Characteristics and mineralogy of sediments in the Hongsa lignite deposit, northwestern Laos
Journal cover Geologos, volume 30, no. 3, year 2024
PDF

Keywords

grain size
petrography
X-ray diffraction
scanning electron microscopy
clay minerals
palaeoenvironment

How to Cite

Sattraburut, T., Thasod, Y., Ratanasthien, B., & Vongvassana, S. (2024). Characteristics and mineralogy of sediments in the Hongsa lignite deposit, northwestern Laos. Geologos, 30(3), 171–194. https://doi.org/10.14746/logos.2024.30.3.17

Abstract

Two sediment cores from the central part of the Hongsa lignite deposit in northwestern Lao PDR (Lao People’s Democratic Republic; Laos) have been analysed in order to understand their sedimentary characteristics using grain-size analysis, petrography, X-ray diffraction and scanning electron microscopy. This analysis has revealed that the deposit is primarily composed of fine-grained sediments, mainly silt and clay, with quartz as the dominant mineral and trace amounts of other minerals such as kaolinite, illite and montmorillonite. Gypsum and chlorite have also been found in some layers. Scanning electron microscope analysis has revealed a card-house structure of clay minerals, suggesting sedimentation from suspension driven by physico-chemical reactions influenced by pH and water chemistry. This arrangement increases porosity and water retention, significantly affecting the permeability and mechanical properties of sediments. Petrographic analysis has documented angular quartz and poorly sorted sediments, indicating minimal sediment reworking or short-distance sources. The palaeoenvironment of the Hongsa Basin, reconstructed from various rock units, suggests low-energy water conditions for the Underburden and moderate sediment supply in a wet forest swamp or bush moor environment for the Lower Lignite Zone Formation. The Middle Lignite Zone Formation indicates a more limited sediment supply in a similar environment, while Interburden Formation 1 suggests overbank deposits or stagnant water deposits. In summary, the Neogene Hongsa lignite deposit is characterised by fine-grained sediments, indicating low-energy water currents in mire environments. Occasional flood events brought coarser grains, although movement of facies should also be taken into account. The mineral composition suggests the presence of components derived from recycled sedimentary rocks along the northern border of the Hongsa Basin.

https://doi.org/10.14746/logos.2024.30.3.17
PDF

References

Aitchison J.C., Ali J.R. & Davis A.M., 2007. When and where did India and Asia collide? Journal of Geophysical Research 112, B05423. DOI: https://doi.org/10.1029/2006JB004706

ASTM International, 2008. Standard test method for particle-size analysis of soils (ASTM D 422-63). [In:] Annual book of ASTM standards (vol. 04.08, pp. 10–17). West Conshohocken, USA.

Baiyegunhi C., Liu K. & Gwavava O., 2017. Grain size statistics and depositional pattern of the Ecca Group sandstones, Karoo Supergroup in the Eastern Cape Province, South Africa. Open Geosciences 9, 554–576. DOI: https://doi.org/10.1515/geo-2017-0042

Bennett R.H., Bryant W.R., Hulbert M.H., Chiou W.A., Faas R.W., Kasprowicz J., Li H., Lomenick T., O’Brien N.R., Pamukcu S., Smart P., Weaver C.E. & Yamamoto T., 1991. Microstructure of Fine-Grained Sediments. Springer-Verlag, New York, 572 pp. DOI: https://doi.org/10.1007/978-1-4612-4428-8

Blott S.J. & Pye K., 2001. Gradistat: A grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surface Processes and Landforms 26, 1237–1248. DOI: https://doi.org/10.1002/esp.261

Brindley G.W. & Brown G., 1980. Crystal structures of clay minerals and their X-ray Identification. Mineralogical Society of Great Britain and Ireland, London, 495 pp. DOI: https://doi.org/10.1180/mono-5

Buffetaut E., Suteethorn V., Loeuff J.L., Khansubha S., Tong H. & Wongko K., 2005. The Dinosaur fauna from the Khok Kruat Formation (Early Cretaceous) of Thailand. International Conference on Geology, Geotechnology and Mineral Resources of Indochina, Khon Kaen, Thailand, 575–581.

