The Encke comet impact/airburst and the Younger Dryas Boundary: Testing the impossible hypothesis (YDIH)
PDF

Keywords

Black mat
Late Glacial climatic event
extraterrestrial driver

How to Cite

Mahaney, W. C., & Somelar, P. (2024). The Encke comet impact/airburst and the Younger Dryas Boundary: Testing the impossible hypothesis (YDIH). Geologos, 30(1), 17–31. https://doi.org/10.14746/logos.2024.30.1.02

Abstract

Many have tagged the Younger Dryas Impact Hypothesis (YDIH), a supposition, lacking convincing evidence in support. The core of criticism lies squarely on uniformitarianism, that is, uniform processes moving uniformly with no room for catastrophic events, specifically cosmic catastrophic forces. Beyond philosophically based aversion to the YDIH, specific criticism comes from megafauna and archaeologic corners, related to the near coeval disappearance of specific Late Pleistocene species on the one hand, and relation to disruption and temporary disappearance of the Clovis people et al. on the other. The Younger Dryas geologic paradigm, originally in place with meltwater release into the Atlantic in tow, attention slowly drifted to explanation of an innocuous looking, thin (~1-3 cm), black sediment bed found in lacustrine and fluvial deposits of the American southwest, and other intercontinental places. Thus, with thin dark beds of Gubbio in mind, the quest to explain black mat (BM) beds took on a cosmic aspect, one with growing, supporting evidence on several continents. The impossible hypothesis, now the probable explanation of the Younger Dryas climatic reversal, is at center stage, set at 12.8 ka, with a burgeoning corpus of evidence its cornerstone.

https://doi.org/10.14746/logos.2024.30.1.02
PDF

References

Andronikov, A.V., Van Hoesel, A., Andronikova, I.E. & Hoek, W.Z., 2016. Trace element distribution and implications in sediments across the Allerød-Younger Dryas Boundary in the Netherlands and Belgium. Geografiska Annaler ser. B, 98, 325–345. DOI: https://doi.org/10.1111/geoa.12140

Birkeland, P.W., 1999. Soils and geomorphology. Oxford University Press, Oxford, pp. 430.

Broecker, W., Kennett, J.P., Flower, B.P., Teller, J.T., Trumbore, S., Bonani, G. & Wolfli, W. 1989. Routing of meltwater from the Laurentide Ice Sheet during the Younger Dryas cold episode. Nature 341, 318–321. DOI: https://doi.org/10.1038/341318a0

Broecker, S., Denton, G.H., Edwards, R.L., Cheng, H., Alley, R.B. & Putnam, A.E. 2010. Putting the Younger Dryas cold event into context. Quaternary Science Reviews 29, 1078–1081. DOI: https://doi.org/10.1016/j.quascirev.2010.02.019

Bunch, T.E. 2022. A Tunguska sized airburst destroyed Tall el-Ham- mam a Middle Bronze Age city in the Jordan Valley near the Dead Sea. Scientific Reports DOI: https://doi.org/10.1038/s41598-022-06266-9

Carlson, A.E., Clark, P.U., Haley, B.A., Klinkhammer, G.P., Simmons, K., Brook, E.J. & Meissner, K.J., 2007. Geochemical proxies of North American freshwater routing during the Younger Dryas cold event. Proceedings of the National Academy of Sciences of the United States of America 104, 6556–6561. DOI: https://doi.org/10.1073/pnas.0611313104

Dalton, A.S., & 69 others. 2020. An updated radiocarbon-based ice margin chronology for the last deglaciation of the North American Ice Sheet Complex. Quaternary Science Reviews 234, 106223,

Dohm, J.M., Fink, W., Williams, J.-P., Mahaney, W.C. & Ferris, J.C. 2022. Gale impact into ~half ocean and half land: Martian Chicxulub analogue. Icarus, 390. DOI: https://doi.org/10.1016/j.icarus.2022.115306

Engels, S., Lane, C.S., Haliuc, A., Hoek, W.Z., Muschitiello, F., Baneschi, I., Bouwman, A., Bronk Ramsey, C., Collins, J., de Bruijn, R., Heir, O., Hubay, K., Jones, G., Laug, A., Merkt, J., Meike, Müller M, Peters, T., Peterse, F., Staff, R.A., Schure, A.T.M., Turner, F., van den Bos, V. & Wagner-Cremer, F., 2022. Synchronous vegetation response to the last glacial-interglacial transition in northwest Europe. Communications Earth & Environment DOI: https://doi.org/10.1038/s43247-022-00457-y

