Mineralogy and geochemical signatures for provenance and palaeoweathering conditions of the upper Albian Abakaliki Shale in south-eastern Nigeria
PDF

Supplementary Files

Supplement

Keywords

Abakaliki Formation
Benue Trough
chemical weathering
source rock

How to Cite

Afolabi, O. A., Ogungbesan, G. O., & Ajibade, O. M. (2024). Mineralogy and geochemical signatures for provenance and palaeoweathering conditions of the upper Albian Abakaliki Shale in south-eastern Nigeria. Geologos, 30(2), 137–155. https://doi.org/10.14746/logos.2024.30.2.12

Abstract

Mineralogical and geochemical studies of the Abakaliki Shale have been undertaken in order to constrain source rock composition and palaeoweathering conditions, as well as to deduce the provenance terrane types. The mineralogical analysis using X-ray diffraction has revealed an abundance of quartz and clay minerals (illite, chlorite and illite/smectite mixed layer) with a minor content of albite and gypsum. Geochemical data have demonstrated a depletion in SiO2, MnO, Y, Zr, Hf, U, Y, Cu, Ni, V, Ba and Cr and an enrichment in Rb, Sr, Th, Sc, Co, Zn and Pb in the Abakaliki Shale in comparison to the Post-Archean Australian Shale (PAAS; a proxy for the upper continental crust). Rare earth element contents generally show LREE fractionation and enrichment (LaN/YbN = 16.08–35.75 and LaN/SmN = 3.61–6.16, respectively) with a strong negative Europium anomaly (Eu/Eu* = 0.56–0.73). These geochemical characteristics suggest that the provenance of the Albian Abakaliki Shale lay in ancient upper continental crust composed mainly of felsic basement rocks with a minor contribution from mafic rocks. This is in contrast to earlier studies which suggested possible contribution of mafic components from Jurassic volcanigenic terrane as source rocks of the Albian shale in the southern Benue Trough. Moderate chemical weathering of the source rocks with mixed granite-granodiorite compositions is indicated by the value of the chemical index of alteration (average CIA 76.60); the plagioclase index of alteration (average PIA 85.20) and the index of compositional variability (average ICV 0.88), as well as by the Rb/Sr (0.32–0.92), K/Rb (125.36–193.55) and K/Na (1.13–2.70) ratios.

https://doi.org/10.14746/logos.2024.30.2.12
PDF

References

Adeigbe, O.C. & Jimoh, Y.A., 2013. Geochemical fingerprinting: implication for provenance, tectonic and depositional settings of Lower Benue Trough sequence, southeastern Nigeria. Journal of Environmental Earth Sciences 3, 115-140.

Agagu, O.K. & Adighije, C.I., 1983. Tectonic and sedimentation framework of the lower Benue Trough, southeastern Nigeria. Journal of African Earth Sciences 1, 267-274. DOI: https://doi.org/10.1016/S0731-7247(83)80011-1

Agumanu, A.E. & Enu, E.I., 1990. Late Cretaceous clay distribution in the Lower Benue Trough: its palaeoenvironmental and tectonic implication. Journal of African Earth Sciences 10, 465-470. DOI: https://doi.org/10.1016/0899-5362(90)90099-Z

Akande, S.O. & Viczian, I., 1996. Illite crystallinity and smectite contents of the Cretaceous shales in the Southern Benue Trough: Implications for burial diagenesis, paleothermometry and hydrocarbon potentials. Nigerian Association of Petroleum Explorationists Bulletin 11, 65-73.

