Abstract
Late Devonian coarse-grained carbonate deposits in the Holy Cross Mountains were studied for possible storm depositional systems and catastrophic tsunami events, as it must be assumed that the investigated area was strongly affected by tropical hurricanes generated in the open ocean North of Gondwana. This assumption appears consistent with diagnostic features of carbonate tempestites at several places in the Holy Cross Mountains. Sedimentary structures and textures that indicate so are, among other evidence, erosional bases with sole marks, graded units, intra- and bioclasts, different laminations and burrowing at the tops of tempestite layers. It has been suggested before that a tsunami occurred during the Late Devonian, but the Laurussian shelf had an extensional regime at the time, which excludes intensive seismic activity. The shelf environment also excluded the generation of tsunami waves because the depth was too shallow. Additionally, the Holy Cross Mountains region was surrounded in the Devonian by shallow-marine and stable elevated areas: the Nida Platform, the Opatkowice Platform and the Cracow Platform to the South, and the elevated Lublin-Lviv area to the NE. Thus, tsunami energy should have been absorbed by these regions if tsunamites would have occurred.
References
Aigner, T., 1985. Storm depositional systems. Lecture Notes in Earth Sciences 3, 1-174.
Bábek, O., Přikryl, T. & Hladil, J., 2007. Progressive drowning of carbonate platform in the Moravo-Silesian Basin (Czech Republic) before the Frasnian/ Famennian event: facies, compositional variations and gamma-ray spectrometry. Facies 53, 293-316. DOI: https://www.doi.org/10.1007/s10347-006-0095-8
Bełka, Z. & Narkiewicz, M., 2008. Devonian. [In:] T. Mc- Cann (Ed.): The geology of central Europe. Vol.1: Precambrian and Paleozoic. The Geological Society (London), 383-411. DOI: https://www.doi.org/10.1144/CEV1P.8
Bełka, Z., Skompski, S. & Soboń-Podgórska, J., 1996. Reconstruction of a lost carbonate platform on the shelf of Fennosarmatia: evidence from Visėan polymictic debrites, Holy Cross Mountains, Poland. Geological Society, London, Special Publications 107, 315-329. DOI: https://www.doi.org/10.1144/GSL.SP.1996.107.01.22
Berner, R.A. & Kothavala, Z., 2001. GEOCARB III: a revised model of atmospheric CO2 over Phanerozoic time. American Journal of Science 301, 182-204. DOI: https://www.doi.org/10.2475/ajs.301.2.182
Bourrouilh-Lejan, F.G., Beck, C. & Gorsline, D.S., 2007.
Catastrophic events (hurricanes, tsunami and others) and their sedimentary records: Introductory notes and new concepts for shallow water deposits. Sedimentary Geology 199, 1-11.
Cant, D.J., 1980. Storm-dominated shallow marine sediments of the Arisaig Group (Silurian-Devonian) of Nova Scotia. Canadian Journal of Earth Sciences 17, 120-131. DOI: https://www.doi.org/10.1139/e80-010
Carss, B.W. & Carozzi, A.V., 1965. Petrology of Upper Devonian pelletoidal limestones, Arrow Canyon Range, Clark County, Nevada. Sedimentology 4, 197-224. DOI: https://www.doi.org/10.1111/j.1365-3091.1965.tb01289.x
Della-Favera, J.C., 1982. Devonian storm- and tide-dominated shelf deposits, Parnaiba Basin, Brazil. American Association of Petroleum Geologists Bulletin 66, 1-562. DOI: https://www.doi.org/10.1306/03B59CD8-16D1-11D7-8645000102C1865D
Devleeschouwer, X., Herbosch, A. & Préat, A., 2002. Microfacies, sequence stratigraphy and clay mineralogy of a condensed deep-water section around the Frasnian/Famennian boundary (Steinbruch Schmidt, Germany). Palaeogeography, Palaeoclimatology, Palaeoecology 181, 171-193. DOI: https://www.doi.org/10.1016/S0031-0182(01)00478-3
Dott, R.H. & Bourgeois, J., 1982. Hummocky stratification: significance of its variable bedding sequences. Geological Society of America Bulletin 93, 663-680. DOI: https://www.doi.org/10.1130/0016-7606(1982)93<663:HSSOIV>2.0.CO;2
Dreesen, R., Paproth, E. & Thorez, J., 1988. Events documented in Famennian sediments (Ardenne-Rhenish Massif, Late Devonian, NW Europe). [In]: N.J. Mc- Millam, A.F. Embry & D.J. Glass (Eds): Devonian of the world. Canadian Society of Petroleum Geologists 2, 295-308.
