Abstract
This study investigates the geochemical distribution of rare earth elements (REEs) in stream sediments from the Aceh Tamiang Regency, Aceh Province, Indonesia, an area characterized by a complex geological framework and potential lanthanide-bearing source rocks. Rare earth elements such as lanthanum (La), scandium (Sc), and yttrium (Y) are essential to modern high-technology and clean-energy applications, yet baseline data from this region remain limited. A total of forty stream sediment samples were collected from the Simpang Kanan, Simpang Kiri, Tamiang, and Tenggulun rivers to determine the spatial distribution and concentration levels of La, Sc, and Y. All three elements were detected in the riverbed sediments in the study area, with La showing higher concentrations (average 11 ppm) compared to Sc (2 ppm) and Y (3 ppm). Higher values are observed in upstream sediments underlain by igneous and metamorphic rocks, while lower values occur in downstream sedimentary zones. This distribution pattern indicates that the enrichment of REEs is primarily derived from the weathering of upstream source rocks. Additionally, the presence of active tectonic structures in the region may have contributed to the mobilization and accumulation of these elements. This study establishes a baseline of REE distribution in stream sediments of Tamiang and provides valuable data that may support broader regional geochemical investigations.
References
Aida N., Nur S., Ahmad N., Hadi Sujoto V.S., Murti Petrus H.T.B. & Mia M.B., 2025. Geological characterization of rare earth elements in Aceh’s igneous rocks: A step toward sustainable mining. International Journal of Design and Nature and Ecodynamics 20, 315–325. DOI: https://doi.org/10.18280/ijdne.200209
Alabi A.A. & Olasehinde O.A., 2024. Rare earth element geochemistry of soils in southwestern part of sheet 272 Katsina-Ala SE, North Central Nigeria. International Journal of Agriculture and Earth Science 10, 285–300.
Alhassan A.B. & Aljahdali M.O., 2021. Fractionation and distribution of rare earth elements in marine sediment and bioavailability in avicennia marina in central red sea mangrove ecosystems. Plants 10, 1–15. DOI: https://doi.org/10.3390/plants10061233
Al-Saady Y.I., Othman A.A., Mohammad Y.O., Ali S.S., Ali S.A., Liesenberg V. & Hasan S.E., 2023. Composition of rare earth elements in fluvial sediments of the Lesser Zab River Basin, Northeastern Iraq: Implications for tectonic setting and provenance. Geosciences (Switzerland) 13, 1–21. DOI: https://doi.org/10.3390/geosciences13120373
Álvarez-Vázquez M.Á., De Uña-Álvarez E. & Prego R., 2022. Patterns and abundance of rare earth elements in sediments of a bedrock river (Miño River, NW Iberian Peninsula). Geosciences (Switzerland) 12. DOI: https://doi.org/10.3390/geosciences12030105
Andrews-Speed P. & Hove A., 2023. China’s rare earths dominance and policy responses. The Oxford Institute For Energy Studies. https://www.oxfordenergy.org/wpcms/wp-content/uploads/2023/06/CE7-Chinas-rare-earths-dominance-and-policy-responses.pdf
Ayari J., Barbieri M., Dhaha F., Charef A., Barhoumi A., Belkhiria W. & Braham A., 2022. A regional-scale geochemical survey of stream sediment samples in Nappe zone, northern Tunisia: Implications for mineral exploration. Journal of Geochemical Exploration 235, 1–8. DOI: https://doi.org/10.1016/j.gexplo.2022.106956
Ayodele O.S., 2018. Geochemical exploration for heavy metals in the stream sediments of Okemesi-Ijero Area. Journal of Advance Research in Applied Science 3, 1–29. DOI: https://doi.org/10.35840/2631-5033/1810
Bachtiar A., Purnama M.J.P., Gultaf H. & Satria Y., 2012. The boundary character of pre-Tertiary and Tertiary rocks in the southern end of the North Sumatra Basin: Barisan Mountain thrust front? Proceedings, Indonesian Petroleum Association, May, 1–9.
Balaram V., 2019. Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geoscience Frontiers 10, 1285–1303. DOI: https://doi.org/10.1016/j.gsf.2018.12.005
Bayon G., Patriat M., Godderis Y., Trinquier A., De Deckker P., Kulhanek D. K., Holbourn A. & Rosenthal Y., 2023. Accelerated mafic weathering in Southeast Asia linked to late Neogene cooling. Science Advances 9, 1–9. DOI: https://doi.org/10.1126/sciadv.adf3141
Broom-Fendley S., Brady A.E., Wall F., Gunn G. & Dawes W., 2017. REE minerals at the Songwe Hill carbonatite, Malawi: HREE-enrichment in late-stage apatite. Ore Geology Reviews 81, 23–41. DOI: https://doi.org/10.1016/j.oregeorev.2016.10.019
Cameron N.R., Djunuddin A., Ghazali S.A., Harahap H., Keats W., Kartawa W., Miswar Ngabito H., Rack N.M.S. & Whandoyo R., 2007. Explanatory Note and Geological Map of the Langsa Quadrangle, Sumatra, pp. 1–16.