Burri P., 1989. Hydrocarbon potential of Tertiary intermontane basins in Thailand. [In:] T. Thanasuthipitak & P. Ounchanum (Eds): International symposium on intermontane basins: Geology & resources, Chiang Mai, Thailand, 3–12.

Carroll D., 1970. Clay Minerals: A Guide to Their X-ray Identification. The Geological Society of America, California, 80 pp. DOI: https://doi.org/10.1130/SPE126-p1

Chamley H., 1989. Clay Sedimentology. Springer-Verlag, Berlin Heidelberg, 623 pp. DOI: https://doi.org/10.1007/978-3-642-85916-8

Chaodumrong P. & Songtham W., 2014. Tectonic evolution and paleogeographic history. [In:] Geology of Thailand. Ministry of Natural Resources and Environment, Bangkok, Thailand, 263–287.

Chaudhri A.R. & Singh M., 2012. Clay minerals as climate change indicators – A case study. American Journal of Climate Change 1, 231–239. DOI: https://doi.org/10.4236/ajcc.2012.14020

Chomiak L., Urbański P. & Widera M., 2020. Architektura i geneza iłów w górnym poziomie węgli brunatnych formacji poznańskiej (środkowy miocen) – odkrywka Tomisławice koło Konina w środkowej Polsce [Architecture and origin of clays within the upper part of lignites of the Poznań Formation (Middle Miocene) – the Tomisławice lignite opencast mine near Konin, central Poland]. Przegląd Geologiczny 68, 526–534. DOI: https://doi.org/10.7306/2020.19

Clift P.D., Carter A., Campbell I.H., Lap N.V., Allen C.M. & Tan M.T., 2006. Thermochronology of mineral grains in the Red and Mekong Rivers, Vietnam: Provenance and exhumation implications for Southeast Asia. Geochemistry Geophysics Geosystems 7, 1–28. DOI: https://doi.org/10.1029/2006GC001336

Deepthy R. & Balakrishnan S., 2005. Climatic control on clay mineral formation: Evidence from weathering profiles developed on either side of the Western Ghats. Journal of Earth System Science 114, 545–556. DOI: https://doi.org/10.1007/BF02702030

Department of Mineral Resources, 2007. Geological map of Nan Province. Department of Mineral Resources, Bangkok (in Thai).

Dianto A., Subehi L., Ridwansyah I. & Hantoro W.S., 2019. Clay minerals in the sediments as useful paleoclimate proxy: Lake Sentarum case study, West Kalimantan, Indonesia. IOP Conference Series: Earth and Environmental Science 311, 012036. DOI: https://doi.org/10.1088/1755-1315/311/1/012036

Dziamara M., Kaczmarek P., Klęsk J., Wachocki R. & Widera M., 2023. Facies and statistical analyses of a crevasse-splay complex at the Tomisławice opencast lignite mine in central Poland. Geologos 29, 173–181. DOI: https://doi.org/10.14746/logos.2023.29.3.17

Eisma D., 1986. Flocculation and deflocculation of suspended matter in estuaries. Netherlands Journal of Sea Research 20, 183–199. DOI: https://doi.org/10.1016/0077-7579(86)90041-4

Fagel N., Boski T., Likhoshway L. & Oberhaensli H., 2003. Late Quaternary clay mineral record in Central Lake Baikal (Academician Ridge, Siberia). Palaeogeography, Palaeoclimatology, Palaeoecology 193, 159–179. DOI: https://doi.org/10.1016/S0031-0182(02)00633-8

Fedorov P. & Koloskov A.V., 2005. Cenozoic Volcanism of Southeast Asia. Petrology 13, 352–380.

Folk R.L., 1980. Petrology of sedimentary rocks. Hemphill Publishing Company, Austin, 182 pp.

Folk R.L. & Ward W.C., 1957. Brazos River bar: A study in the significance of grain size parameters. Journal of Sedimentary Research 27, 3–26. DOI: https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D

Foster M.D., 1954. The relation between composition and swelling in clays. Clays and Clay minerals 3, 205–220. DOI: https://doi.org/10.1346/CCMN.1954.0030117

Friederich M.C., Moore T.A. & Flores R.M., 2016. A regional review and new insights into SE Asia Cenozoic coal-bearing sediments: Why does Indochina have such extensive coal deposits? International Journal of Coal Geology 166, 2–35. DOI: https://doi.org/10.1016/j.coal.2016.06.013

Hall R. & Morley C.K., 2004. Sundaland basins. [In]: P. Clift, W. Kuhnt & D.E. Hayes (Eds): Continent-ocean Interactions Within the East Asian Marginal Seas. American Geophysical Union, Washington DC, 55–85. DOI: https://doi.org/10.1029/149GM04

Harnpa T. & Saenton S., 2017. Stability analysis of Hongsa Coal Mine’s pit walls, Xaignabouli Province, Laos PDR. The National and International Graduate Research Conference, Khon Kaen, Thailand, 89–95.