Amajor, L.C., 1987. Major and trace element geochemistry of Albian and Turonian shale from the Southern Benue trough, Nigeria. Journal of African Earth Sciences 6, 633-641. DOI: https://doi.org/10.1016/0899-5362(87)90002-9

Armstrong-Altrin, J.S., Lee, Y.I., Kasper-Zubillaga, J.J., Carranza-Edwards, A., Garcia, D., Eby, N., Balaram, V. & Cruz-Ortiz, N.L., 2012. Geochemistry of beach sands along the Western Gulf of Mexico, Mexico: implication for provenance. Chemie der Erde-Geochemistry 72, 345–362, DOI: https://doi.org/10.1016/j.chemer.2012.07.003

Armstrong-Altrin, J.S., Lee, Y.I., Kasper-Zubillaga, J.J. & Trejo-Ramirez, E., 2017. Mineralogy and geochemistry of sands along the Manzanillo and El Carrizal beach areas, southern Mexico: implications for palaeoweathering, provenance and tectonic setting. Geological Journal 52, 559–582, DOI: https://doi.org/10.1002/gj.2792

Armstrong-Altrin, J.S., Machain-Castillo, M.L., Rosales-Hoz, L., Carranza- Edwards, A., Sanchez-Cabeza, J.A. & Ruíz-Fernández, A.C., 2015, Geochemistry of deep sea sediments from the south-western Gulf of Mexico, Mexico: implication for depositional environment: Continental Shelf Research 95, 15-26. DOI: https://doi.org/10.1016/j.csr.2015.01.003

Armstrong-Altrin, J.S., Nagarajan, R., Madhavaraju, J., Rosalez-Hoz, L., Lee, Y.I., Balaram, V., Cruz-Martínez, A. & Avila-Ramírez, G., 2013, Geochemistry of the Jurassic and Upper Cretaceous shales from the Molango Region, Hidalgo, eastern Mexico: Implications for source-area weathering, provenance, and tectonic setting: Comptes Rendus Geoscience 345, 185-202. DOI: https://doi.org/10.1016/j.crte.2013.03.004

Benkhelil, J., 1989. The origin and evolution of the Cretaceous Benue Trough, Nigeria. Journal of Africa Earth Sciences 8, 251-282. DOI: https://doi.org/10.1016/S0899-5362(89)80028-4

Berger, G., Velde, B. & Aigony, T., 1999. Potassium sources and illitization in Texas Gulf Coast shale diagenesis. Journal of Sedimentary Research 69, 151-157 DOI: https://doi.org/10.2110/jsr.69.151

Bolarinwa, A.T., Faloye, O. & Idakwo, S.O., 2022. Geochemical studies of shales from the Asu River Group, Lower Benue Trough: Implications for provenance and paleo-environment reconstruction. Solid Earth Sciences 7, 5-18. DOI: https://doi.org/10.1016/j.sesci.2021.12.002

Burke, K.C., Dessauvagie, T.F. & Whiteman, A.J., 1972. Geologic history of the Benue valley and adjacent areas. [In:] Dessauvagie, T.F. & Whiteman, A.J. (Eds): African Geology, Ibadan University Press, pp.187-205.

Brindley, G.W. & Brown, G., 1980. Crystal structure of clay minerals and their X-ray identification. Mineralogical Society, London, 495 pp. DOI: https://doi.org/10.1180/mono-5

Chamley, H., 1989. Clay sedimentology. Springer-Verlag, Berlin, 623 pp. DOI: https://doi.org/10.1007/978-3-642-85916-8

Condie, K.C., Boryta, M.D., Liu, J. & Quian, X., 1992. The origin of khondalites: geochemical evidence from the Archean to Early Proterozoic granulitic belt in the North China Craton. Precambrian Research 59, 207-223. DOI: https://doi.org/10.1016/0301-9268(92)90057-U

Cox, R., Lowe, D.R. & Cullers, R.L., 1995. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States: Geochimica et Cosmochimica Acta 59, 2919-2940. DOI: https://doi.org/10.1016/0016-7037(95)00185-9

Cullers, R.L., 1994. The controls on the major and trace element variation of shales, siltstones and sandstones of Pennsylvanian – Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas, USA. Geochimica et Cosmochimica Acta 58, 4955-4972. DOI: https://doi.org/10.1016/0016-7037(94)90224-0

Cullers, R.L., 2000. The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, U.S.A.: Implications for provenance and metamorphic studies. Lithos 51, 305-327. DOI: https://doi.org/10.1016/S0024-4937(99)00063-8

