Identifying potential groundwater recharge zones using the Analytic Hierarchy Process (AHP) method, in the Upper-Middle Drâa Basin, Morocco
Journal cover Geologos, volume 31, no. 3, year 2025
PDF

Keywords

Hydrogeology
multi-criteria analysis
geospatial modelling

How to Cite

Hayat, G., Adbelhalim, T., Ahmed, A., Maryam, E., & Said, M. (2025). Identifying potential groundwater recharge zones using the Analytic Hierarchy Process (AHP) method, in the Upper-Middle Drâa Basin, Morocco. Geologos, 31(3), 183–199. https://doi.org/10.14746/logos.2025.31.3.15

Abstract

Groundwater is a vital resource sustaining domestic supply, agriculture, and industry, particularly in arid regions where water scarcity severely limits development. Identifying potential groundwater recharge zones is therefore essential for the sustainable management of this resource. This study assesses the spatial distribution of groundwater recharge potential in the Upper-Middle Drâa Basin, southeastern Morocco, which extends over approximately 23,000 km2. The Analytic Hierarchy Process (AHP) was applied within a Geographic Information System (GIS) framework using multi-source geospatial data, including Sentinel-2 imagery and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Digital Elevation Model. The results indicate that high-recharge zones are mainly concentrated in low-slope alluvial plains and along major drainage networks, whereas the surrounding highlands exhibit moderate to low recharge potential. Validation using field data from borehole discharge measurements confirms this spatial pattern, with flow rates ranging from about 1.5 L/s in peripheral sectors to over 6 L/s in central parts of the basin. The strong agreement between model outputs and field observations demonstrates the reliability of the adopted approach and enhances understanding of the basin’s hydrogeological functioning. Overall, this work provides an effective decision-support tool for regional water resource planning and sustainable groundwater management in arid and semi-arid environments.

https://doi.org/10.14746/logos.2025.31.3.15
PDF

References

Agoussine M., El M., Saidi M. & Igmoullan B., 2004. Reconnaissance des ressources en eau du bassin d ’ Ouarzazate [Recognition of water resources in the Ouarzazate basin]. [In:] Lias sources and documents relating to the early modern history of ideas. 81–92 pp.

Arulbalaji P., Padmalal D. & Sreelash K., 2019. GIS and AHP techniques based delineation of groundwater potential zones: a case study from southern Western Ghats, India. Scientific Reports 9, 2082. DOI: https://doi.org/10.1038/s41598-019-38567-x

Benchattou A. & El Ghachi M., 2024. Climate change projection and numerical climate modeling in the Rheris Watershed (Region Drâa Tafilalet - Morocco). [In:] Climate change effects and sustainability needs: The case of Morocco. Springer. 35–44 pp. DOI: https://doi.org/10.1007/978-3-031-59603-2_3

Benvenuti M., Moratti G. & Algouti A., 2017. Stratigraphic and structural revision of the Upper Mesozoic succession of the Dadès valley, eastern Ouarzazate Basin (Morocco). Journal of African Earth Sciences 135, 54–71. DOI: https://doi.org/10.1016/j.jafrearsci.2017.01.018

Bouchaou L., Michelot J.L., Qurtobi M., Zine N., Gaye C.B., Aggarwal P.K., Marah H., Zerouali A., Taleb H. & Vengosh A., 2009. Origin and residence time of groundwater in the Tadla basin (Morocco) using multiple isotopic and geochemical tools. Journal of Hydrology 379, 323–338. DOI: https://doi.org/10.1016/j.jhydrol.2009.10.019

Boummane K., Jaffal M. & Kchikach A., 2009. Study of the Ouarzazate Basin structure by seismic reflection: Hydrogeological implications. Estudios Geologicos 65, 157–165. DOI: https://doi.org/10.3989/egeol.39864.065

Cappy S., 2006. Hydrogeological characterization of the Upper Drâa catchment: Morocco. 41–68 pp.

Diriba D., Karuppannan S., Takele T. & Husein M., 2024. Delineation of groundwater potential zonation using geoinformatics and AHP techniques with remote sensing data. Heliyon 10 (3). DOI: https://doi.org/10.1016/j.heliyon.2024.e25532

DRPE, 1994. Master plan study for the development of the Guir, Ziz, Rhéris and Drâa basins: development scheme study. Vol. II. Direction of Water Research and Planning. Rabat, Morocco.

DRPE, 2010. Master plan study for the development: the Guelmim Hydraulic Basin. Vol. II. Direction of Water Research and Planning. Rabat, Morocco.

