Abstract
This paper discusses principles for delineating wellhead protection zones (WHPZ) of groundwater well fields in ice-margin valleys. A distinctive feature of such well fields is that, apart from the often geogenically contaminated water of ice-margin valleys, they are largely supplied with high-quality water from intertill aquifers of neighbouring uplands. However, much of this inflow can be intercepted by wells for agriculture that are increasingly being constructed in the capture zones of existing municipal well fields, thus posing a threat to the quality of water for the public. This problem has been investigated using the example of a municipal well in Wroniawy (Poland) by analysing changes in the recharge components of this well field with a groundwater flow model. The results indicate that the commissioning of agricultural abstractions in the capture zone of this well field reduces inflow from intertill aquifers (8.5 per cent) and precipitation recharge (3.3 per cent), following a change in the extent of the capture zone. The loss of these qualitative recharge components is substituted by an increase in poor-quality water, i.e., surface water (7.3 per cent) and geogenically contaminated water from the ice-margin valley centre (3.8 per cent). Protecting well fields in such locations from adverse water quality changes requires the implementation of quantitative shielding of best-quality water, calling for WHPZ to cover the entire capture zone regardless of water flow timing, which is not provided for in Polish legislation. Costs and constraints of implementing such a WHPZ can be reduced by dividing it into sectors that differ in the scope of limitations, with the only quantitative protection applied to the outermost, medium- and low-vulnerable parts of the capture zone.
References
Ahmadi A., Chitsazan M., Mirzaee S.Y. & Nadri A., 2023. The effects of influence radius and drawdown cone on the areas related to the protection of water wells. Journal of Hydrology 617. DOI: https://doi.org/10.1016/j.jhydrol.2022.129001
Anderson M., Woessner W. & Hunt R., 2015. Applied groundwater modeling: simulation of flow and advective transport. Academic Press, London, 564 p.
Bjerre E., Kristensen L.S., Engesgaard P. & Hojberg A.L., 2020. Drivers and barriers for taking account of geological uncertainty in decision making for groundwater protection. Science of the Total Environment 746. DOI: https://doi.org/10.1016/j.scitotenv.2020.141045
Brenčič M., Prestor J., Kompare B., Matoz H. & Kranjc S., 2009. Integrated approach to delineation of drinking water protection zones. Geologija 52, 175–182. DOI: https://doi.org/10.5474/geologija.2009.017
Chave P., Howard G., Schijven J., Appleyard S., Fladerer F. & Schimon W., 2006. Groundwater protection zones. [In] O. Schmol, G. Howard, J. Chilton & I. Chorus (Eds): Protecting Groundwater for Health. Managing the quality of Drinking-water sources. WHO, London, 465-492.
Corson-Dosch N., Fienen M., Finkelstein J., Leaf A., White J., Woda J. & Williams J., 2022. Areas contributing recharge to priority wells in valley-fill aquifers in the Neversink River and Rondout Creek Drainage Basins. USGS Scientific Investigations Report, New York. DOI: https://doi.org/10.3133/sir20215112
Dąbrowski S., Janiszewska B., Rynarzewski W. & Straburzyńska-Janiszewska R., 2018. Odwzorowanie przepływu wód podziemnych systemu wodonośnego odcinka Kościan–Wolsztyn pradoliny Warszawsko-Berlińskiej na modelach lokalnym i regionalnym [Reconstruction of groundwater flow in the water-bearing system of the Warsaw-Berlin ice-marginal valley in the Koscian-Wolsztyn area based on local and regional models]. Biuletyn Państwowego Instytutu Geologicznego 471, 15-22, DOI: https://doi.org/10.5604/01.3001.0012.4736
Dąbrowski S., Janiszewska B., Pawlak A. & Rynarzewski W., 2005. Jakość wód podziemnych jako czynnik warunkujący zasoby dyspozycyjne Pradoliny Warszawsko-Berlińskiej w obszarze zlewni kanałów Obry: Północnego, Środkowego i Południowego [The groundwater quality as the main condition factor safe yield of the Warsaw-Berlin Margin valley in the area of the sasin of the Obra’s channels: Northern, Central and South]. Współczesne Problemy Hydrogeologii 12, 155-163, Toruń.
Desens A. & Houben G.J., 2022. Jenseits von Sichardt – empirische Formeln zur Bestimmung der Absenkreichweite eines Brunnens und ein Verbesserungsvorschlag. Grundwasser - Zeitschrift der Fachsektion Hydrogeologie 27, 131–141, DOI: https://doi.org/10.1007/s00767-021-00500-3
Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy.
Directive 2006/118/EC of the European Parliament and of the Council of 12 December 2006 on the protection of groundwater against pollution and deterioration.