He L., Qiu J., Hu Q., Wang H., Feng S., Gu Y. & Zeng J., 2022. Micro-mechanism of shear strength and water stability enhancement of montmorillonite by microwave heating. Materials Research 25, e20210260. DOI: https://doi.org/10.1590/1980-5373-mr-2021-0260

Hillier S., 1995. Erosion, sedimentation and sedimentary origin of clays. [In:] B. Velde (Ed.): Origin and mineralogy of clays: Clays and the environment. Springer-Verlag, Berlin, 162–219. DOI: https://doi.org/10.1007/978-3-662-12648-6_4

Hofmann L., Blunck S., Dittrich W., Kraemer T., von Schwarzenberg T. & Wall G., 2008. Mine master plan for the Hongsa Mine Mouth Power Project, Lao P.D.R.: Final Report. RWE Power International, Koeln.

Hongsa Power, 2024. Hongsa Power Company Limited (HPC). Available at https://www.hongsapower.com/index.php?model=cms&view=item&layout=page&id=1

Jackson M.L., 2018. Soil chemical analysis: Advanced course (2nd ed.). University of Wisconsin, Madison, 930 pp.

Jain A.K., 2014. When did India-Asia collide and make the Himalya? Current Science 106, 2–25.

Kordowski J., 2003. Struktury wewnętrzne i uziarnienie osadów pozakorytowych doliny dolnej Wisły w Kotlinie Toruńskiej i Basenie Unisławskim [Structures and granulometry of overbank deposits of the lower Vistula River valley in the Toruń and Unisław Basins]. Przegląd Geograficzny 75, 601–621.

Kumar P.A. & Patterson J., 2008. Granulometric study of Tharuvaikulam and Thirespuram, Gulf of Mannar, southeast coast of India. Journal of the Marine Biological Association of India 50, 127–133.

Lacassin R., Maluski H., Leloup P.H., Tapponnier P., Hinthong C., Siribhakdi K., Chuaviroj S. & Charoenravat A., 1997. Tertiary diachronic extrusion and deformation of western Indochina: Structural and 40Ar/39Ar evidence from NW Thailand. Journal of Geophysical Research 102(B5), 10013–10037. DOI: https://doi.org/10.1029/96JB03831

Li X., Gu H., Huang A. & Fu L., 2021. Bonding mechanism and performance of rectorite/ball clay bonded unfired high alumina bricks. Ceramics International 47, 10749–10763. DOI: https://doi.org/10.1016/j.ceramint.2020.12.191

Manitkoon S., Deesri U., Lauprasert K., Warapeang P., Nonsrirach T., Nilpanapan A., Wongko K. & Chanthasit P., 2022. Fossil assemblage from the Khok Pha Suam locality of northeastern, Thailand: an overview of vertebrate diversity from the Early Cretaceous Khok Kruat Formation (Aptian-Albian). Fossil Record 25, 83–98. DOI: https://doi.org/10.3897/fr.25.83081

Metcalfe I., 2017. Tectonic evolution of Sundaland. Bulletin of the Geological Society of Malaysia 63, 27–60. DOI: https://doi.org/10.7186/bgsm63201702

Meunier A., 2005. Clays. Spinger, Berlin, 472 pp.

Mitchell J. K. & Soga K., 2005. Fundamentals of soil behavior (3rd ed.). John Wiley & Sons, Hoboken, 592 pp.

Moore D.M. & Reynolds R.C., 1997. X-ray diffraction and the identification and analysis of clay minerals (2nd ed.). Oxford University Press, Oxford, 400 pp.