Firestone, R.B., West, A., Kennett, J.P., Becker, L., Bunch, T.E., Revay, Z.S., Schultz, P.H., Belgya, T., Kennett, D.J., Erlandson, J.M., Dickenson, O.J, Goodyear, A.C., Harris, R.S., Howard, G.A., Kloosterman, J.B., Lechler, P, Mayewski, PA, Montgomery, J, Poreda, R, Darrah, T, Que Hee, S.S., Smith, A.R., Stich, A., Topping, W., Wittke, J.H. Firestone, R.B., & 25others, 2007a. Evidence for an extraterrestrial impact 12,900 years ago that contributed to the megafaunal extinctions and the Younger Dryas cooling. Proceedings of National Academy of Sciences USA 104, 16016-16021. DOI: https://doi.org/10.1073/pnas.0706977104

Firestone, R.B., West, A., Revay, Z., Belgya, T., Smith, A. & Que Hee, S.S., 2007b. Evidence for a massive extraterrestrial airburst over North America 12.9 ka ago. American Geophysical Union Mtg. 07, PP41A sessions, San Francisco, PP41A-02.

Firestone, R.B., West, A., Revay, Z., Hagstrum, J.T., Belgya, T., Que Hee, S.S. & Smith, A.R., 2010. Analysis of the Younger Dryas impact layer. Journal of Siberian Federal University of Engineering and Technology 3, 30–62.

Fisher, T.G. & Lowell, T.V., 2012. Testing northwest drainage from Lake Agassiz using extant ice margin and strandline data. Quaternary International 260, 106–114. DOI: https://doi.org/10.1016/j.quaint.2011.09.018

Gauthier, M.S., Breckenridge, A.J. & Hodder, T.J., 2022. Patterns of ice recession and ice stream activity for the MIS2 Laurentide Ice Sheet in Manitoba, Canada. Boreas 51, 274-298, DOI: https://doi.org/10.1111/bor.12571

Ge, T., Courty, M.M. & Guichard, F., 2009. Field-analytical approach of land-sea records elucidating the Younger Dryas syndrome. American Geophysical Union, Abstract PP31D-432: 1390.

Goodyear, A.C., Israde-Alcántara, I., Johnson, J.R., Jordá Pardo, J.F., Kimbel, D.R., LeCompte, M., Lopino, N.H., Mahaney, W.C., Moore, A.M.T., Moore, C., Ray, J.H., Stafford, T.W., Tankersley, K.B., Wittke, J.H., Wolbach, W.C. & West, A., 2015. Bayesian chronological analyses consistent with synchronous age of 12835–12735 Ca BP for Younger Dryas boundary on four continents. Proceedings of National Academy of Sciences USA 112, 4344-4353,

Hartz, N., 1912. Allerød-Gytje und Allerud-Mull. Meddelelser fra Dansk Geologisk Forening 4, 85–91.

Hartz, N. & Milthers, V., 1901. Det senglaciale Ler i Allerød Teglværksgrav. Meddelelser fra Dansk geologisk Forening 8, 31–60

Heaton, T.J. 2022. Non-parametric calibration of multiple related radiocarbon determinations and their calendar age summarisation. Journal of the Royal Statistical Society Ser. C (Applied Statistics), 71, 1918-1956, DOI: https://doi.org/10.1111/rssc.12599

Holliday V.T., Surovell, T., Meltzer, D.J., Grayson, D.K. & Boslough, M., 2014. The Younger Dryas impact hypothesis: a cosmic catastrophe. Journal of Quaternary Science 29, 515–530. DOI: https://doi.org/10.1002/jqs.2724

Holliday, V.T., Bartlein, P.J., Scott, A.C. & Marlon, J.R., 2019. Extraordinary biomass-burning episode and impact intertriggered by the Younger Dryas cosmic impact ∼12,800 years ago. Journal of Geology 128, 69–94. DOI: https://doi.org/10.1086/706264

