different Machine Learning Algorithms in the Kurdistan Region, NE Iraq. Journal of Asian Earth Sciences 146, 90–102. DOI: https://doi.org/10.1016/j.jseaes.2017.05.005
Piqué, A., Le Roy, P. & Amrhar, M., 1998. Transtensive synsedimentary tectonics associated with ocean opening: the Essaouira–Agadir segment of the Moroccan Atlantic margin. Journal of the Geological Society 155, 913–928. DOI: https://doi.org/10.1144/gsjgs.155.6.0913
Pour, A.B. & Hashim, M., 2015. Integrating PALSAR and ASTER data for mineral deposits exploration in tropical environments: a case study from Central Belt, Peninsular Malaysia. International Journal of Image and Data Fusion 6, 170–188. DOI: https://doi.org/10.1080/19479832.2014.985619
Rowan, L.C., Kingston, M.J. & Crowley, J.K., 1986. Spectral reflectance of carbonatites and related alkalic igneous rocks; selected samples from four North American localities. Economic Geology 81, 857–871. DOI: https://doi.org/10.2113/gsecongeo.81.4.857
Salisbury, J.W. & Walter, L.S., 1989. Thermal infrared (2.5–13.5 μm) spectroscopic remote sensing of igneous rock types on particulate planetary surfaces. Journal of Geophysical Research 94, 9192. DOI: https://doi.org/10.1029/JB094iB07p09192
Schwarz, G. & Wigger, P.J., 1988. Geophysical studies of the Earth’s crust and upper mantle in the Atlas system of Morocco. [In:] Jacobshagen, V.H. (Ed.): The Atlas System of Morocco, Lecture Notes in Earth Sciences. Springer-Verlag, Berlin, pp. 339–357. DOI: https://doi.org/10.1007/BFb0011600
Sheikhrahimi, A., Pour, A.B., Pradhan, B. & Zoheir, B., 2019. Mapping hydrothermal alteration zones and lineaments associated with orogenic gold mineralization using ASTER data: A case study from the Sanandaj-Sirjan Zone, Iran. Advances in Space Research 63, 3315–3332. DOI: https://doi.org/10.1016/j.asr.2019.01.035
Shirmard, H., Farahbakhsh, E., Beiranvand Pour, A., Muslim, A.M., Müller, R.D. & Chandra, R., 2020. Integration of selective dimensionality reduction techniques for mineral exploration using ASTER satellite data. Remote Sensing 12, 1261. DOI: https://doi.org/10.3390/rs12081261
Sintubin, M., Nefly, M., Rijpens, J. & Zegbroek, B.V., 1997. Faulting history at the eastern termination of the High Atlas Fault (Western High Atlas, Morocco). Geologie en Mijnbouw 76, 187–195. DOI: https://doi.org/10.1023/A:1003105710280
Skikra, H., Amrouch, K., Soulaimani, A., Leprêtre, R., Ouabid, M. & Bodinier, J.-L., 2021. The intracontinental High Atlas belt: geological overview and pending questions. Arabian Journal of Geosciences 14, 1071. DOI: https://doi.org/10.1007/s12517-021-07346-2
Syzdykbayev, M., Karimi, B. & Karimi, H.A., 2020. A method for extracting some key terrain features from shaded relief of digital terrain models. Remote Sensing 12, 2809. DOI: https://doi.org/10.3390/rs12172809
van Andel, T.H., 1998. Book review: Ruddiman, W.F. (Ed.) 1997. Tectonic uplift and climate change. Plenum Press. Geological Magazine 135, 819–820. DOI: https://doi.org/10.1017/S0016756898211502
Zhao, Z.-F., Zhou, J.-X., Lu, Y.-X., Chen, Q., Cao, X.-M., He, X.-H., Fu, X.-H., Zeng, S.-H. & Feng, W., 2021. Mapping alteration minerals in the Pulang porphyry copper ore district, SW China, using ASTER and WorldView-3 data: Implications for exploration targeting. Ore Geology Reviews 134, 104171. DOI: https://doi.org/10.1016/j.oregeorev.2021.104171
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.