Abstract
Most studies on the behavior of pollutants in the groundwater environment are carried out in laboratories, and the results are then implemented at local and regional levels using model simulations or analytical solutions. Column experiments are used to determine the transport characteristics of inorganic and organic chemicals in the soil and water environment. Although column experiments have been conducted regularly for many years, there is currently no established standard protocol for setting up and conducting them to ensure consistent results. The repeatability of column experiments was evaluated for soils, which differ primarily in the silt and clay content, using a conservative tracer susceptible only to advection and dispersion processes to reduce the number of variables affecting the results of the study which arise in a case of using reactive contaminants. The column experiments performed according to the adopted methodology are characterized by high repeatability of the obtained test results for the transport parameters, regardless of the type of injection or the chosen column length (only a small-scale effect is visible). Based on the results, it can be noticed that for the same soil the values of the pore–water velocity for different types of injections and column lengths are very similar. The percentage difference between the values of pore–water velocity obtained for both tested soils does not exceed 5% and for individual pairs of parallel column experiments it does not exceed 3%.
References
Banzhaf S. & Hebig K.H., 2016. Use of column experiments to investigate the fate of organic micropollutants - A review. Hydrology and Earth System Sciences 20, 3719–3737. DOI: https://doi.org/10.5194/hess-20-3719-2016
BIPM, 2024. Joint Committee for Guides in Metrology BIPM. https://jcgm.bipm.org/vim/en/2.26.html/.
Casey F.X., Šimůnek J., Lee J., Larsen G.L. & Hakk H., 2005. Sorption, mobility, and transformation of estrogenic hormones in natural soil. Journal of Environmental Quality 34, 1372–1379. DOI: https://doi.org/10.2134/jeq2004.0290
Ellison S.L.R. & Williams A. (Eds), 2012. Eurachem/CITAC guide: Quantifying uncertainty in analytical measurement. 3rd edition. http://www.measurementuncertainty.org/mu/QUAM2000-1.pdf.
Flores-Céspedes F., González-Pradas E., Fernández-Pérez M., Villafranca-Sánchez M., Socías-Viciana M. & Ureña-Amate M.D., 2002. Effects of dissolved organic carbon on sorption and mobility of imidacloprid in soil. Journal of Environment Quality 31, 880. DOI: https://doi.org/10.2134/jeq2002.0880
Gibert O., Hernández Amphos M., Vilanova E. & Cornellà O., 2014. Guidelining protocol for soil-column experiments assessing fate and transport of trace organics. Demeau, Brussels, Belgium, 3(54). www.demeau-fp7.euHalligan S., 2002. Reproducibility, repeatability, correlation and measurement error. British Journal of Radiology 75, 193–194. DOI: https://doi.org/10.1259/bjr.75.890.750193
Hebig K.H., Nödler K., Licha T. & Scheytt T.J., 2014. Impact of materials used in lab and field experiments on the recovery of organic micropollutants. Science of the Total Environment 473, 125–131. DOI: https://doi.org/10.1016/j.scitotenv.2013.12.004
Kiecak A., Breuer F. & Stumpp C., 2020. Column experiments on sorption coefficients and biodegradation rates of selected pharmaceuticals in three aquifer sediments. Water 12. DOI: https://doi.org/10.3390/w12010014
Kurwadkar S., Wheat R., McGahan D. G. & Mitchell F., 2014. Evaluation of leaching potential of three systemic neonicotinoid insecticides in vineyard soil. Journal of Contaminant Hydrology 170, 86–94. DOI: https://doi.org/10.1016/j.jconhyd.2014.09.009
Lehmann K., Schaefer S., Babin D., Köhne J.M., Schlüter S., Smalla K., Vogel H.J., & Totsche K.U., 2018. Selective transport and retention of organic matter and bacteria shapes initial pedogenesis in artificial soil - A two-layer column study. Geoderma 325, 37–48. DOI: https://doi.org/10.1016/j.geoderma.2018.03.016
Leiva J.A., Nkedi-Kizza P., Morgan K.T. & Kadyampakeni D.M., 2017. Imidacloprid transport and sorption nonequilibrium in single and multilayered columns of Immokalee fine sand. PLoS ONE 12. DOI: https://doi.org/10.1371/journal.pone.0183767
Lewis J. & Sjöstrom J., 2010. Optimizing the experimental design of soil columns in saturated and unsaturated transport experiments. Journal of Contaminant Hydrology 115, 1–13. DOI: https://doi.org/10.1016/j.jconhyd.2010.04.001
Liu F., Xu B., He Y., Brookes P.C., & Xu J., 2019. Co-transport of phenanthrene and pentachlorophenol by natural soil nanoparticles through saturated sand columns. Environmental Pollution 249, 406–413. DOI: https://doi.org/10.1016/j.envpol.2019.03.052
Magnusson B., Näykki T., Hovind H., Krysell M. & Sahlin E., 2017. Handbook for calculation of measurement uncertainty in environmental laboratories. NORDTEST NT TR 537 edition 4. 2017:11.
Marciniak M., Małoszewski P. & Okońska M., 2006. Wpływ efektu skali eksperymentu kolumnowego na identyfikację parametrów migracji znaczników metodą rozwiązań analitycznych i modelowania numerycznego [The influence of column experiment scale effect on the tracer migration parameter identification by the methods of analytical solutions and numerical modelling]. Geologos 10, 167–187.
Masipan T., Chotpantarat S. & Boonkaewwan S., 2016. Experimental and modelling investigations of tracer transport in variably saturated agricultural soil of Thailand: Column study. Sustainable Environment Research 26, 97–101. DOI: https://doi.org/10.1016/j.serj.2016.04.005
NIST, 2024. National Institute for Standards and Technology. Guidelines for evaluating and expressing the uncertainty of NIST measurement results. http://physics.nist.gov/Pubs/guidelines/contents.html.
