Critical assessment of Jenny's soil forming equation in light of cosmic airbursts on the Viso Massif
PDF

Keywords

soil morphogenesis
France/Italy borderland,
cosmic injections to soil genesis
‘c’independent soil forming variable

How to Cite

Mahaney, W. C. (2023). Critical assessment of Jenny’s soil forming equation in light of cosmic airbursts on the Viso Massif. Geologos, 29(3), 183–195. https://doi.org/10.14746/logos.2023.29.3.18

Abstract

Jenny’s soil formation equation places soil morphogenesis as a response to climate (cl), biota (o), relief (r), parent material (p), and time (t), written thus: s= f (cl, o, r, p, t…), where each variable is considered independent. Because some soils and paleosols contain cosmic impact/airburst evidence, recent soil morphogenesis research requires a rewritten equation: s= f (cl, o, r, p, t, c…), where c = cosmic. This addition serves to alert researchers to the presence of cosmic input to soils under investigation as part of geological and geomorphological projects. In particular, research targeting the cause of the Younger Dryas Climatic Divide (YDCD) might focus only on pollen in European glaciolacustrine sediments, reversal of the marine thermohaline circulation in the N. Atlantic Ocean, and possible reversal of postglacial warming at the Allerød termination (12.8 ka), when a search for cosmic grains may change the research outcome. Hence, the importance of the ‘c’ addition to Jenny’s factor analysis of soil morphogenesis.

https://doi.org/10.14746/logos.2023.29.3.18
PDF

References

Amundson, R., Harden, J. & Singer, M., 1994. Factors of soil formation: A fiftieth anniversary retrospective. Soil Science Society America, Special Publication 33, 160 pp. DOI: https://doi.org/10.2136/sssaspecpub33

Badyukov, D.D., Ivanov, A.V., Raitala, J.& Khisina, N.R., 2011. Spherules from the Tunguska Event Site: Could they originate from the Tunguska Cosmic Body? Geochemistry International 49, 641-653. DOI: https://doi.org/10.1134/S0016702911070032

Birkeland, P.W., 1999. Soils and Geomorphology. Oxford, NY, 436 pp.

Bunch, T.E., 2022. A Tunguska sized airburst destroyed Tall el‑Hammam a Middle Bronze Age city in the Jordan Valley near the Dead Sea. Scientific Reports. DOI: https://doi.org/10.1038/s41598-022-06266-9

Canada Soil Survey Committee, 1998. The Canadian system of soil classification. Ottawa, 637 NRC Re- search Press (publ. 1646), 187 p.

Cossart, E., Fort, M., Bourles, D., Carcaillet, J., Perrier, R., Siame, L. & Braucher, R., 2010. Climatic significance of glacier retreat and rock glaciers re-assessed in the light of cosmogenic dating and weathering rind thickness in Clarée valley (Briançonnais, French Alps). Catena 80, 204–219. DOI: https://doi.org/10.1016/j.catena.2009.11.007

Deer, W.A., Howie, R.A. & Zussman, J., 1966. An introduction to the rock-forming minerals. New York, Wiley, 340–355.

Dokuchaev, V.V., 1883. Russian Chernozem. Report to the Free Economic Society. St. Petersburg, 376 pp.

Dorn, R.I., Mahaney, W.C. & Krinsley, D.H., 2017. Case hardening: turning weathering rinds into protective shells. Elements, 13, 165-169. DOI: https://doi.org/10.2113/gselements.13.3.165

Fesenkov, V.G., 1961. On the cometary nature of the Tunguska Meteorite. Astronomicheskii Zhurnal 577–592.

Gladysheva, O., 2020. The Tunguska event. Icarus 348, 113837. DOI: https://doi.org/10.1016/j.icarus.2020.113837

Hodgson, J.M., 1976. Soil survey field handbook. Soil Survey Technical Monograph 5, Harpenden, Rothamsted Experimental Station, 99 pp.