Chakhmouradian A.R. & Wall F., 2012. Rare earth elements: Minerals, mines, magnets (and more). Elements 8, 333–340. DOI: https://doi.org/10.2113/gselements.8.5.333
Christie T., Brathwaite B. & Tulloch A., 1998. Mineral commodity report 17: rare earths and related elements. New Zealand Mining 24, 1–13. https://www.nzpam.govt.nz/assets/Uploads/doing-business/mineral-potential/rare-earths.pdf
Coţac V.N., Iancu O.G., Necula N., Sandu M.C., Loghin A.A., Chişcan O. & Stoian G., 2024. Rare earth elements distribution in the river sediments of Ditrău Alkaline massif, Eastern Carpathians. PLoS ONE 19, 1–28. DOI: https://doi.org/10.1371/journal.pone.0314874
Currie D. & Elliott H., 2024. The potential for rare earth elements in the UK, British Geological Survey, pp. 1–8. https://www.ukcmic.org/downloads/reports/the-potential-for-rare-earth-elements-in-the-uk-2024.pdf
Debruyne D., Hulsbosch N. & Muchez P., 2016. Unraveling rare earth element signatures in hydrothermal carbonate minerals using a source-sink system. Ore Geology Reviews 72, 232–252. DOI: https://doi.org/10.1016/j.oregeorev.2015.07.022
Doherty M.E., Arndt K., Chang Z., Kelley K. & Lavin O., 2023. Stream sediment geochemistry in mineral exploration: a review of fine-fraction, clay-fraction, bulk leach gold, heavy mineral concentrate and indicator mineral chemistry. Geochemistry: Exploration, Environment, Analysis 23, 1–19. DOI: https://doi.org/10.1144/geochem2022-039
Fakolade R.O., Ikhane P.R., Hao Q., Ajibade O.M., Olisa O.G. & Oyebolu O.O., 2024. REE signatures in quaternary deposits: implication for provenance and economic potentials. Discover Environment 2, 1–14. DOI: https://doi.org/10.1007/s44274-024-00103-8
Goodenough K.M., Schilling J., Jonsson E., Kalvig P., Charles N., Tuduri J., Deady E.A., Sadeghi M., Schiellerup H., Müller A., Bertrand G., Arvanitidis N., Eliopoulos D. G., Shaw R.A., Thrane K. & Keulen N., 2016. Europe’s rare earth element resource potential: An overview of REE metallogenetic provinces and their geodynamic setting. Ore Geology Reviews 72, 838–856. DOI: https://doi.org/10.1016/j.oregeorev.2015.09.019
Halkoaho T., Ahven M., Rämö O.T., Hokka J. & Huhma H., 2020. Petrography, geochemistry, and geochronology of the Sc-enriched Kiviniemi ferrodiorite intrusion, eastern Finland. Mineralium Deposita 55, 1561–1580. DOI: https://doi.org/10.1007/s00126-020-00952-2
Haque N., Hughes A., Lim S. & Vernon C., 2014. Rare earth elements: Overview of mining, mineralogy, uses, sustainability and environmental impact. Resources 3, 614–635. DOI: https://doi.org/10.3390/resources3040614
Jaireth S., Hoatson D.M. & Miezitis Y., 2014. Geological setting and resources of the major rare-earth-element deposits in Australia. Ore Geology Reviews 62, 72–128. DOI: https://doi.org/10.1016/j.oregeorev.2014.02.008
Klimpel F. & Bau M., 2023. Decoupling of scandium and rare earth elements in organic (nano) particle, rich boreal rivers draining the Fennoscandian Shield. Scientific Reports 13(10357), 1–14. DOI: https://doi.org/10.1038/s41598-023-36195-0
Kynicky J., Smith M.P., Song W., Chakhmouradian A.R., Xu C., Kopriva A., Galiova M. V. & Brtnicky M., 2019. The role of carbonate-fluoride melt immiscibility in shallow REE deposit evolution. Geoscience Frontiers 10, 527–537. DOI: https://doi.org/10.1016/j.gsf.2018.02.005
Madukwe H.Y., Ibigbami O.A. & Obasi R.A., 2020. Assessment of trace and rare earth element levels in stream sediments in Ijero-Ekiti area, southwest Nigeria. Nature Environment and Pollution Technology 19, 421–439. DOI: https://doi.org/10.46488/NEPT.2020.v19i02.001
Mardiyah A., Syahputra M.R., Tang Q., Okabyashi S. & Tsuboi M., 2025. The spatial distribution of trace elements and rare-earth elements in the stream sediments around the Ikuno Mine area in Hyogo Prefecture, Southwest Japan. Sustainability (Switzerland) 17, 1–15. DOI: https://doi.org/10.3390/su17062777
Maulana A., Yonezu K. & Watanabe K., 2014. Geochemistry of rare earth elements (REE) in the weathered crusts from the granitic rocks in Sulawesi Island, Indonesia. Journal of Earth Science 25, 460–472.