Morley C.K. & Racey A., 2011. Tertiary stratigraphy. [In:] M.F. Ridd, A.J. Barber & M.J. Crow (Eds): The geology of Thailand. The Geological Society of London, London, 223–271. DOI: https://doi.org/10.1144/GOTH.10

Mycielska-Dowgiałło E. & Ludwikowska-Kędzia M., 2011. Alternative interpretations of grain-size data from Quaternary deposits. Geologos 17, 189–203. DOI: https://doi.org/10.2478/v10118-011-0010-9

NASA/METI/AIST/Japan Spacesystems & U.S./Japan ASTER Science Team., 2018. ASTGTM v003 ASTER Global Digital Elevation Model 1 arc second.

Phouthonesy P., 2021. The Lao PDR Country Report. [In:] P. Han & S. Kimura (Eds): Energy Outlook and Energy Saving Potential in East Asia 2020. ERIA, Jakarta, 213–238.

Phusuwan S., Xayalath S. & Pongpa-ngan L., 2015. Challenging Hongsa resettlement and livelihoods: The first mine-mouth power plant project in Lao PDR. Proceeding of 35th Annual Conference of the International Association for Impact Assessment, Florence, Italy, 1–5.

Piman T. & Manish S., 2017. Case study on sediment in the Mekong River basin: Current state and future trends. Project Report 2017-03. Stockholm Environment Institute, Stockholm, 45 pp.

Racey A., Love M.A., Canham A.C., Goodall J.G.S., Polachan S. & Jones P.D., 1996. Stratigraphy and reservoir potential of the Mesozoic Khorat Group, NE Thailand. Part 1: Stratigraphy and sedimentary evolution. Journal of Petroleum Geology 19, 5–40. DOI: https://doi.org/10.1111/j.1747-5457.1996.tb00511.x

Ratanasthien B., 1975. The geochemistry of some recent argillaceous sediment. The University of Aston in Birmingham, 348 pp.

Rattana P., 2020. Stratigraphy and geochemistry of rock salt from Maha Sarakham formation in Changwat Chaiyaphum, northeastern Thailand. Chulalongkorn University Theses and Dissertations, Bangkok, 356 pp.

Rebesco M., Hernández-Molina F.J., Rooij D.V. & Wåhlin A., 2014. Contourites and associated sediments controlled by deep-water circulation processes: State-of-the-art and future considerations. Marine Geology 352, 111–154. DOI: https://doi.org/10.1016/j.margeo.2014.03.011

Salyapongse S., Fontaine H. & Sashida K., 2000. Petrologic and paleontologic constraints on age of rock associations – pyroclastics, volcaniclastics and limestones in Nan, Phayao and Prae Provinces (research report). Department of Mineral Resources. Bangkok, Thailand, 137–170.

Sattraburut T., Ratanasthien B. & Thasod S., 2021a. Palaeovegetation and palaeoclimate of Tertiary sediments from Hongsa Coalfield, Xayabouly Province, Lao PDR – Implication from palynofloras. Songklanakarin Journal of Science and Technology 43, 648–659.

Sattraburut T., Thasod Y., Ratanasthien B. & Kandharosa W., 2021b. Petrographic and chemical characterizations of coals from Hongsa coal mine, Xayabouly Province, Lao PDR. Suranaree Journal of Science and Technology 28, 030037.

Sattraburut T., Ratanasthien R. & Thasod Y., 2023. Fungal spores from Neogene sediments of the Hongsa Basin, Lao PDR. Tropical Natural History 23, 82–96.

Sattraburut T., Thasod Y. & Ratanasthien B., 2017. Maceral association in coal-bearing formations of Hongsa coal deposits, Northwestern Lao PDR. The 6th International Graduate Research Conference, Chiang Mai, Thailand.

Schneider W. & Gӧthel M., 2001. Geology and petrography of Young Tertiary lignite seams in the Hongsa Basin (Laos, Indochina). Geologica Saxonica 46/47, 149–167.