Doveri M., Menichini M. & Scozzari A., 2015. Protection of groundwater resources: Worldwide regulations and scientific approaches [In]: A. Scozzari & E. Dotsika (Eds): Threats to the Quality of Groundwater Resources. The Handbook of Environmental Chemistry 40. Springer, Berlin, DOI: https://doi.org/10.1007/698_2015_421
Friesz P., Williams J., Finkelstein J. & Woda J., 2022. Areas contributing recharge to selected production wells in unconfined and confined glacial valley-fill aquifers in Chenango River Basin. USGS Scientific Investigations Report, New York, DOI: https://doi.org/10.3133/sir20215083
Geological and Mining Law. Act of 9 June 2011. Journal of Laws. 2024 item 1290.
Goodarzi M. & Eslamian S., 2019. Evaluation of WhAEM and MODFLOW models to determine the protection zone of drinking wells. Environmental Earth Science 78, 195. DOI: https://doi.org/10.1007/s12665-019-8204-5
Górski J., 2001. Propozycja oceny antropogenicznego zanieczyszczenia wód podziemnych na podstawie wybranych wskaźników hydrochemicznych [Proposal of anthropogenic contamination evaluation of ground water on the base of chosen hydrochemical indicators], Współczesne Problemy Hydrogeologii 10, 309-313, Wrocław.
Górski J., 2010a. Uzdatnianie wód podziemnych w warstwie wodonośnej [Groundwater treatment in the aquifer]. [In:] J. Nawrocki (Ed.): Uzdatnianie wody. Procesy fizyczne, chemiczne i biologiczne. Wydawnictwo Naukowe Uniwersytetu im. Adama Mickiewicza, Poznań & Wydawnictwo Naukowe PWN, Warszawa, 316-357.
Górski J., 2010b. Groundwater quality changes due to iron sulphide oxidation in the Odra ice marginal valley – long term process observations. Biuletyn Państwowego Instytutu Geologicznego 441, 19-26.
Górski J., 2010c. Zmiany jakości wód podziemnych w warunkach eksploatacji [Groundwater quality changes during exploitation]. [In:] J.F. Lemański & S. Zabawa (Eds): Zaopatrzenie w wodę, jakość i ochrona wód [Water supply and water quality]. Polskie Zrzeszenie Inżynierów i Techników Sanitarnych, pp. 115-128.
Górski J., 2017. Dwadzieścia pięć lat doświadczeń w uzdatnianiu wód podziemnych w warstwie wodonośnej na ujęciu Wroniawy dla miasta Wolsztyna [Twenty-five years of experience in groundwater treatment in the aquifer on the Wroniawy water capture for Wolsztyn town]. Przegląd Geologiczny 65, 1257–1263.
Górski J., Kruć-Fijałkowska R., Matusiak M. & Dragon K., 2021. Zmiany chemizmu i jakości wód gruntowego poziomu wodonośnego w warunkach wieloletniej eksploatacji ujęcia wody w Chorzeminie [Changes in chemistry and water quality of the groundwater aquifer under conditions of long-term operation of the Chorzemin water intake]. [In:] D. Wrzesiński, R. Graf & A. Perz (Eds): Naturalne i antropogeniczne zmiany obiegu wody. Ilościowe i jakościowe badania wód [Natural and anthropogenic changes in the water cycle. Water quantitative and qualitative studies]. Studia i prace z geografii, Poznań 88, 29-39.
Graf R. & Przybyłek J., 2018. Application of the WetSpass simulation model for determining conditions governing the recharge of shallow groundwater in the Poznan Upland, Poland. Geologos 2, 189-205, DOI: https://doi.org/10.2478/logos-2018-0020
Gurwin J., 2015. Integration of numerical models with geoinformatic techniques in delimitation of protection zone of complex multi-aquifer system of MGB 319, SW Poland. Geologos 21, 169-177, DOI: https://doi.org/10.1515/logos-2015-0014
Liu Y., Weisbrod N. & Yakirevich A., 2019. Comparative study of methods for delineating the wellhead protection area in an unconfined coastal aquifer. Water 11, 1168, DOI: https://doi.org/10.3390/w11061168
Louwyck A., Vandenbohede A., Libbrecht D., Van Camp M. & Walraevens K., 2022. The radius of influence myth. Water 14, DOI: https://doi.org/10.3390/w14020149
Matusiak M. & Przybyłek J., 2017. Wykorzystanie niestacjonarnego modelu przepływu do oceny rzeczywistej wielkości eksploatacji wód podziemnych z piętra jurajsko-kredowego na obszarze intensywnych nawodnień rolniczych w rejonie Kalisza. [The usefulness of transient modeling method in quantification of actual groundwater abstraction out of Jurassic-Cretaceous aquifer within intensive irrigated areas near Kalisz]. Przegląd Geologiczny 65, 1218 – 1224.