Okońska M., Marciniak M., Zembrzuska J. & Kaczmarek M., 2019. Laboratory investigations of diclofenac migration in saturated porous media - A case study. Geologos 25, 213–223. DOI: https://doi.org/10.2478/logos-2019-0023
Parker J.C. & Vangenuchten M.T., 1984. Determining transport parameters from laboratory and field tracer experiments. Virginia Agricultural Experiment Station Bulletin 84, 1-43.
Peña A., Palma R. & Mingorance M.D., 2011. Transport of dimethoate through a Mediterranean soil under flowing surfactant solutions and treated wastewater. Colloids and Surfaces A: Physicochemical and Engineering Aspects 384, 507–512. DOI: https://doi.org/10.1016/j.colsurfa.2011.05.024
Pietrzak D., Kania J., Kmiecik E. & Wator K., 2019. Identification of transport parameters of chlorides in different soils on the basis of column studies. Geologos 25, 225–229. DOI: https://doi.org/10.2478/logos-2019-0024
Pietrzak D., Kania J. & Kmiecik E., 2022. Transport parameters of selected neonicotinoids in different aquifer materials using batch sorption tests. Geology, Geophysics and Environment 48, 367–379. h DOI: https://doi.org/10.7494/geol.2022.48.4.367
Pietrzak D., Kania J., Kmiecik E. & Baba A., 2024. Risk analysis for groundwater intakes based on the example of neonicotinoids. Chemosphere 358. DOI: https://doi.org/10.1016/j.chemosphere.2024.142244
PN-EN ISO 21268-3, 2020. Soil quality - Leaching procedures for subsequent chemical and ecotoxicological testing of soil and soil-like materials - Part 3: Up-flow percolation test.
Ritschel T. & Totsche K.U., 2016. Closed-flow column experiments - Insights into solute transport provided by a damped oscillating breakthrough behavior. Water Resources Research 52, 2206–2221. DOI: https://doi.org/10.1002/2015WR018317
Rodríguez-Liébana J.A., Mingorance M.D. & Peña A., 2018. Thiacloprid adsorption and leaching in soil: Effect of the composition of irrigation solutions. Science of the Total Environment 610–611, 367–376. DOI: https://doi.org/10.1016/j.scitotenv.2017.08.028
Schaffer M., Kröger K.F., Nödler K., Ayora C., Carrera J., Hernández M. & Licha T., 2015. Influence of a compost layer on the attenuation of 28 selected organic micropollutants under realistic soil aquifer treatment conditions: Insights from a large scale column experiment. Water Research 74, 110–121. DOI: https://doi.org/10.1016/j.watres.2015.02.010
Scheytt T.J., Mersmann P. & Heberer T., 2006. Mobility of pharmaceuticals carbamazepine, diclofenac, ibuprofen, and propyphenazone in miscible-displacement experiments. Journal of Contaminant Hydrology 83, 53–69. DOI: https://doi.org/10.1016/j.jconhyd.2005.11.002
Selim H.M., Jeong C.Y. & Elbana T.A., 2010. Transport of imidacloprid in soils: Miscible displacement experiments. Soil Science 175, 375–381. DOI: https://doi.org/10.1097/SS.0b013e3181ebc9a2
Sieczka A. & Koda E., 2018. Evaluation of chlorides transport parameters in natural soils based on laboratory studies. MendelNet 2017. Proceedings of 24th International PhD Students Conference, pp. 921–926.
Siemens J., Huschek G., Walshe G., Siebe C., Kasteel R., Wulf S., Clemens J., & Kaupenjohann M., 2010. Transport of pharmaceuticals in columns of a wastewater‐irrigated Mexican clay soil. Journal of Environmental Quality 39, 1201–1210. DOI: https://doi.org/10.2134/jeq2009.0105
da Silva R.B. & Williams A. (Eds), 2015. Eurachem/CITAC guide: Setting and using target uncertainty in chemical measurement. www.eurachem.org.
Simunek J., Van Genuchten M. T., Sejna M., Toride N. & Leij F.J., 1999. The STANMOD computer software for evaluating solute transport in porous media using analytical solutions of convection-dispersion equation. Versions 1.0 and 2.0. International Ground Water Modeling Center.
Toride N., 1995. The CXTFIT code for estimating transport parameters from laboratory and field tracer experiments. US Salinity Laboratory Research Report 137.
Vitale C.M., Terzaghi E., Zati D. & Di Guardo A., 2018. How good are the predictions of mobility of aged polychlorinated biphenyls (PCBs) in soil? Insights from a soil column experiment. Science of the Total Environment 645, 865–875. DOI: https://doi.org/10.1016/j.scitotenv.2018.07.216
Williams A. & Magnusson B. (Eds), 2007. Eurachem/CITAC guide: Use of uncertainty information in compliance assessment. www.eurachem.org’. DOI: https://doi.org/10.1007/s00769-008-0425-3
Yasutaka T., Naka A., Sakanakura H., Kurosawa A., Inui T., Takeo M., Inoba S., Watanabe Y., Fujikawa T., Miura T., Miyaguchi S., Nakajou K., Sumikura M., Ito K., Tamoto S., Tatsuhara T., Chida T., Hirata K., Ohori K., Someya M., Katoh M., Umino M., Negishi M., Ito K., Kojima J. & Ogawa S., 2017. Reproducibility of up-flow column percolation tests for contaminated soils. PLoS ONE 12. DOI: https://doi.org/10.1371/journal.pone.0178979
License
Copyright (c) 2025 Damian Pietrzak, Jarosław Kania, Ewa Kmiecik, Alper Baba

This work is licensed under a Creative Commons Attribution 4.0 International License.