Cullers, R.L., Basu, A. & Suttner, L., 1988. Geochemical signature of provenance in sand-size material in soils and stream sediments near the Tobacco Root batholith, Montana, USA. Chemical Geology 70, 335-348. DOI: https://doi.org/10.1016/0009-2541(88)90123-4

Cullers, R.L. & Graf, J., 1984. Rare earth element in igneous rocks of the continental crust: intermediate and silicic rocks, ore petrogenesis. [In:] Henderson, P. (Ed.): Rare earth geochemistry, Elsevier, pp. 275-316. DOI: https://doi.org/10.1016/B978-0-444-42148-7.50013-7

Cullers, R.L. & Podkovyrov, V.N., 2000. Geochemistry of the Mesoproterozoic Lakhanda shales in southeastern Yakutia, Russia: implications for mineralogical and provenance control, and recycling. Precambrian Research 104, 77–93. DOI: https://doi.org/10.1016/S0301-9268(00)00090-5

DaPeng, L., YueLong, C., Zhong, W., Yu, L. & Jian, Z., 2012. Paleozoic sedimentary record of the Xing-Meng Orogenic Belt, Inner Mongolia: implications for the provenances and tectonic evolution of the Central Asian Orogenic Belt. Chinese Science Bulletin 57, 776-785. DOI: https://doi.org/10.1007/s11434-011-4867-3

Deru, X., Xuexiang, G., Pengchun, L., Guanghao, C., Bin, X., Bachlinski, R., Zhuanli, H. & Gonggu, F., 2007. Mesoproterozoic-Neoproterozoic transition: Geochemistry, provenance and tectonic setting of clastic sedimentary rocks on the SE margin of Yangtze Block, South China. Journal of Asian Earth Sciences 29, 637-650. DOI: https://doi.org/10.1016/j.jseaes.2006.04.006

Ding, Z.L., Sun, J.M., Yang, S.L. & Liu, T.S., 2001. Geochemistry of Pliocene red clay formation in the Chinese Loess Plateau and implications for its origin, source provenance and palaeoclimatic change. Geochimica et Cosmochimica Acta 65, 905-913. DOI: https://doi.org/10.1016/S0016-7037(00)00571-8

Dou, Y., Yang, S. & Liu, Z., 2010. Clay mineral evolution in the central Okinawa Trough since 28 ka: Implications for sediment provenance and paleoenvironmental change, Palaeogeography, Palaeoclimatology, Palaeoecology 288, 108–117. DOI: https://doi.org/10.1016/j.palaeo.2010.01.040

Ehrenberg, S.N., 1993. Preservation of anomalously high porosity in deeply buried sandstones by grain-coating chlorite: Examples from the Norwegian Continental Shelf. AAPG Bulletin 77, 1260-1286. DOI: https://doi.org/10.1306/BDFF8E5C-1718-11D7-8645000102C1865D

Fedo, C.M., Eriksson, K. & Krogstad, E.J., 1996. Geochemistry of shale from the Archean (~ 3.0 Ga) Buhwa Greenstone belt, Zimbabwe: Implications for provenance and source area weathering. Geochimica et Cosmochimica Acta 60, 1751-1763. DOI: https://doi.org/10.1016/0016-7037(96)00058-0

Fedo. C.M, Nesbitt, H.W. & Young, G.M., 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 23, 921-924. DOI: https://doi.org/10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2

Floyd, P.A, Winchester, J.A. & Park, R.G., 1989. Geochemistry and tectonic setting of Lewisian clastic metasediments from the Early Proterozoic Loch Maree Group of Gairloch, N.W. Scotland. Precambrian Research 45, 203-214. DOI: https://doi.org/10.1016/0301-9268(89)90040-5

Fralick, P.W. & Kronberg, B.I., 1997. Geochemical discrimination of clastic sedimentary rock source. Sedimentary Geology 113, 111-124. DOI: https://doi.org/10.1016/S0037-0738(97)00049-3

Ghandour, I.M., Masuda, H. & Maejima, W., 2003. Mineralogical and chemical characteristics of Bajocian-Bathonian shale, G. Al-Maghara, North Sinai, Egypt: Climatic and environmental significance. Geochemical Journal 37, 87-108 DOI: https://doi.org/10.2343/geochemj.37.87