Holliday, V.T., Daulton, T.L., Bartlein, P.J. et al., 2023. Comprehensive refutation of the Younger Dryas Impact Hypothesis (YDIH). Earth-Science Reviews 2467, 104502. DOI: https://doi.org/10.1016/j.earscirev.2023.104502

Israde-Alcántara, I., Bischoff, J.L., Domínguez-Vázquez, G., Li, H-C, DeCarli, P.S., Bunch, T.E., Wittke, J.H., Weaver, J.C., Firestone, R.B., West, A., Kennett, J.P., Mercer, C., Xie, S., Richman, E.K., Kinzie, C.R. & Wolbach,W.S. 2012. Evidence from central Mexico supporting the Younger Dryas extraterrestrial impact hypothesis. Proceedings of National Academy of Sciences USA 109, E738–E747. DOI: https://doi.org/10.1073/pnas.1110614109

Keigwin, L.D., Klotsko, S., Zhao, N., Reilly, B., Giosan, L. & Driscoll, N.W., 2018. Deglacial floods in the Beaufort Sea preceded Younger Dryas cooling. Nature Geoscience 11, 599–604. DOI: https://doi.org/10.1038/s41561-018-0169-6

Kennett, J.P., Becker, L. & West, A. 2007. Triggering of the Younger Dryas cooling by extraterrestrial impact. American Geophysical Union Annual Mtg, 2007, PP41A-05.

Kennett, D.J., Kennett, J.P., West, A., Mercer, C., Que Hee, S.S., Bement, L., Bunch, T.E., Sellers, M. & Wolbach, W.S. 2009. Nanodiamonds in the younger dryas boundary sediment. Science 323(5910), 94. DOI: https://doi.org/10.1126/science.1162819

Kennett, J.P., Kennett, D.J., Culleton, J., Tortosa, J., Bischoff, J.., Bunch, T.E., Daniel, I.R., Erlandson, J.M., Ferraro, D., Firestone, R.B., Goodyear, A.C, Israde-Alcántara, I, Johnson, J.R., Jordá Pardo, J.F., Kimbel, D.R., LeCompte, M., Lopino, N.H., Mahaney, W.C., Moore, A.M.T., Moore, C.R., Ray, J.H., Stafford, T.W. Jr, Tankersley, K.B., Wittke, J.H., Wolbach, W.C. & West, A., 2015. Bayesian chronological analyses consistent with synchronous age of 12,835–12,735 Cal B.P. for Younger Dryas boundary on four continents. Proceedings of National Academy of Sciences USA 112, E4344-4353, DOI: https://doi.org/10.1073/pnas.1507146112

Kenny, G.G., Hyde, W.R., Storey, M., Garde, A.A., Whitehouse, M.J., Beck, P., Johansson, L., Søndergaard, A.S., Bjørk, A.A., MacGregor, J.A., Khan, S.A., Mouginot, J., Johnson, B.C., Silber, E.A., Wielandt, D.K.P., Kjær, K.H. & Larse, N.K. 2022, A Late Paleocene age for Greenland’s Hiawatha impact structure, Science Advances. DOI: https://doi.org/10.1126/sciadv.abm2434

Kinzie, C.R., Que Hee, S.S., Stich, A., Tague, K.A., Mercer, C., Razink, J.J., Kennett, D.J., DeCarli, P.S., Bunch, T.E. & Wittke, J.H. 2014. Nanodamond-rich layer across three continents consistent with major cosmic impact at 12,800 cal BP. Journal of Geology 122, 475–506. DOI: https://doi.org/10.1086/677046

Kjær, K.H., Larsen, N.K., Binder, T., Bjørk, A.A., Eisen, O., Fahnestock, M.A., Funder, S., Garde, A.A., Haack, H., Helm, V., Houmark-Nielsen, M., Kjeldsen, K.K., Khan, S.A., Machguth, H., McDonald, I., Morlighem, M., Mouginot, J., Paden, J.D., Waight, T.E., Weikusat, C., Willerslev, E. & MacGregor, J.A. 2018. A large impact crater beneath Hiawatha Glacier in northwest Greenland. Science Advances 4, eaar8173. DOI: https://doi.org/10.1126/sciadv.aar8173

Kloosterman, H., 2015. The Usselo Layer, the global conflagration and the vanishing act. Chronology & Catastrophism Review 3, 3-9.