Duguma T.A. & Duguma G.A., 2022. Assessment of groundwater potential zones of upper blue nile river basin using multi‐influencing factors under GIS and rs environment: a case study on guder watersheds, abay basin, Oromia region, Ethiopia. Geofluids 1172039. DOI: https://doi.org/10.1155/2022/1172039

Elmotawakkil A., Moumaneb A., Zahi A., Sadiki A., Karkouri J., Batchi M., Bhagat S.K., Tiyasha T. & Enneya N., 2025. Artificial intelligence for groundwater recharge prediction in an arid region: application of tabular deep learning models in the Feija Basin, Morocco. Frontiers in Remote Sensing 6, 1622360. DOI: https://doi.org/10.3389/frsen.2025.1622360

Ervin M.C. & Morgan J.R., 2001. Groundwater control around a large basement. Canadian Geotechnical Journal 38, 732–740. DOI: https://doi.org/10.1139/cgj-38-4-732

Fekkak A., 1992. Le PII. Inférieur de la boutonniere de sidi flah (Saghro Occidental, Anti-Atlas, Maroc): Relique d’un substratum océanique de l’arc du Saghro [Lower part of the Sidi Flah (Western Saghro, Anti-Atlas, Morocco): Relic of an oceanic bedrock of the Saghro arc]. University Cadi Ayyad, Marrakech. 83-92 pp.

Fetter C.W., 2018. Applied Hydrogeology. 4th ed. Waveland Press, 284 pp.

Gebru H., Gebreyohannes T. & Hagos E., 2020. Identification of groundwater potential zones using analytical hierarchy process (AHP) and GIS-remote sensing integration, the case of Golina River Basin, Northern Ethiopia. International Journal of Advanced Remote Sensing and GIS 9, 3289-3311. DOI: https://doi.org/10.23953/cloud.ijarsg.460

Gintamo B., Khan M.A., Gulilat H., Shukla R.K. & Mekonnen Z., 2022. Determination of the physicochemical quality of groundwater and its potential health risk for drinking in Oromia, Ethiopia. Environmental Health Insights 16, 11786302221096052. DOI: https://doi.org/10.1177/11786302221096051

Hairchi K. El, Limame A., Benbrahim Y., Saadi O., Ouiaboub L., Nouayti A. & Nouayti N., 2025. Groundwater potential zones mapping using GIS, RS, and AHP method in the Guigou basin, Middle Atlas, Morocco. Euro-Mediterranean Journal for Environmental Integration 10, 703–719. DOI: https://doi.org/10.1007/s41207-024-00607-y

Ikirri M., Boutaleb S., Ibraheem I.M., Abioui M., Echogdali F.Z., Abdelrahman K., Id-Belqas M., Abu-Alam T., El Ayady H. & Essoussi S., 2023. Delineation of groundwater potential area using an AHP, remote sensing, and GIS techniques in the Ifni Basin, Western Anti-Atlas, Morocco. Water 15, 1436. DOI: https://doi.org/10.3390/w15071436

Jossen J.A. & Filali Moutei J., 1988. Ouarzazate Basin, stratigraphic and structural synthesis. Contribution à l’étude Des Aquifères Profonds–Projet PNUD–DRPE (Direction de La Recherche et de La Planification de l’Eau) MOR/86/004-Exploration Des Eaux Profondes. Rapport Inédit, Rabat.

Kumar D. & Ahmed S., 2003. Seasonal behaviour of spatial variability of groundwater level in a granitic aquifer in monsoon climate. Current Science, 188–196.

Kumar N., Yamaç S.S. & Velmurugan A., 2015. Applications of remote sensing and GIS in natural resource management. Journal of the Andaman Science Association 20, 1–6.

Lee S. & Pradhan B., 2007. Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides 4, 33–41. DOI: https://doi.org/10.1007/s10346-006-0047-y

Machiwal D., Jha M.K. & Mal B.C., 2011. Assessment of groundwater potential in a semi-arid region of India using remote sensing, GIS and MCDM techniques. Water Resources Management 25, 1359–1386. DOI: https://doi.org/10.1007/s11269-010-9749-y

Melese T. & Belay T., 2022. Groundwater potential zone mapping using analytical hierarchy process and GIS in Muga Watershed, Abay Basin, Ethiopia. Global Challenges 6, 2100068. DOI: https://doi.org/10.1002/gch2.202100068

Moges D.M. & Bhat H.G., 2017. Integration of geospatial technologies with RUSLE for analysis of land use/cover change impact on soil erosion: case study in Rib watershed, north-western highland Ethiopia. Environmental Earth Sciences 76, 765. DOI: https://doi.org/10.1007/s12665-017-7109-4

Murmu P., Kumar M., Lal D., Sonker I. & Singh S.K., 2019. Delineation of groundwater potential zones using geospatial techniques and analytical hierarchy process in Dumka district, Jharkhand, India. Groundwater for Sustainable Development 9, 100239.