Ghosh, S., Mukhopadhy, J. & Chakraborty, A., 2019. Clay mineral and geochemical proxies for intense climate change in the Permian Gondwana rock record from Eastern India. AAAS Research 8974075, DOI: https://doi.org/10.34133/2019/8974075

Godet, A., Bodin, S., Adatte, T. & Föllmi, K., 2008. Platform-induced clay-mineral fractionation along northern Tethyan basin-platform transect: Implications for the interpretation of Early Cretaceous climate change (Late Hauterivian-Early Aptian). Cretaceous Research 29, 830-847. DOI: https://doi.org/10.1016/j.cretres.2008.05.028

Grant, N.K., 1971. The South Atlantic, Benue Trough and Gulf of Guinea Cretaceous triple junction. Geological Society of America Bulletin 82, 2295-2298. DOI: https://doi.org/10.1130/0016-7606(1971)82[2295:SABTAG]2.0.CO;2

Guiraud, R. & Bellion, Y., 1995. Late Carboniferous to Recent geodynamic evolution of the west Gondwanian cratonic, Tethyan margins. [In:] Nairn, A.E.M. (Eds): The ocean basins and margins, vol. 8, The Tethys ocean, pp. 101–124. DOI: https://doi.org/10.1007/978-1-4899-1558-0_3

Harnois, L., 1988. The CIW index: a new chemical index of weathering. Sedimentary Geology 55, 319–322. DOI: https://doi.org/10.1016/0037-0738(88)90137-6

Hayashi, K., Fujisawa, H., Holland, H. & Ohmoto, H., 1997. Geochemistry of ∼1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochimica et Cosmochimica Acta 61, 4115-4137. DOI: https://doi.org/10.1016/S0016-7037(97)00214-7

Hillier, S., 1994. Pore-lining chlorite in siliciclastic reservoir sandstone: electron microprobe, SEM and XRD data, and implications for their origin. Clay Minerals 29, 665-679. DOI: https://doi.org/10.1180/claymin.1994.029.4.20

Hillier, S., Matyas, J., Matter, A. & Vasseur, G. 1995. Illite/smectite diagenesis and its variable correlation with vitrinite reflectance in the Pannonian Basin. Clay and Clay Minerals 43, 174-183. DOI: https://doi.org/10.1346/CCMN.1995.0430204

Jahn, B.M. & Condie, K.C., 1995. Evolution of the Kaapvaal Craton as viewed from geochemical and Sm-Nd isotopic analysis of intracratonic pelites. Geochimica et Cosmochimica Acta 59, 2239-2258. DOI: https://doi.org/10.1016/0016-7037(95)00103-7

Kubler, B. & Jaboyedoff, M., 2000. Illite crystallinity. Comptes Rendus de l'Académie des Sciences, Paris 331, 75-89. DOI: https://doi.org/10.1016/S1251-8050(00)01395-1

Lazar, O.R., Bohacs, K.M., Macquaker, J.H.S. & Schieber, J., 2015. Capturing key attributes of fine grained sedimentary rocks in outcrops, cores and thin sections: Nomenclature and description guidelines. Journal of Sedimentary Research 85, 230-246. DOI: https://doi.org/10.2110/jsr.2015.11

Ma, Y., Liu, C. & Huo, R., 2000. Strotium isotope systematics during chemical weathering of granitoids: importance of relative mineral weathering rates. J. Goldschmidt Conference Abstracts 4, 657.