Kok, J.F., Storelvmo, T., Karydis,V.A., Adebiyi, A.A.,, Mahowald N.M., Evan, A.T., He, C. & Leung, D.M., 2023. Mineral dust aerosol impacts on global climate and climate change. Nature Reviews Earth & Environment 4, 71–86. DOI: https://doi.org/10.1038/s43017-022-00379-5

Kudryavtsev, I.V. & Dergachev, V.A., 2021. Solar activity and climate change at the end of the ice age and transition to the Holocene. Geomagnetism Aeronomy 61, 1057–1062. DOI: https://doi.org/10.1134/S0016793221070124

LeCompte, M., Goodyear, A.C., Demitroff, M.N., Batchelor, D., Vogel, E.K., Mooney, C., Rock, B.N. & Seidel, A.W., 2012. An independent evaluation of conflicting microspherule results from different investigations of the Younger Dryas impact hypothesis. Proceedings of National Academy of Sciences USA 106, E2960–E2969. DOI: https://doi.org/10.1073/pnas.1208603109

Lepper, K, Gorz, K.L., Fisher, T.G. & Lowell, T.V., 2011. Age determinations for glacial Lake Agassiz shorelines west of Fargo, North Dakota, USA. Canadian Journal of Earth Sciences 48, 1199–1207. DOI: https://doi.org/10.1139/e11-025

Lepper, K., Buell, A.W., Fisher, T.G. & Lowell, T.V., 2013. A chronology for glacial Lake Agassiz shorelines along Upham's namesake transect. Quaternary Research 80, 88–98. DOI: https://doi.org/10.1016/j.yqres.2013.02.002

Leverington, D.W., Mann, J.D. & Teller, J.T., 2000. Changes in the bathymetry and volume of Glacial Lake Agassiz between 11,000 and 9300 14C yr B.P. Quaternary Research 54, 174–181. DOI: https://doi.org/10.1006/qres.2000.2157

Leydet, D.J., Carlson, A.E., Teller, J.T., Breckenridge, A., Barth, A.M., Ullman, D.J., Sinclair, G., Milne, G.A., Cuzzone, J.K. & Caffee, M.W., 2018. Opening of glacial Lake Agassiz’s eastern outlets by the start of the Younger Dryas cold period. Geology 46, 155–158. DOI: https://doi.org/10.1130/G39501.1

Link, A.G., 1966. The textural classification of sediments. Sedimentology 7, 249–254. DOI: https://doi.org/10.1111/j.1365-3091.1966.tb01598.x

Lohne, Ø.S., Mangerud, J. & Birks, H.H., 2013. Precise C14 ages of the Vedde and Saksunarvatn ashes and the Younger Dryas boundaries from western Norway and their comparison with the Green- land Ice Core (GICC05) chronology. Journal of Quaternary Science 28, 490–500. DOI: https://doi.org/10.1002/jqs.2640

Lohne, Ø.S., Mangerud, J. & Birks, H.H., 2014. IntCal13 calibrated ages of the Vedde and Saksunarvatn ashes and the Younger Dryas boundaries from Krakenes, western Norway. Journal of Quaternary Science 29, 506–507. DOI: https://doi.org/10.1002/jqs.2722

Lowe, J.J., Rasmussen, S.O., Björck, S., Hoek, W.Z., Steffensen, J.P., Walker, M.J.C. & Yu, Z.C., 2008. Synchronisation of palaeoenvironmental events in the North Atlantic region during the Last Termination: a revised protocol recommended by the INTIMATE group. Quaternary Science Reviews 27, 6-17. DOI: https://doi.org/10.1016/j.quascirev.2007.09.016

Lyell, C., 1830–1833. Principles of Geology. 3 volumes, John Murray, London. DOI: https://doi.org/10.2307/30058100

Mahaney, W.C., 1990. Ice on the Equator, Wm Caxton. Ellison Bay, Wisconsin, 386 pp.

Mahaney, W.C., 2002. Atlas of sand grain surface textures and applications. Oxford University Press, Oxford, 237 pp.

