Abstract
In the Solar System, the coming into existence of a peculiar, fully developed atmosphere on Earth was determined by the ‘Great Oxidation Event’ at the turn of the Proterozoic and Palaeozoic. Within about 600 million years, there were large changes in oxygen concentrations in this atmosphere, ranging from 15 to 35 per cent, having been determined by a combination of cosmic-climatic, tectonic-volcanic and biological phenomena. A particular environmental change occurred at the beginning of the 19th century, as a result of the overlap of the end of the natural Little Ice Age and the beginning of anthropogenic warming of the ‘industrial revolution’. According to the author, the rate of human impact on environmental changes is estimated at about 15 per cent. The appearance of mankind brought new changes in the natural environment, including the oxygen content of the air. The current scale of anthropogenic impact justifies the introduction of a new time slice in the planet’s history - the Anthropocene. The functioning of civilisation is conditioned by meeting energy needs, to be implemented by creating a system of energy generators, among which the heat of the Earth should be an important component. The energy generated from this inexhaustible and cost-free geo-resource should be seen as the most ecological among all currently used energy carriers.
References
Aiyer, K.S., 2022. The Great Oxidation Eveny: How Cynobacteria Changed Life. American Society for Microbiology. Ecology, Evolution & Biodiversity. https://asm.org/Articles/2022/February/The-Great-Oxidation-Event-How-Cyanobacteria-Change
Alley, R.B., 2000. Ice core evidence of abrupt climate changes. Proceedings of the National Academy of Sciences 97, 1331 LP–1334. DOI: https://doi.org/10.1073/pnas.97.4.1331
Birkenmajer, K., 1990. Geochronology and climatostratigraphy of Tertiary. Glacial and intrglacial successions on King George Island, Shetland Islands (West Antarctica). Zentralblatt für Geologie und Paläontologie, Teil I, Stuttgart, pp. 141–151.
Birkemnajer, K., 1992. Cenozoic glacial history of the South Shetlands and Northern Antarctic Peninsula. [In:] Lopez-Martinez, J. (Ed.): III Congreso Geológico de España, vol. 3, Espania.
Bottke, W.F. & Norman, M.C., 2017. The late haevy bombardment. Anual Review of Earth and Planetary Siences 45, 419–647. DOI: https://doi.org/10.1146/annurev-earth-063016-020131
Brożyna, A. & Kozioł, W., 2014. Prognozy wyczerpywania bazy kopalin – teoria i praktyka [Forecasts of mineral resources base depletion in theory and practice]. Przegląd Górniczy 4, 86–89 (in Polish with English summary).
Cating, D.C. & Claire, M.W., 2005. How Earth’s atmosphere evolved to an oxic state: A status report. Earth and Planetary Science Letters 237, 1–20. DOI: https://doi.org/10.1016/j.epsl.2005.06.013
Chwieduk, E., 2011. Pochodzenie życia – wyjątkowy akt samorództwa? [The origin of life – a unique act of spontaneous generation?]. Wydawnictwo Naukowe UAM. Poznań, 151 pp. (in Polish)
Cuffey, K.M. & Clow, G.D., 1997. Temperature, accumulation, and ice sheet elevation in central Greenland through the last deglacial transition. Journal of Geophisical Research, Oceans 102, 26383–26396. DOI: https://doi.org/10.1029/96JC03981
Daisuke, G., Shinji, M., Szuji, A., Prabir, K.P. & Takakiyo, N., 2017. Seasonal and short-term variations in atmospheric potential oxygen at Ny-Alesund, Svalbard. Tellus B: Chemical and Physical Meteorology 69, 1311767. DOI: https://doi.org/10.1080/16000889.2017.1311767
Dawson, A.G., 1992. Ice Age Earth. Late Quaterbary geology and climate. Routledge, London, 316 pp.
Earle, S., 2019. Physical geology. 2nd ed. BC Campus Open-Edition, Canada.
Edwards, L., Bauer, A., Edgeworth, M., Ellis, E., Finney, S., Gibbard, Ph., Gill, J.L., Maslin, M., Merritts, D., Ruddiman, W. & Walker, M., 2022. The Anthropocene serves science better as an event rather than an epoch. Journal of Quaternary Science 37, 1188. DOI: https://doi.org/10.1002/jqs.3475
Entwicklung der Erdatmosphäre, 2022. Weilder Theirie der Chemichen Evolution der Erde und zudem ein wichtges Element der Klimadeschichle. Wikipedia https://de.wikipedia.org/wiki/Erdatmosph%C3%A4re
Gibbard, P., Walker, M., Bauer, A., Edgeworth, M., Edwards, L., Ellis, E., Finney, S., Gill, J.L., Maslin, M., Merritts, D. & Ruddiman, W., 2022. The Antropocene as an event, not an epoch. Journal of Quaternary Science 37, 395–399. DOI: https://doi.org/10.1002/jqs.3416
Goslar, T., 1996. Naturalne zmiany atmosferycznej koncentracji radiowegla w okresie szybkich zmian klimatu na przełomie Vistulianu i Holocenu [Natural changes in the atmospheric concentration of radiocarbon during the period of rapid climate change at the turn of the Vistulian and Holocene]. Zeszyty Naukowe Politechniki Ślaskiej. Geochronometria 15, 196 pp.