Shen L. & Siritongkham N., 2020. The characteristics, formation and exploration progress of the potash deposits on the Khorat Plateau, Thailand and Laos, Southeast Asia. China Geology 3, 67–82. DOI: https://doi.org/10.31035/cg2020009

Shrestha B., Maskey S., Babel M.S., van Griensven A. & Uhlenbrook S., 2018. Sediment related impacts of climate change and reservoir development in the Lower Mekong River Basin: a case study of the Nam Ou Basin, Lao PDR. Climatic Change 149, 13–27. DOI: https://doi.org/10.1007/s10584-016-1874-z

Tapponier P., Peltzer G. & Armijo R., 1986. On the mechanics of the collision between India and Asia. Geological Society, London, Special Publications 19, 113–157. DOI: https://doi.org/10.1144/GSL.SP.1986.019.01.07

Teichmüller M., 1958. Rekonstruktion verschiedener Moortypen des Hauptflözes der Niederrheinischen Braunkohle [Reconstruction of various peat types of the main seam of the Lower Rhine lignite]. Fortschritte in der Geologie von Rheinland und Westfalen 2, 599–612.

Teichmüller M., 1989. The genesis of coal from the viewpoint of coal petrology. International Journal of Coal Geology 12, 1–87. DOI: https://doi.org/10.1016/0166-5162(89)90047-5

Thasod Y., Ratanasthien B., Tanaka S., Saegusa H. & Nakaya H., 2007. Fine-fraction clays from Chiang Muan Mine, Phayao Province, Northern Thailand. ScienceAsia 33, 13–21. DOI: https://doi.org/10.2306/scienceasia1513-1874.2007.33.013

van Olphen H., 1977. An introduction to clay colloid chemistry: For clay technologists, geologists, and soil scientists (2nd ed.). John Wiley, New York, 318 pp.

Vilaihongs M. & Areesiri S., 1997. Geology of lignite deposit and tectonic evolutions in Hongsa Tertiary basin, Khwaeng Xayabouly northern Lao PDR. [In:] Dheeradilok P., Hinthong C., Chaodumrong P., Putthapiban P., Tanasathien W., Utha-aroon C., Sattayarak N., Nuchanong T., Techawan S. (Ed): Proceeding of the International Conference on Stratigraphy and Tectonic Evolution of Southeast Asia and the South Pacific, Bangkok, Thailand.

Virk H.S., 2015. Nanomaterials: Basic concepts and applications. Trans Tech Publications Ltd., Bäch, Switzerland, 212 pp. DOI: https://doi.org/10.4028/b-dd3R3m

Visher G.S., 1969. Grain size distributions and depositional processes. Journal of Sedimentary Petrology 39, 1074–1106. DOI: https://doi.org/10.1306/74D71D9D-2B21-11D7-8648000102C1865D

Wang R., Zhang G. & Zhang J-M., 2010. Centrifuge modelling of clay slope with montmorillonite weak layer under rainfall conditions. Applied Clay Science 50, 386–394. DOI: https://doi.org/10.1016/j.clay.2010.09.002

Welton J.E., 2003. SEM petrology atlas – Methods in exploration series No. 4. The American Association of Petroleum Geologists. Oklahoma, USA.

Widera M., 2012. Macroscopic lithotype characterisation of the 1st Middle-Polish (1st Lusatian) Lignite Seam in the Miocene of central Poland. Geologos 18, 1–11. DOI: https://doi.org/10.2478/v10118-012-0001-5

Widera M., 2016. Depositional environments of overbank sedimentation in the lignite-bearing Grey Clays Member: New evidence from Middle Miocene deposits of central Poland. Sedimentary Geology 335, 150–165. DOI: https://doi.org/10.1016/j.sedgeo.2016.02.013

Widera M., Chomiak L. & Wachocki R., 2023. Distinct types of crevasse splays formed in the area of Middle Miocene mires, central Poland: Insights from geological mapping and facies analysis. Sedimentary Geology 443, 106300. DOI: https://doi.org/10.1016/j.sedgeo.2022.106300

Widera M., Dziamara M., Klęsk J. & Wachocki R., 2024. Four in one: a new crevasse-splay complex in the middle Miocene of central Poland. Annales Societatis Geologorum Poloniae 94, 1–18. DOI: https://doi.org/10.14241/asgp.2024.04

Zhu H., Li S., Hu Z., Ju Y., Pan Y., Yang M., Lu Y., Wei M. & Qian W., 2023. Microstructural observations of clay-hosted pores in black shales: implications for porosity preservation and petrophysical variability. Clay Minerals 58, 310–323. DOI: https://doi.org/10.1180/clm.2023.28