Jenny, H., 1941. Factors of soil formation. McGraw-Hill, N.Y., 281 pp. DOI: https://doi.org/10.1097/00010694-194111000-00009

Jenny, H., 1958. Role of the plant factor in the pedogenic functions. Ecology, 39, 5-16. DOI: https://doi.org/10.2307/1929960

Jenny, H., 1980. The Soil Resource - origin and behavior. Springer-Verlag, N.Y., 377 pp. DOI: https://doi.org/10.1007/978-1-4612-6112-4

Johnson, C.F. & Watson-Stegner, D., 1990. The soil-evolution model as a framework for evaluating pedoturbation in archaeological site information. [In:] N.P. Lasca & J. Donahue (Eds), Archaeological Geology of N. America, Geological Society America Centennial Special 4, 541-560. DOI: https://doi.org/10.1130/DNAG-CENT-v4.541

Kennett, J.P., Kennett, D.J., Culleton, B.J., Tortosa, J.E.A., Bischoff, J.L., Bunch, T.E., Daniel, I.R., Erlandson, J.M., Ferraro, D., Firestone, R.B., Goodyear, A.C., Israde-Alcántara, I., Johnson, J.R., Jordá Pardo, J.F., Kimbel, D.R., LeCompte, M., Lopino, N.H., Mahaney, W.C., Moore, A.M.T., Moore, C.R., Ray, J.H., Stafford, T.W. Jr., Tankersley, K.B., Wittke, J.H., Wolbach, W.C. & West, A., 2015. Bayesian chronological analyses consistent with synchronous age of 12,835–12,735 cal B.P. for Younger Dryas boundary on four continents. Proceedings of National Academy of Science. DOI: https://doi.org/10.1073/pnas.1507146112

Mahaney, W.C., 1990. Ice on the Equator. Caxton Ltd, Ellison Bay, 386 pp.

Mahaney, W.C., 2019. Paleoenvironmental archives in rock rinds and sand/silt coatings. Journal of Geology 127, 411-435. DOI: https://doi.org/10.1086/703537

Mahaney, W.C., 2002. Atlas of sand grain surface textures and application. Oxford University Press, Oxford, 237 pp.

Mahaney, W.C., 2023. The Younger Dryas Boundary (YDB): Terrestrial, cosmic, or both? International Journal of Earth Science. DOI: https://doi.org/10.1007/s00531-022-02287-x

Mahaney, W.C. & Boyer, M.G., 1986. Microflora distributions in Quaternary paleosols on Mount Kenya, East Africa, Catena 13, 155-167. DOI: https://doi.org/10.1016/S0341-8162(86)80010-8

Mahaney, W.C. & Hancock, R.G.V., 2022. Origin, weathering and paleoclimatic significance of middle-Late Pleistocene slope covers, Mt. Kenya, Kenya. Studia Quaternaria 39, 51-81.

Mahaney, W.C. & Keiser, L., 2013. Weathering rinds: unlikely host clasts for evidence of an impact-induced event. Geomorphology 184, 74–83. DOI: https://doi.org/10.1016/j.geomorph.2012.11.019

Mahaney, W.C. & Sanmugadas, K., 1983. Early Holocene soil catena in Titcomb Basin, Wind River Mountains, Western Wyoming, Zeitschrift für Geomorphologie 27, 265-281. DOI: https://doi.org/10.1127/zfg/27/1983/265

Mahaney, W.C. & Schwartz, S., 2016. Paleoclimate of Antarctica reconstructed from clast weathering rind analysis. Palaeogeography, Paleoclimatology, Paleoecology 446, 205-212. DOI: https://doi.org/10.1016/j.palaeo.2016.01.026

Mahaney, W.C., Dohm, J.M. & Fairen, A., 2012. Weathering rinds on clasts: examples from Earth and Mars as short-and-long term recorders of paleoenvironment. Journal of Planetary and Space Sciences 73, 243-253. DOI: https://doi.org/10.1016/j.pss.2012.08.025

Mahaney, W.C., Keiser, L., Krinsley, D.H., Pentlavalli, P., Allen, C.C.R., Somelar, P., Schwartz, S., Dohm, J.M., Dirzowsky, R.,W., Allen, J.P. & Costa, P., 2013a. Weathering rinds-as-mirror-images of palaeosols: examples from the Western Alps with correlation to Antarctica and Mars. Journal of the Geological Society 170, 833-847. DOI: https://doi.org/10.1144/jgs2012-150