Graph, 2018. Atmospheric oxygen and CO2 vs time https://de.wikipedia.org/wiki/Entwicklung_der_Erdatmosph%C3%A4re
Houghton, J., 2009. Global warming. The complete briefing. Cambridge University Press, 438 pp. DOI: https://doi.org/10.1017/CBO9780511841590
Imbrie, J. & Imbrie, K.P., 1979. Ice ages – solving the mystery. Enslow Publish, New Jersey, 224 pp. DOI: https://doi.org/10.1007/978-1-349-04699-7
Jóźwiak, K., 2017. Zmienność stężeń gazów w powietrzu strefy aeracji środowiska naturalnego i przekształconego rolniczo [Variability of concentrations of gases in the air of the vadose zone in the natural and agriculturally converted environments]. Przegląd Geologiczny 65, 1075–1079 (in Polish with English summary).
Kesling, R.F. & Hertz, S.R., 1992. Seasonal and interannual variations in atmospheric oxygen and implications for the global carbon cycle. Nature 358, 723–727. DOI: https://doi.org/10.1038/358723a0
Kozarski, S., 1986. Skale czasu, a rytmy zdarzeń geomorfologicznych vistulianu na Niżu Polskim [Time scales and rhythms of geomorphological events of the Vistulian in the Polish Lowlands]. Czasopismo Geograficzne 57, 247–270 (in Polish).
Lyons, T.W., Reinhard, Ch.T. & Planavsky, N.J., 2014. Atmospheric oxygenation three billion years ago. Nature 506, 535–539. DOI: https://doi.org/10.1038/nature13068
Łuszczyk, M., 2021. Spowolnienie wykorzystania zasobów naturalnych wyzwaniem współczesnej gospodarki. Nierówności Społeczne a Wzrost Gospodarczy 16, 423–434 (in Polish with English summary).
Majewski, G. & Cichocka, D., 2012. Zmiany zawartości tlenu (O2) w powietrzu atmosferycznym aglomeracji warszawskiej w latach 2008–2009. Przegląd Naukowy – Inżyniernia i Kształtowanie Środowiska 56, 33–49 (in Polish with English summary).
Martin, D., McKenna, H. & Livina, V., 2017. The human physiological impact of global deoxygenation. Journal of Physiological Sciences 67, 97–106. DOI: https://doi.org/10.1007/s12576-016-0501-0
Michalski, J., 2003. Megalityczne zagadki [Megalithic puzzles]. Archeologia Żywa 1, 8–10 (in Polish).
Milankovič, M., 1914. O pitanju astronomskih teorija lednih doba [On te problem of the astronomical theory of the Ice Ages]. [In:] Izvadak iz razprave. Priopćene u ‘Radu’, 204. Zagreb, pp. 140–150 (in Serbian).
Mojski, J.E., 1993. Europa w plejstocenie – ewolucja środowiska przyrodniczego [Europe in the Pleistocene – the evolution of the natural environment]. Wydawnictwo PAE, Warszawa, 333 pp. (in Polish).
Paulo, A., 2008. Zarys budowy geologicznej Kordyliery Zachodniej południowego Peru [Geology of the Western Cordillera in S Peru – an outline]. Geologia, Kwartalnik AGH 34, 35–53 (in Polish, with English summary).
Paulo, A. & Gałaś, A., 2011. Polska wyprawa naukowa do Peru [Polish scientific expedtion to Peru]. Przegląd Geologiczny 59, 58–68 (in Polish, with English summary).
Reinhard, Ch.T., Planavsky, N.J., Gill, B.C., Ozaki, K., Robbins, L.J., Lyons, T.W., Fischer, W.W., Wang, Ch., Cole, D.B. & Konhauser, K.G., 2017. Evolution of the globar phosphorus cycle. Nature 541, 7637. DOI: https://doi.org/10.1038/nature20772
Schmidt-Rohr, K., 2020. Oxygen is the high-energy molecule powering complex multicellular life. Fundamental corrections to traditional bioenergetics. ACS Omega 5, 2221–2233. DOI: https://doi.org/10.1021/acsomega.9b03352
Schopf, J., 1983. Earth’s earliest biosphere: Its origin and evolution. Princeton University Press, 543 pp.