Madhavaraju, J., 2015. Geochemistry of Campanian-Maastrichtian sedimentary rocks in the Cauvery Basin, South India: Constrains on paleoweathering, provenance and Cretaceous environments. [In:] Ramkumar, M. (Ed.): Chemostratigraphy: Concepts, techniques and applications. Elsevier, pp. 185-214. DOI: https://doi.org/10.1016/B978-0-12-419968-2.00008-X

Martin, J. & Meybeck, M., 1979. Elemental mass-balance of material carried by major world rivers. Marine Chemistry 7, 173-206. DOI: https://doi.org/10.1016/0304-4203(79)90039-2

McCulloch, M.T. & Wasserburg, G.J., 1978. Sm-Nd and Rb-Sr chronology of continental crust formation. Science 200, 1003-1011. DOI: https://doi.org/10.1126/science.200.4345.1003

McLennan, S.M., 1989, Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes. Reviews in Mineralogy 21, 169-200. DOI: https://doi.org/10.1515/9781501509032-010

McLennan, S.M., Hemming, S., McDaniel, D.K. & Hanson, G.N., 1993. Geochemical approaches to sedimentation, provenance, and tectonics. Geological Society of America, Special Paper 284, 21-40. DOI: https://doi.org/10.1130/SPE284-p21

McLennan, S.M., Taylor, S.R., McCulloch, M.T. & Maynard, J.B., 1990. Geochemical and Nd–Sr isotopic composition of deep-sea turbidites: crustal evolution and plate tectonic associations. Geochimica et Cosmochimica Acta 54, 2015–2050. DOI: https://doi.org/10.1016/0016-7037(90)90269-Q

Meunier, A. & Velde, B., 2004. Illite: Origin, evolution and metamorphism. Springer Berlin, 288 pp. DOI: https://doi.org/10.1007/978-3-662-07850-1

Moore, D.M. & Reynolds, R.C. Jr., 1997. X-ray diffraction and the identification and analysis of clay minerals. 2nd edition. Oxford University Press, 400pp.

Nagarajan, R., Madhavaraju, J, Nagendra, R., Armstrong-Altrin, J.S. & Moutte, J., 2007. Geochemistry of Neoproterozoic shales of the Rabanpalli Formation, Bhima Basin, Northern Karnataka, southern India: implication for provenance and paleoredox conditions. Revista Mexicana de Ciencias Geologicas 24, 150-160.

Nesbitt, H.W. & Young, G.M., 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299, 715–717. DOI: https://doi.org/10.1038/299715a0

Nesbitt, H.W. & Young, G.M., 1984. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic consideration. Geochimica et Cosmochimica Acta 48, 1523-1534. DOI: https://doi.org/10.1016/0016-7037(84)90408-3

Nesbitt, H.W. & Young, G.M., 1989. Formation and diagenesis of weathering profiles. Journal of Geology 97, 129-147. DOI: https://doi.org/10.1086/629290

Nesbitt, H.W., Fedo, C.M. & Young, G.M., 1997. Quartz and feldspar stability and non-steady-state weathering and petrogenesis of siliciclastic sands and muds. Journal of Geology 105, 173-191. DOI: https://doi.org/10.1086/515908

Nesbitt, H.W., Markovics, G. & Price, R.C., 1980. Chemical processes affecting alkalis and alkaline earths during continental weathering. Geochimica et Cosmochimica Acta 44, 1659–1666. DOI: https://doi.org/10.1016/0016-7037(80)90218-5

Nwajide, C.S., 1990. Cretaceous sedimentation and paleogeography of the central Benue Trough. [In:] Ofoegbu, C.O. (Ed.): The Benue Trough structure and evolution. Friedrich Vieweg & Sohne, Wiesbaden, pp. 19-38.

Nwajide, C.S., 2013. Geology of Nigerian’s sedimentary basins. CSS Bookshops Limited, Lagos, Nigeria, 565pp.

Obaje, N.G., Wehner, H., Scheeder, G., Abubakar, M.B. & Jauro, H., 2004. Hydrocarbon prospectivity of Nigeria’s inland basins: from the viewpoint of organic geochemistry and organic petrology. AAPG Bulletin 87, 325–353. DOI: https://doi.org/10.1306/10210303022

Offodile, M.A., 1976. A review of the geology of the Cretaceous of the Benue valley. [In:] Kogbe, C.A. (Ed.): Geology of Nigeria. Elizabethan Publishing Co., Lagos, pp. 319-330

Ofoegbu, C.O., 1985. A review of the geology of the Benue Trough, Nigeria. Journal of African Science 3, 283-291. DOI: https://doi.org/10.1016/0899-5362(85)90001-6

Ojoh, K.A., 1992. The southern part of the Benue Trough (Nigeria) Cretaceous stratigraphy, basin analysis, paleo-oceanography and geodynamic evolution in the equatorial domain of south Atlantic. Nigerian Association of Petroleum Explorationists Bulletin 7, 131-152.