Mahaney, W.C., Keiser, L., Krinsley, D.H., Kalm, V., Beukens, R. & West, A., 2013b. New evidence from a black mat site in the northern Andes supporting a cosmic impact 12,800 years ago. Journal of Geology 121, 309–325. DOI: https://doi.org/10.1086/670652

Mahaney, W.C., Somelar, P., Dirszowsky, R.W., Kelleher, B., Pentlavalli, P., McLaughlin, S., Kulakova, A.N., Jordan, S., Pulleyblank, C., West, A. & Allen, C.C.R., 2016a. A microbial link to weathering of postglacial rocks and sediments, Mt. Viso area, Western Alps, demonstrated through analysis of a soil/paleosol bio/chronosequence. Journal of Geology 124, 149–169. DOI: https://doi.org/10.1086/684442

Mahaney, W.C., Krinsley, D.H., Razink, J., Fischer, R. & Langworthy, K., 2016b. Clast rind analysis using multi-high-resolution instrumentation. Scanning 38, 202–212. DOI: https://doi.org/10.1002/sca.21255

Mahaney, W.C., Allen, C.C.R., Pentlavalli, P., Kulakova, A., Young, J.M., Dirszowsky, R.W., West, A., Kelleher, B., Jordan, S., Pulleyblank, C., O’Reilly, S., Murphy, B.T., Lasberg, K., Somelar, P., Garneau, M., Finkelstein, S.A., Sobol, M.K., Kalm, V., Costa, P.J.M., Hancock, R.G.V., Hart, K.M., Tricart, P., Barendregt, R.W., Bunch, T.E. & Milner, M.W., 2017a. Biostratigraphic evidence relating to the age-old question of Hannibal’s invasion of Italy: I, History and geological reconstruction. Archaeometry 59, 164-178. DOI: https://doi.org/10.1111/arcm.12231

Mahaney, W.C., Somelar, P., West, A., Krinsley, D.A., Christopher, C.R., Pentlavalli, P., Young, J.M., Dohm, J.M., LeCompte, M., Kelleher, B., Jordan, S., Pulleyblank, C., Dirszowsky, R. & Costa, P., 2017b. Evidence for cosmic airburst/impact in the Western Alps archived in Late Glacial Paleosols. Quaternary International 438, 68-80. DOI: https://doi.org/10.1016/j.quaint.2017.01.043

Mahaney, W.C., Krinsley, D.H., Milner, M.W., Fischer, R.F. & Langworthy, K., 2018a. Did the Black Mat Impact/Airburst reach the Antarctic: evidence from New Mountain near the Taylor Glacier in the Dry Valley Mountains. Journal of Geology 126, 285-305. DOI: https://doi.org/10.1086/697248

Mahaney, W.C., Somelar, P., West, A., Dirszowsky, R., Allen, C.C.R., Remmel, T. & Tricart, P., 2018b. Reconnaissance of the Hannibalic Route in the Upper Po Valley, Italy: Correlation with biostratigraphic historical archaeological evidence in the Upper Guil Valley of France. Archaeometry. DOI: https://doi.org/10.1111/arcm.12405

Mahaney, W.C., Somelar, P. & Allen, C., 2022. Late Pleistocene glacial-paleosol-cosmic record of the Viso Massif – France and Italia – New evidence in support of the Younger Dryas boundary (12.8 ka). International Journal of Earth Science. DOI: https://doi.org/10.1007/s00531-022-02243-9

Mangerud, J., 2021. The discovery of the Younger Dryas, and comments on the current meaning and usage of the term. Boreas 50, 1-5. DOI: https://doi.org/10.1111/bor.12481

Moore, A.M.T., Kennett, J.P., Napier, W.M., Bunch, T.E., Weaver, J.C., LeCompte, M., Adedeji, A.V., Hackley, P., Kletetschka, G., Hermes, R.E., Wittke, J.H., Razink, J.J., Gaultois, M.W. & West, A., 2020. Evidence of cosmic impact at Abu Hureyra, Syria at the Younger Dryas onset (~128 ka): High-temperature melting at >2200 °C. Science Report 10, 4185. DOI: https://doi.org/10.1038/s41598-020-60867-w

Moore, C.R., West, A., LeCompte, M.A., Brooks, M.J., Daniel, I.R. Jr., Goodyear, A.C., Ferguson, T.A., Ivester, A.H., Feathers, J.K., Kennett, J.P., Tankersley, K.B., Adedeji, A.V., Bunch, T.E., 2017. Widespread platinum anomaly documented at the Younger Dryas onset in North American sedimentary sequences. Science Report 7, 44031. DOI: https://doi.org/10.1038/srep44031

Napier, W.M., 2010. Palaeolithic extinctions and the Taurid Complex. Monthly Notices Royal Astronomical Society 405, 1901–1906. DOI: https://doi.org/10.1111/j.1365-2966.2010.16579.x

NSSC, 1995. Investigations Report 45. Version 1.00. National Soil Survey Center ,Washington, 305 p.