Mahaney, W.C., 2019, Paleoenvironmental archives in rock rinds and sand/silt coatings. Journal of Geology 127, 411–436, DOI: https://doi.org/10.1086/703537

Mahaney, W.C., 2023. The Younger Dryas Boundary (YDB): Terrestrial, cosmic, or both? International Journal of Earth Science, DOI: https://doi.org/10.1007/s00531-022-02287-x

Mahaney, W.C. & Keiser, L., 2013. Weathering rinds: unlikely host clasts for evidence of an impact-induced event. Geomorphology 184, 74–83. DOI: https://doi.org/10.1016/j.geomorph.2012.11.019

Mahaney, W.C. & Schwartz, S., 2016. Paleoclimate of Antarctica reconstructed from clast weathering rind analysis. Palaeogeograpy Paleoclimatology Paleoecology 446, 205–212. DOI: https://doi.org/10.1016/j.palaeo.2016.01.026

Mahaney, W.C. & Schwartz, S., 2021. Clast rind-paleosol record of the Antarctic early Alpine glaciation. Polar Science 28, DOI: https://doi.org/10.1016/j.polar.2021.100648

Mahaney, W.C., Somelar, P. & Allen, C.C.R., 2022. Late Pleistocene glacial-paleosol-cosmic record of the Viso Massif - France and Italia - New evidence in support of the Younger Dryas Boundary (12.8 ka). International Journal of Earth Science 112, 217-242, doi.org/10.1007/s00531-022-02243-9. DOI: https://doi.org/10.1007/s00531-022-02243-9

Mahaney, W.C., Milner, M.W., Kalm, V., Dirzowsky, R.W., Hancock, R.G.V. & Beukens, R.P., 2008. Evidence for a Younger Dryas glacial advance in the Andes of northwestern Venezuela. Geomorphology 96, 199–211, DOI: https://doi.org/10.1016/j.geomorph.2007.08.002

Mahaney, W.C., Keiser, L., Krinsley, D.H., Pentlavalli, P., Allen, C.C.R., Somelar, P., Schwartz, S., Dohm, J.M., Dirzowsky, R., West, A., Julig, P. & Costa, P., 2013a. Weathering rinds as mirror images of palaeosols: examples from the Western Alps with correlation to Antarctica and Mars. Journal of Geological Society 170, 33-847. DOI: https://doi.org/10.1144/jgs2012-150

Mahaney, W.C., Keiser, L., Krinsley, D.H., Kalm, V., Beukens, R. & West, A., 2013b. New evidence from a Black Mat Site in the northern Andes supporting a cosmic impact 12,800 Years Ago. Journal of Geology 121, 591–602, DOI: https://doi.org/10.1086/670652

Mahaney, W, C., Somelar, P., Dirszowsky, R.W., Kelleher, B., Pentlavalli, P., McLaughlin, S., Kulakova, A.N., Jordan, S., Pulleyblank, C., West, A. & Allen, C.C.R, 2016a. A microbial link to weathering of postglacial rocks and sediments, Mt. Viso area, Western Alps, demonstrated through analysis of a soil/paleosol bio/chronosequence. Journal of Geology 124, 149–169. DOI: https://doi.org/10.1086/684442

Mahaney, W.C., Krinsley, D.H., Razink, J., Fischer, R. & Langworthy, K., 2016b. Clast rind analysis using multi-high-resolution instrumentation. Scanning 38, 202–212. DOI: https://doi.org/10.1002/sca.21255

Mahaney, W. C., Somelar, P., West, A., Krinsley, D.H., Allen, C.C.R., Pentlavalli, P., Young, J.M., Dohm, J.M., LeCompte, M., Kelleher, B, Jordan, S., Pulleyblank, C., Dirszowsky, R. & Costa, P., 2017a. Evidence for cosmic airburst/impact in the Western Alps archived in Late Glacial paleosols. Quaternary International 438, 69–80. DOI: https://doi.org/10.1016/j.quaint.2017.01.043

Mahaney, W.C., Krinsley, D.H., Milner, M.W., Langworthy, K. & Fischer, R., 2018a. Did the black mat/airburst reach the Antarctic? Evidence from New Mountain near the Taylor Glacier in the Dry Valleys. Journal of Geology 126, 285–305. DOI: https://doi.org/10.1086/697248

Mahaney, W.C., West, A., Milan, A., Krinsley, D., Somelar, P., Stephane, S., Milner, M.W. & Allen, C.C.R., 2018b. Cosmic impact/airburst on deposits/soils in the Western Alps of the Mt. Viso area, France. Studia Quaternaria 35, 3-23. DOI: https://doi.org/10.2478/squa-2018-0001