Milinovic J., Rodrigues F.J.L., Barriga F.J.A.S. & Murton B.J., 2021. Ocean-floor sediments as a resource of rare earth elements: An overview of recently studied sites. Minerals 11, 1–15.
Moghimi M., Pournuroz Z., Soleimani K., Rasouli R. & Ghaffarzadeh M., 2024. Soil, air, and water pollution from mining and industrial activities: Sources of pollution, environmental impacts, and prevention and control methods. Results in Engineering 23, 1–21. DOI: https://doi.org/10.1016/j.rineng.2024.102729
Nahan G., Bijaksana S., Suryanata P.B. & Ibrahim K., 2023. Geochemical and magnetic characteristics of placer gold deposits from Central Kalimantan, Indonesia. Rudarsko Geolosko Naftni Zbornik 38, 99–107. DOI: https://doi.org/10.17794/rgn.2023.2.7
Neal C., 2005. Lanthanum, cerium, praseodymium and yttrium in waters in an upland acidic and acid sensitive environment, mid-Wales. Hydrology and Earth System Sciences 9, 645–656. DOI: https://doi.org/10.5194/hess-9-645-2005
Rezaei M., Sanchez-lecuona G. & Abdolazimi O., 2025. A cross-disciplinary review of rare earth elements: Deposit types, mineralogy, machine learning, environmental impact, and recycling. Minerals 15, 1–26. DOI: https://doi.org/10.3390/min15070720
Rudnick R.L. & Gao S., 2003. Composition of the continental crust. [In:] Treatise on Geochemistry (2nd ed., Issue 3), Elsevier Ltd., 1-64. DOI: https://doi.org/10.1016/B0-08-043751-6/03016-4
Rukhlov A., Cui Y., Cunningham Q., Fortin G. & Anderson C., 2024. A ‘Critical Mineral Index’: Geochemical signal of carbonatite-related critical metals in provincial drainage sediments.
Sager M. & Wiche O., 2024. Rare earth elements (REE): Origins, dispersion, and environmental implications - A comprehensive review. Environments - MDPI 11, 1–50. DOI: https://doi.org/10.3390/environments11020024
Shi Y., Peng Q., Zhang Z., Zhang J., Yan W. & Xu C., 2023. Rare earth elements in aeolian loess sediments from Menyuan Basin, northeastern Tibetan plateau: Implications for provenance. Frontiers in Environmental Science 11, 1–16. DOI: https://doi.org/10.3389/fenvs.2023.1074909
Sojka M., Choiński A., Ptak M. & Siepak M., 2021. Causes of variations of trace and rare earth elements concentration in lakes bottom sediments in the Bory Tucholskie National Park, Poland. Scientific Reports 11, 1–18. DOI: https://doi.org/10.1038/s41598-020-80137-z
Surour A.A. & Korany H.M., 2021. Mineralogy and geochemistry of fine-grained Dahab stream sediments, Southeastern Sinai, Egypt: emphasis on the intergrowths of Fe – Ti oxides. Acta Geochimica 40, 871–894. DOI: https://doi.org/10.1007/s11631-021-00475-1
Taylor S.R. & McLennan S., 1985. The continental crust: Its composition and evolution. [In:] Blackwell Scientific Publications (Oxford).
Thomas B.S., Dimitriadis P., Kundu C., Vuppaladadiyam S.S.V., Raman R.K.S. & Bhattacharya S., 2024. Extraction and separation of rare earth elements from coal and coal fly ash: A review on fundamental understanding and on-going engineering advancements. Journal of Environmental Chemical Engineering 12, 1–33. DOI: https://doi.org/10.1016/j.jece.2024.112769
Wang H., Yuan Z., Cheng Q., Zhang S. & Sadeghi B., 2022. Geochemical anomaly definition using stream sediments landscape modeling. Ore Geology Reviews 142, 1–13.
Wang S., Wang Z., Gao S., Zhang X., Zeng J. & Wu Q., 2024. Rare earth elements in lake sediments record historic environmental influences from anthropogenic activities. Ecological Indicators 159, 111680. DOI: https://doi.org/10.1016/j.ecolind.2024.111680
Wang X., Jia Z., Peckmann J., Kiel S., Barrat J., Bayon G., Li J., Yin L., Wei T., Liang Q. & Feng D., 2024. Lanthanum anomalies provide constraints on macrofaunal predation at methane seeps. Geochemical Perspectives Lettters 30, 40–45. DOI: https://doi.org/10.7185/geochemlet.2420
License
Copyright (c) 2025 Gartika Setiya Nugraha, Hamzah Nailan Edward, Muhammad Taufiq, Fakhrurrazi Fakhrurrazi

This work is licensed under a Creative Commons Attribution 4.0 International License.