Oikonomidis D., Dimogianni S., Kazakis N. & Voudouris K., 2015. A GIS/remote sensing-based methodology for groundwater potentiality assessment in Tirnavos area, Greece. Journal of Hydrology 525, 197–208.

Olubusola I.S., Isaac A., Oyamenda O.K. & Adesola B.M., 2023. Assessment of groundwater occurrence in a typical schist belt region in Osun State, Southwestern Nigeria using VES, aeromagnetic dataset, remotely sensed data, and MCDA approaches. Sustainable Water Resources Management 9, 29. DOI: https://doi.org/10.1007/s40899-022-00810-1

Oukhro R., Youbi N., Kalderon-Asael B., Evans D.A.D., Pierce J., Wotzlaw J.-F., Ovtcharova M., Mata J., Mediany M.A. & Ounar J., 2025. Volcanic stratigraphy, petrology, geochemistry and precise U-Pb zircon geochronology of the Late Ediacaran Ouarzazate Group at the Oued Dar’a Caldera: Intracontinental felsic super-eruptions in association with continental flood basalt magmatism on the We. Minerals 15, 776. DOI: https://doi.org/10.3390/min15080776

Pandian M. & Kumanan C.J., 2013. Geomatics approach to demarcate groundwater potential zones using remote sensing and GIS techniques in part of Trichy and Karur district, Tamilnadu, India. Archives of Applied Science Research 5, 234-240.

Pirasteh S., Samad A., Ahmad R., Thakural L.N., Khan H.H., Chauhan P., Khan A. & Qamar M.Z., 2025. Geospatial and AHP based identification of potential zones for groundwater recharge in Haridwar District of India. Frontiers in Environmental Science 13, 1421918. DOI: https://doi.org/10.3389/fenvs.2025.1421918

Priyan K., 2021. Issues and challenges of groundwater and surface water management in semi-arid regions. Groundwater Resources Development and Planning in the Semi-Arid Region, 1–17. DOI: https://doi.org/10.1007/978-3-030-68124-1_1

Saaty T.L. & Wind Y., 1980. Marketing applications of the analytic hierarchy process. Management Science 26, 641–658. DOI: https://doi.org/10.1287/mnsc.26.7.641

Schiavo A., Taj Eddine K., Algouti A., Benvenuti M., Vittorio G., Piaz D., Eddabbi A. & El Boukhari A., 2007. Explanatory note. Geological map of Morocco 1:50,000, sheet Imtir.

Sener E. & Davraz A., 2013. Assessment of groundwater vulnerability based on a modified DRASTIC model, GIS and an analytic hierarchy process (AHP) method: the case of Egirdir Lake basin (Isparta, Turkey). Hydrogeology Journal 21, 701–714. DOI: https://doi.org/10.1007/s10040-012-0947-y

Seqqam A., Touirsi M., Najib S., Fadili A. & Mehdi K., 2025. Integrated approaches to map groundwater potential zones using AHP, GIS, and remote sensing in semi-arid region of Morocco : Case study from Khouribga area. Solid Earth Sciences 10, 100272. DOI: https://doi.org/10.1016/j.sesci.2025.100272

Tolche A.D., 2021. Groundwater potential mapping using geospatial techniques: a case study of Dhungeta-Ramis sub-basin, Ethiopia. Geology, Ecology, and Landscapes 5, 65–80. DOI: https://doi.org/10.1080/24749508.2020.1728882

Tuduri J., Chauvet A., Barbanson L., Bourdier J.-L., Labriki M., Ennaciri A., Badra L., Dubois M., Ennaciri-Leloix C. & Sizaret S., 2018. The Jbel Saghro Au (Ag, Cu) and Ag–Hg metallogenetic province: product of a long-lived Ediacaran tectono-magmatic evolution in the Moroccan Anti-Atlas. Minerals 8, 592. DOI: https://doi.org/10.3390/min8120592

Uc Castillo J.L., Martínez Cruz D.A., Ramos Leal J.A., Tuxpan Vargas J., Rodríguez Tapia S.A. & Marín Celestino A.E., 2022. Delineation of groundwater potential zones (GWPZs) in a semi-arid basin through remote sensing, GIS, and AHP approaches. Water 14, 2138. DOI: https://doi.org/10.3390/w14132138