Mangerud, J., 2021. The discovery of the Younger Dryas, and comments on the current meaning and usage of the term. Boreas 50, 1-5. DOI: https://doi.org/10.1111/bor.12481

Meltzer, D.J., Holliday, V.T., Cannon, M.D. & Miller, S.D., 2014. Chronological evidence fails to support claim of an isochronous widespread layer of cosmic impact indicators dated to 12,800 years ago. Proceedings of National Academy of Sciences USA 2162-2171. DOI: https://doi.org/10.1073/pnas.1401150111

Moore, A.M.T., Kennett, J.P., Napier, W.M., Bunch, T.E., Weaver, J..C, LeCompte, M., Adedeji, A.V., Hackley, P., Kletetschka, G., Hermes, R.E., Wittke, J.H., Razink, J.J., Gaultois, M.W. & West, A., 2020. Evidence of cosmic impact at Abu Hureyra, Syria at the Younger Dryas onset (~128 ka): High-temperature melting at >2200 °C. Scientific Report 10, 4185. DOI: https://doi.org/10.1038/s41598-020-60867-w

Napier, W.M., 2010. Palaeolithic extinctions and the Taurid Complex. Monthly Notices of Royal Astronomical Society 405, 1901– 1906. DOI: https://doi.org/10.1111/j.1365-2966.2010.16579.x

Napier, W.M., 2019. The hazard from fragmenting comets. Monthly Notices of Royal Astronomical Society 488, 1822-1827. DOI: https://doi.org/10.1093/mnras/stz1769

Nelson, R.L., 1954. Glacial geology of the Frying Pan River drainage, Colorado. Journal of Geology 62, 325-343. DOI: https://doi.org/10.1086/626170

Norris S, L., Garcia-Castellanos, D., Jansen, J.D., Carling, P.A., Margold, M., Woywitka, R.J. & Froese, D.G., 2021. Catastrophic drainage from the northwestern outlet of Glacial Lake Agassiz during the Younger Dryas. Geophysical Research Letters 48, e2021GL093919. DOI: https://doi.org/10.1029/2021GL093919

Petaev, M.I., Huang, S., Jacobsen, S.B. & Zindler, A., 2013, Large Pt anomaly in the Greenland ice core points to a cataclysm at the onset of Younger Dryas. Proceedings of National Academy of Sciences USA 110, 12917–12920. DOI: https://doi.org/10.1073/pnas.1303924110

Pino, M,, Martel-Cea, A., Astorga, G., Abarzúa, A.M., Cossio, N., Navarro, X., Lira, M.P., Labarca, R., Lecompte, M.A., Adedeji, V., Moore, C., Bunch, T.E., Mooney, C., Wolbach, W.S., West, A. & Kennett, J.P., 2019. Sedimentary record from Patagonia, southern Chile supports cosmic-impact triggering of biomass burning, climate change, and megafaunal extinctions at 12.8 ka. Scientific Report 9, 4413. DOI: https://doi.org/10.1038/s41598-018-38089-y

Powell, J.L., 2023. Unlocking the Moon’s Secrets. Oxford University Press, 149 pp. DOI: https://doi.org/10.1093/oso/9780197694862.001.0001

Rassokha, I., 2020. The Younger Dryas catastrophe as the biggest catastrophe in Human History: Evidence of the most sustainable Human lexemes. SSRN-Electronic Journal, preprint.

Ricker, K.E., Chinn, T.J. & McSaveney, M.J., 1993. A late Quaternary moraine sequence dated by rock weathering rinds, Craigieburn Range, New Zealand. Canadian Journal of Earth Sciences 30, 1861–1869. DOI: https://doi.org/10.1139/e93-164

Rudnick, R.L. & Gao, S., 2005. Composition of the continental crust. [In:] Rudnick, R.L. (Ed.): The crust: treatise on geochemistry. Elsevier, Amsterdam, p. 1–64. DOI: https://doi.org/10.1016/B0-08-043751-6/03016-4

Schiermeier, Q. & Monastersky, R., 2010. River reveals chilling tracks of ancient flood. Nature 464, 657. DOI: https://doi.org/10.1038/464657a