Shackleton, N.J. & Opdyke, N.D., 1973. Oxygen isotope and palaeomagnetic stratigraphy of equatorial Pacific core V28-238: oxygen isotope temperatures and ice volumes on a 105 and 106 year scale. Quaternary Research 3, 39–55. DOI: https://doi.org/10.1016/0033-5894(73)90052-5
Song, H., Wignall, P.B., Tong, J. & Yin, H., 2013. Two pulses of extinction during the Permian-Triassic crisis. Nature Geoscience 6, 52–56. DOI: https://doi.org/10.1038/ngeo1649
Stankowski, W., 1977. Żywe oblicze Ziemi [The living face of the Earth]. PWN, Warszawa–Poznań, 47 pp. (in Polish).
Stankowski, W., 1996. Wstęp do geologii kenozoiku. Ze szczególnym odniesieniem do terytorium Polski [Introduction to Cenozoic geology. With particular reference to the territory of Poland]. Wydawnictwo Naukowe UAM, Poznań, 185 pp. (in Polish).
Stankowski, W., 2019. Morfogeneza powierzchni litosfery. Aspekty geomorfologii i geologii [Morphogenesis of the lithosphere surface. Aspects of geomorphology and geology]. Bogucki Wydawnictwo Naukowe, Poznań, 237 pp. (in Polish).
Steinthorsdottir, M., Wolfarth, B., Kylander, M.E., Blaauw, M. & Reimer, P.J., 2013. Stomatal proxy record of CO2 concentrations from the last termination suggests an important role for CO2 at climate change transitions. Quaternary Science Reviews 68, 43–58. DOI: https://doi.org/10.1016/j.quascirev.2013.02.003
Timeline of glaciation, 2022. Wikipedia. en.wikipedia.org/wiki/Timeline_of_glaciation
Usoskin, I.G., 2017. A history of solar activity over millennia. Living Reviews in Solar Physics 14, 3. DOI: https://doi.org/10.1007/s41116-017-0006-9
Van Andel, T.H., 1994. New views on an old planet. A history of an global change. 2nd edition. Cambridge University Press, 439 pp. DOI: https://doi.org/10.1017/CBO9781139174114
Vinther, B.M., Buchardt, S.L., Clausen, H.B., Dahl-Jensen, D., Johnsen, S.J., Fisher, D.A., Koerner, R.M., Raynaud, D., Lipenkov, V., Andersen, K.K., Blunier, T., Rasmussen, S.O., Steffenson, J.P. & Svensson, A.M., 2009. Holocene thinning of the Greenland ice sheet. Nature 461, 385–388. DOI: https://doi.org/10.1038/nature08355
Wagner, F., Aaby, B. & Visscher, H., 2002. Rapid atmospheric CO2 changes associated with the 8,200-years-B.P. cooling event. Proceedings of the National Academy of Sciences USA 99, 12011–12014. DOI: https://doi.org/10.1073/pnas.182420699
Waters, C.N., Williams, M., Zalasiewicz, J.,Turner, S.D., Barnosky, A.D., Head, M.J., Wing, S.L., Wagreich, Ch.M., Steffen, W., Summerhayes, C.P., Cundy, A.B., Zinke, J., Fiałkiewicz-Kozieł, R., Leinfelder, R., Haff, P.K., McNeill, J.R., Rose, N.L., Hajdas, I., McCarthy, F.M.G., Cearreta, A., Gałuszka, A., Syvitski, J., Han, Y., An, Z., Fairchild, J.J., Ivardosul, J. & Jeandel, C., 2022. Epochs, events and episodes: Marking the geological impact of humans. Earth-Science Reviews 234, 104171. DOI: https://doi.org/10.1016/j.earscirev.2022.104171
Zahnle, K., Schaefer, L. & Fegley, B. 2010. Earth’s earliest atmospheres. [In:] Deamer, D. & Szostak, J.W. (Eds): Additional perspectives on the origins of life. Cold Spring Harbor Perspectives in Biology, 1–17 pp. DOI: https://doi.org/10.1101/cshperspect.a004895
Zalasiewicz, J., Williams, M., Haywood, A. & Ellis, M., 2011. The Anthropocene a new epoch of geological time? Phylosophical Transactions of the Royal Society. Mathematical, Physical and Engineering Sciences 369, 1938. DOI: https://doi.org/10.1098/rsta.2010.0339
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.