Peplow, M., 2013. Rock samples suggest meteor caused Tunguska blast. Nature. DOI: https://doi.org/10.1038/nature.2013.13163

Powell, J.L., 2022. Premature rejection in science: The case of the Younger Dryas impact hypothesis. Science Progress 105, 1-43. DOI: https://doi.org/10.1177/00368504211064272

Svetsov, V., 1996. Total ablation of the debris from the 1908 Tunguska explosion. Nature 383, 697–699. DOI: https://doi.org/10.1038/383697a0

Tankersley, K.B., Meyers, S.D., Meyers, S.A, Jordan, J.A., Herzner, L., Lentz, D.L. & Zedaker, D., 2022. The Hopewell airburst event, 1699–1567 years ago (252–383 CE). Scientific Reports. DOI: https://doi.org/10.21203/rs.3.rs-951771/v1

West, A. & Firestone, R.B., 2013. Evidence for deposition of 10 million tons of impact spherules across four continents, 12,800 years ago. Proceedings of the National Academy of Sciences, USA.

Wittke, J.H., Weaver, J.C., Bunch, T.E., Kennett, J.P., Kennett, D.J., Moore, A.M.T., Hillman, G.C., Tankersley, K.B., Goodyear, A.C., Moore, C.R., Daniel, R.,Jr., Ray, J.H., Lopinot, N.H., Ferraro, D., Israde-Alcántara, I., Bischoff, J.L., DeCarli, P.S., Hermes, R.E., Kloosterman, J.B., Revay, Z., Howard, G.A., Kimbel, D.R., Kletetschka, G., Nabelek, L., Lipo, C.P., Sakai, S.,West, A. & Firestone, R.B., 2013. Evidence for deposition of 10 million tonnes of impact spherules across four continents 12,800 years ago. Proceedings of the National Academy of Sciences USA. DOI: https://doi.org/10.1073/pnas.1301760110

Wolbach, W.S., Ballard, J.P., Mayewski, P.A., Parnell, A.C., Cahill, N., Adedeji, V., Bunch, T.E., Domínguez-Vázquez, G., Erlandson, J.M., Firestone, R.B., French, T.A., Howard, G., Israde-Alcántara, I., Johnson, J.R., Kimbel, D., Kinzie, C.R., Kurbatov, A., Kletetschka, G., LeCompte, M.A., Mahaney, W.C., Melott, A.L., Mitra, S., Maiorana-Boutilier, A., Moore, C.R., Napier, W.M., Parlier, J., Tankersley, K.B., Thomas, B.C., Wittke, J.C., West, A. & Kennett, J.P., 2018a. Extraordinary biomass-burning episode and impact winter triggered by the Younger Dryas cosmic impact ∼12,800 years ago. 1. Ice cores and glaciers. Journal of Geology 126, 165-84. DOI: https://doi.org/10.1086/695703

Wolbach, W., Ballard, J.P., Mayewski, P.A., Parnell, A.C., Cahill, N., Adedeji, V., Bunch, T.E., 2018b. Extraordinary biomass-burning episode and impact winter triggered by the younger Dryas cosmic impact ∼12,800 years ago. 2. Lake, marine, and terrestrial sediments. Journal of Geology 126, 185–205. DOI: https://doi.org/10.1086/695704

Young, J.M., Skvortsov, T., Kelleher, B.P., Mahaney, W.C., Somelar, P. & Allen, C.C.R., 2019. Effect of soil horizon stratigraphy on the microbial ecology of alpine paleosols. Science of the Total Environment 657, 1183-1193. DOI: https://doi.org/10.1016/j.scitotenv.2018.11.442