Schultz, P.H., Harris, R.S., Perroud, S., Blanco, N. & Tomlinson, A.J., 2021. Widespread glasses generated by cometary fireballs during the late Pleistocene in the Atacama Desert, Chile. Geology 50, 205-209. DOI: https://doi.org/10.1130/G49426.1

Schwartz, S., Lardeaux, J.M., Guillot, S. & Tricart, P., 2000. The diversity of eclogitic metamorphism in the Monviso ophiolitic complex, western Alps, Italy. Geodinamica Acta 13, 169–188. DOI: https://doi.org/10.1016/S0985-3111(00)00112-1

Senel, C.B., Kaskes, P., Temel, O., Vellekoop, J., Goderis, S., DePalma, R., Prins, M.A.,Claeys, P. & Karatekin, O., 2023. Chicxulub impact winter sustained by fine silicate dust. Nature Geoscience, DOI: https://doi.org/10.1038/s41561-023-01290-4

Sharp, R., 1969. Semiquantitative differentiation of glacial moraines near Convict Lake, Sierra Nevada, Calif. Journal of Geology 77, 68–91. DOI: https://doi.org/10.1086/627409

Surovell, T.A., Holliday, V.T., Gingerich, J.A.M., Ketron, C., Haynes, C.V., Hilman, I., Wagner, D.P., Johnson, E. & Claeys, P., 2009. An independent evaluation of the Younger Dryas extraterrestrial impact hypothesis. Proceedings of National Academy of Sciences USA 106, 18155–18158. DOI: https://doi.org/10.1073/pnas.0907857106

Svensson, A., Andersen, K., Bigler, M., Clausen, H., Dahl-Jensen, D., Davies, S., Johnsen, S., Muscheler, R., Parrenin, F., Rasmussen, S., Rothlisberger, R., Seierstad, I., Steffensen, J.P. & Vinther, B., 2008. A 60 000 year Greenland stratigraphic ice core chronology. Climate of the Past 4, 47–57. DOI: https://doi.org/10.5194/cp-4-47-2008

Svetsov, V., 1996. Total ablation of the debris from the 1908 Tunguska explosion. Nature 383, 697–699. DOI: https://doi.org/10.1038/383697a0

Sweatman, M., 2024. Holliday et al.'s Gish gallop: timing of the Younger Dryas impact on four continents. History Decoded Blog, Jan.15.

Tarasov, L. & Peltier, W.R., 2006. A calibrated deglacial drainage chronology for the North American continent: evidence for an Arctic trigger for the Younger Dryas. Quaternary Science Review 25, 659–688. DOI: https://doi.org/10.1016/j.quascirev.2005.12.006

Teller, J.T., Leverington, D.W. & Mann, J.D., 2002. Freshwater outbursts to the oceans from glacial Lake Agassiz and their role in climate change during the last deglaciation. Quaternary Sciences Review 21, 879–887. DOI: https://doi.org/10.1016/S0277-3791(01)00145-7

Teller, J., Boyd, M., LeCompte, M., Kennett, J., West, A., Telka, A., Diaz, A., Adedeji, V., Batchelor, D., Mooney, C.& Garcia, R., 2019. A multi-proxy study of changing environmental conditions in a Younger Dryas sequence in southwestern Manitoba, Canada, and evidence for an extraterrestrial event. Quaternary Research 93, 60-87. DOI: https://doi.org/10.1017/qua.2019.46

Thackeray, J.F., Scott, L. & Pieterse P., 2019. The Younger Dryas interval at Wonderkrater (South Africa) in the context of a platinum anomaly. Palaeontologia Africana 54, 30–35.

Thiagarajan, N., Subhas, A.V., Southon, J.R., Eiler, J.M. & Adkins, J.F., 2014. Abrupt pre–Bølling-Allerød warming and circulation change in the deep ocean. Nature 511, 75–78. DOI: https://doi.org/10.1038/nature13472

Tricart, P., 1984. From passive margin to continental collision: a tectonic scenario for the Western Alps. American Journal of Science 284, 97–120. DOI: https://doi.org/10.2475/ajs.284.2.97

Tricart, P. & Schwartz, S., 2006. A north-south section across the Queyras Schistes lustrés (Piedmont zone, Western Alps): syncollision refolding of a subduction wedge. Eclogae Geologicae Helvetia 99, 429–442. DOI: https://doi.org/10.1007/s00015-006-1197-6

Tricart, P., Schwartz, S., Lardeaux, J-M, Thouvenot, F. & du Chaffaut, S.A., 2003. Aiguilles-Col Saint-Martin. Carte Géologique De La France 1:50000.