Matusiak M., Dragon K., Gorski J., Kruc-Fijałkowska R. & Przybylek J., 2021. Surface water and groundwater interaction at long-term exploited river bank filtration site based on groundwater flow modelling (Mosina-Krajkowo, Poland). Journal of Hydrology: Regional Studies 37, 100882, DOI: https://doi.org/10.1016/j.ejrh.2021.100882
McDonald M.G. & Harbaugh A.W., 1988. A modular three-dimensional finite-difference groundwater flow model. USGS Techniques of Water Resources Investigations 06-A1, Washington,
Moutsopoulos K., Gemitzi A. & Tsihrintzis V., 2008. Delineation of groundwater protection zones by the backward particle tracking method: theoretical background and GIS-based stochastic analysis. Environmental Geology 54, 1081–1090, DOI: https://doi.org/10.1007/s00254-007-0879-3
Osmanaj L., Hajra A. & Berisha A., 2021. Determination of groundwater protection zones of the Pozharan wellfield using hydrogeological Modflow Model. Journal of Ecological Engineering 22, 73–81, DOI: https://doi.org/10.12911/22998993/132429
Ozdemir A., 2021. A framework for drinking water basin protection. Water and Environment Journal 35, 1362–1375, DOI: https://doi.org/10.1111/wej.12735
Paris M., D’elıa M., Perez M. & Pacini J., 2019. Wellhead protection zones for sustainable groundwater supply. Sustainable Water Resources Management 5, 161–174. DOI: https://doi.org/10.1007/s40899-017-0156-x
Pollock D.W., 1989. Documentation of computer programs to compute and display pathlines using results from the US Geological Survey modular three-dimensional finite-difference groundwater flow model. US Geological Survey, Reston, DOI: https://doi.org/10.3133/ofr89381
Pollock D.W., 2016. User Guide for MODPATH Version 7—A Particle-Tracking Model for MODFLOW. US Geological Survey, Reston, DOI: https://doi.org/10.3133/ofr20161086
Steiakakis E., Vavadakis D. & Mourkakou O., 2023. Groundwater vulnerability and delineation of protection zones in the discharge area of a karstic aquifer-application in Agyia's karst system (Crete, Greece). Water 15, DOI: https://doi.org/10.3390/w15020231
Urumovic K., 2016. The referential grain size and effective porosity in the Kozeny-Carman model. Hydrology and Earth System Sciences 20, 1669-1680. DOI: https://doi.org/10.5194/hess-20-1669-2016
Water Law. Act of 20 July 2017. Journal of Laws. 2021 item 624.
Witczak S. & Żurek A., 1994. Wykorzystanie map glebowo-rolniczych w ocenie ochronnej roli gleb dla wód podziemnych [The use of soil-agricultural maps in evaluating the protective role of soils for groundwater]. [In:] A.S. Kleczkowski (Ed.): Metodyczne podstawy ochrony wód podziemnych [Methodical Basement of the Groundwater Protection]. Wydawnictwo AGH, Kraków, 155-180.
Wyssling L., 1979. Eine neue Formel zur Berechnung der Zustromdauer (Laufzeit) des Grundwassers zu einem Grundwasser Pumpwerk. Eclogae Geologicae Helvetiae 72, 401–406.
Zeferino J., Paiva M., Carvalho M.R., Carvalho J.M. & Almeid C., 2022. Long term effectiveness of wellhead protection areas. Water 14, 1063, DOI: https://doi.org/10.3390/w14071063
Zhou Y., Hossain P. & van der Moot N., 2015. Analysis of travel time, sources of water and well protection zones with groundwater models. Journal of Groundwater Science and Engineering 3, 363-374. DOI: https://doi.org/10.26599/JGSE.2015.9280039
ŽivanovićV., Jemcov I. & Dragišić V., 2016. Karst groundwater source protection based on the time-dependent vulnerability assessment model: Crnica springs case study, Eastern Serbia. Environmental Earth Sciences 75, 1224, DOI: https://doi.org/10.1007/s12665-016-6018-2
Živanović V., Atanacković N. & Stojadinović S., 2021. Vulnerability assessment as a basis for Sanitary Zone Delineation of Karst Groundwater Sources - Blederija Spring case study. Water 13, 2775, DOI: https://doi.org/10.3390/w13192775
License
Copyright (c) 2024 Magdalena Matusiak, Józef Górski, Krzysztof Dragon, Roksana Kruć-Fijałkowska

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.