Olade, M.A., 1975. Evolution of Nigeria Benue trough (aulacogen) a tectonic model. Geological Magazine 112, 572-582 DOI: https://doi.org/10.1017/S001675680003898X

Parker, A., 1970. An index of weathering for silicate rocks. Geological Magazine 107, 501–504. DOI: https://doi.org/10.1017/S0016756800058581

Petschick, R., Kuhn, G. & Gingele, F.X., 1996. Clay minerals distribution in surface sediments of the South Atlantic sources, transport and relation to oceanography. Marine Geology 130, 203-229. DOI: https://doi.org/10.1016/0025-3227(95)00148-4

Petters, S.W., 1977. Mid-Cretaceous paleoenvironments and biostratigraphy of the Benue Trough, Nigeria. Bulletin of Geological Society of America 89, 151-154. DOI: https://doi.org/10.1130/0016-7606(1978)89<151:MPABOT>2.0.CO;2

Petters, S.W., 1978. Stratigraphic evolution of the Benue Trough and its implication for the upper Cretaceous paleogeography for West Africa. Journal of Geology 86, 311-322. DOI: https://doi.org/10.1086/649693

Petters, S.W., 1983. Gulf of Guinea planktonic foraminiferal biochronology and geological history of the South Atlantic. Journal of Foraminiferal Research 13, 32–59. DOI: https://doi.org/10.2113/gsjfr.13.1.32

Petters, S.W., Okereke, C.S. & Nwajide, C.S., 1987. Geology of Mamfe Rift, SE Nigeria. [In:] Matheis, G. & Schandelmeier, H. (Eds): Current research in African Earth sciences, Balkema, Rotterdam, pp. 299-302.

Pollastro, R.M., 1993. Considerations and applications of the illite/smectite geothermometer in hydrocarbon bearing rocks of Miocene to Mississippian age. Clays and clay Minerals 41, 119-133 DOI: https://doi.org/10.1346/CCMN.1993.0410202

Price, J.R. & Velbel, M.A., 2003. Chemical weathering indices applied to weathering profiles developed on heterogeneous felsic metamorphic parent rocks. Chemical Geology 202, 397–416. DOI: https://doi.org/10.1016/j.chemgeo.2002.11.001

Reyment, R.A., 1965. Aspects of the geology of Nigeria: The stratigraphy of the Cretaceous and Cenozoic deposits. University Press, Ibadan, 144 pp.

Roy, P.D., Caballeroa, M., Lozanoc, R. & Sykatz-Klossd, W., 2008. Geochemistry of Late Quaternary sediments from Tecocomulco Lake, central Mexico: Implication to chemical weathering and provenance. Chemie der Erde 68, 383-393. DOI: https://doi.org/10.1016/j.chemer.2008.04.001

Selvaraj, K. & Chen, C.A., 2006. Moderate chemical weathering of subtropical Taiwan: Constraints from solid-phase geochemistry of sediments and sedimentary rock. Journal of Geology 114, 101-116. DOI: https://doi.org/10.1086/498102

Sensarma, S., Rajamani, V. & Tripathi, J.K., 2008. Petrography and geochemical characteristics of the sediments of the small River Hemavati, Southern India: Implication for provenance and weathering processes. Sedimentary Geology 205, 111-125. DOI: https://doi.org/10.1016/j.sedgeo.2008.02.001

Sun, S.S. & McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society of London, Special Publication 42, 313-345. DOI: https://doi.org/10.1144/GSL.SP.1989.042.01.19

Taylor, S.R. & McLennan, S.M., 1985. The continental crust: Its composition and evolution. Blackwell, Oxford, 312pp.