Usatov, M., 2020. Main belt asteroid as a possible Younger Dryas Impactor. Astronomical Notes DOI: https://doi.org/10.1002/asna.202013817

Van der Hammen T. & Van Geel, B., 2008. Charcoal in soils of the Allerød-Younger Dryas transition were the result of natural fires and not necessarily the effect of an extra-terrestrial impact. Netherlands Journal of Geosciences 8, 359-361. DOI: https://doi.org/10.1017/S0016774600023416

Voytek, E.B., Colman, S.M., Wattrus, N., Gary, J.L. & Lewis, C.F.M., 2012. Thunder Bay, Ontario, was not a pathway for catastrophic floods from Glacial Lake Agassiz. Quaternary International 260, 98–105. DOI: https://doi.org/10.1016/j.quaint.2011.10.040

Wittke, J.H., Weaver, J.C., Bunch, T.E., Kennett, J.P., Kennett, D.J., Moore, A.M.T, Hillman, G.C., Tankersley, K.B., Goodyear, A.C., Moore, C.R., Daniel, R. Jr, Ray, J.H., Lopinot, N.H., Ferraro, D., Israde-Alcántara, I., Bischoff, J.L., DeCarli, P.S., Hermes, R.E., Kloosterman, J.B., Revay, Z., Howard, G.A., Kimbel, D.R., Kletetschka, G., Nabelek, L., Lipo, C.P., Sakai, S., West, A. & Firestone, R.B., 2013. Evidence for deposition of 10 million tonnes of impact spherules across four continents 12,800 years ago. Proceedings of National Academy of Sciences USA 110, E2008-E2087. DOI: https://doi.org/10.1073/pnas.1301760110

Wolbach W.S., Ballard, J.P., Mayewski, P.A., Parnell, A.C., Cahill, N., Adedeji, V., Bunch, T.E., Domínguez-Vázquez, G., Erlandson, J.M., Firestone, R.B., French, T.A., Howard, G., Israde-Alcántara, I., Johnson, J.R., Kimbel, D., Kinzie, C.R., Kurbatov, A., Kletetschka, G., LeCompte, M.A., Mahaney, W.C., Melott, L., Mitra, S., Maiorana-Boutilier, A., Moore, C.R., Napier WM, Parlier, J., Tankersley, K.B., Thomas, B.C., Wittke, J.C., West, A. & Kennett, J.P., 2018a. Extraordinary biomass-burning episode and impact winter triggered by the younger dryas cosmic impact ∼12,800 years ago. 1. Ice cores and glaciers. Journal of Geology 126, 165–184. DOI: https://doi.org/10.1086/695703

Wolbach W.S., Ballard, J.P., Mayewski, P.A., Parnell, A.C., Cahill, N., Adedeji, V., Bunch, T.E., Domínguez-Vázquez, G., Erlandson, J.M., Firestone, R.B., French, T.A., Howard, G., Israde-Alcántara, I., Johnson, J.R., Kimbel, D., Kinzie, C.R., Kurbatov, A., Kletetschka, G., LeCompte, M.A., Mahaney, W.C., Melott, L., Mitra, S., Maiorana-Boutilier, A., Moore, C.R., Napier WM, Parlier, J., Tankersley, K.B., Thomas, B.C., Wittke, J.C., West, A., Kennett, J.P., 2018b. Extraordinary biomass-burning episode and impact winter triggered by the younger dryas cosmic impact ∼12,800 years ago. 2. lake, marine, and terrestrial sediments. Journal of Geology 126, 185–205. DOI: https://doi.org/10.1086/695704

Wolbach, W.S., Ballard, J.P., Bunch, T.E., LeCompte, M.A., Adedeji, V., Firestone, R.B., Mahaney, W.C., Melott, A.I., Moore, C.R., Napier, W.M., Howard, G.A., Tankersley, K.B., Thomas, B.C., Wittke, J.H., Kennett, J.P. & West, A., 2019. A response to Holliday et al.: numerous inaccurate claims about Wolbach et al. (2019) and the Younger Dryas impact hypothesis. Journal of Geology.