Thiry, M., 2000. Palaeoclimatic interpretation of clay minerals in marine deposits: an outlook from the continental origin. Earth Science Reviews 49, 201–221. DOI: https://doi.org/10.1016/S0012-8252(99)00054-9

Turekian, K.K. & Wedepohl, K.H., 1961. Distribution of elements in some major units of earth’s crust. Geological Society of America Bulletin 72, 175–192. DOI: https://doi.org/10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2

Uzuakpunwa, A.B., 1980. A pre-Albian succession in parts of southeastern Nigeria. Cahier Geologipues 96, 358-362.

Velde, B. & Vasseur, G., 1992. Estimation of the diagenetic smectite to illite transformation in time-temperature space. American Mineralogist 77, 967-978.

Verma, S.P. & Armstrong-Altrin, J.S., 2013. New multi-dimensional diagrams for tectonic discrimination of siliciclastics sediments and their application to Precambrian basins. Chemical Geology 355, 117–133, DOI: https://doi.org/10.1016/j.chemgeo.2013.07.014

Westermann, S., Duchamp-Alphonse, S., Fiet, N., Fleitmann, D., Matera, V., Adatte, T. & Follmi, K.B., 2013, Paleoenvironmental changes during the Valanginian: New insights from variations in phosphorous contents and bulk-and clay mineralogies in the western Tethys. Paleogeography Paleoclimatology Paleoecology 392, 196-208. DOI: https://doi.org/10.1016/j.palaeo.2013.09.017

Whiteman, A., 1982. Nigeria: its petroleum geology, resources and potential. Graham & Trotman, London, 174 pp. DOI: https://doi.org/10.1007/978-94-009-7361-9

Willis, K.M., Stern, B. & Clauer, N., 1988. Age and geochemistry of Late Precambrian sediments of the Hammamat Series from the Northeastern Desert of Egypt. Precambrian Research 42, 173-187. DOI: https://doi.org/10.1016/0301-9268(88)90016-2

Wojdyr, M., 2010. Fityk: a general-purpose peak fitting program. Journal of Applied Crystallography 43, 1126-1128. DOI: https://doi.org/10.1107/S0021889810030499

Wright, J.B., 1976. Origin of the Benue Trough – a critical review. [In:] Kogbe, C.A. (Ed.): Geology of Nigeria, Elizabethan Publishing Co, Lagos, pp. 309-317

Wright, J.B., 1981. Review of the origin and Evolution of the Benue Trough in Nigeria. Earth Evolution Sciences 1, 98-103.

Wright, J.B., Hastings, D.A., Jones, W.B. & Williams, H.R., 1985. Geology and mineral resources of West Africa. George Allen & Union, 214pp.

Wronkiewicz, D.J. & Condie, K.C., 1987. Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: source-area weathering and provenance. Geochimica et Cosmochimica Acta 51, 2401–2416. DOI: https://doi.org/10.1016/0016-7037(87)90293-6

Wronkiewicz, D.J. & Condie, K.C., 1989. Geochemistry and provenance of sediments from the Pongola Supergroup, South Africa: evidence for a 3.0-Ga-old continental craton. Geochimica et Cosmochimica Acta 53, 1537– 1549. DOI: https://doi.org/10.1016/0016-7037(89)90236-6

Sordon, J., 2013. Identification and quantitative analysis of clay minerals. [In:] Bergaya, F. & Lagaly, G. (Eds): Development in clay science, 5B, 25-49. DOI: https://doi.org/10.1016/B978-0-08-098259-5.00004-4

Yang, S.Y, Li, C.X., Yang, D.Y. & Li, X.S., 2004. Chemical weathering of the loess deposits in the lower Changiang Valley, China, and palaeoclimatic implications. Quaternary International 117, 27-34. DOI: https://doi.org/10.1016/S1040-6182(03)00113-7

Zhang, Y., Wang, Y., Geng, H., Zhang, Y., Fan, W. & Zhong, H., 2013. Early Neoproterozoic (~850 Ma) back-arc basin in the central Jiangnan Orogen (eastern South China): geochronological and petrogenetic constraints from metabasalts. Precambrian Research 231, 325–342. DOI: https://doi.org/10.1016/j.precamres.2013.03.016