Duke, W.L., 1985. Hummocky cross-stratification, tropical hurricanes, and intense winter storms. Sedimentology 32, 167-194. DOI: https://www.doi.org/10.1111/j.1365-3091.1985.tb00502.x
Einsele, G., 2000. Sedimentary basins - evolution, facies and sediment budget. Springer-Verlag (Berlin), 792 pp. DOI: https://www.doi.org/10.1007/978-3-662-04029-4
Einsele, G. & Seilacher, A., 1991. Distinction of tempestites and turbidites. [In]: G. Einsele, W. Ricken & A.
Seilacher (Eds): Cycles and events in stratigraphy. Springer- Verlag (Berlin), 377-382.
Flügel, E., 2004. Microfacies of carbonate rocks - analysis, interpretation and application. Springer (Berlin), 976 pp. DOI: https://www.doi.org/10.1007/978-3-662-08726-8
Folk, R.L., 1973. Evidence for peritidal deposition of Devonian Caballos Novaculite, Marathon Basin, Texas. American Association of Petroleum Geologists Bulletin 57, 702-725. DOI: https://www.doi.org/10.1306/819A4318-16C5-11D7-8645000102C1865D
George, A.D., Trinajstic, K.M. & Chow, N., 2009. Frasnian reef evolution and palaeogeography, SE Lennard Shelf, Canning Basin, Australia. Geological Society, London, Special Publications 314, 73-107. DOI: https://www.doi.org/10.1144/SP314.4
Goldring, R. & Bridges, P.H., 1973. Sublitoral sheet sandstones. Journal of Sedimentary Petrology 43, 736-747. DOI: https://www.doi.org/10.1306/74D72856-2B21-11D7-8648000102C1865D
Golonka, J., 2000. Cambrian-Neogene plate tectonic maps. Wydawnictwo Uniwersytetu Jagiellońskiego (Kraków), 125 pp.
Golonka, J., 2007. Phanerozoic paleoenvironment and paleolithofacies maps. Late Paleozoic. Geologia 33, 145-209.
Harms, J.C., Southard, J.B. & Walker, R.G., 1982. Structures and sequences in clastic rocks. SEPM Short Course 9, 8-51. DOI: https://www.doi.org/10.2110/scn.82.09
Harms, J.C., Southard, J.B., Spearing, D.R. & Walker, R.G., 1975. Depositional environments as interpreted from primary sedimentary structures and stratification sequence. SEPM Short Course 2, 1-161. DOI: https://www.doi.org/10.2110/scn.75.01.0001
Hladil, J. & Kalvoda, J., 1993. Devonian boundary intervals of Bohemia and Moravia. ‘Global boundary events, an interdisciplinary conference’ excursion guidebook (Kielce, 1993), 29-50.
Hofmann, M.H. & Keller, M., 2006. Sequence stratigraphy and carbonate platform organization of the Devonian Santa Lucia Formation, Cantabrian Mountains, NW-Spain. Facies 52, 149-167. DOI: https://www.doi.org/10.1007/s10347-005-0030-4
Joachimski, M.M., Breisig, S., Buggisch, W., Talent, J.A., Mawson, R., Gereke, M., Morrow, J.R., Day, J. & Weddige, K., 2009. Devonian climate and reef evolution: insights from oxygen isotopes in apatite. Earth and Planetary Science Letters 284, 599-609. DOI: https://www.doi.org/10.1016/j.epsl.2009.05.028
Karim, K.H., 2007. Possible effect of storm on sediments of Upper Cretaceous Foreland Basin: a case study for tempestite in Tanjero Formation, Sulaimanyia Area, NE-Iraq. Iraqi Journal of Earth Science 7(2), 1-10. DOI: https://www.doi.org/10.33899/earth.2007.39238
Kaźmierczak, J. & Goldring, R., 1978. Subtidal flat-pebble conglomerate from the Upper Devonian of Poland: a multiprovenant high-energy product. Geological Magazine 115, 359-366. DOI: https://www.doi.org/10.1017/S0016756800037377
Kent, D.V. & van der Voo, R., 1990. Paleozoic paleogeography from paleomagnetism of the Atlantic-bordering continents. Geological Society, London, Memoir 12, 49-56. DOI: https://www.doi.org/10.1144/GSL.MEM.1990.012.01.04
Kiessling, W., 2001. Paleoclimatic significance of Phanerozoic reefs. Geology 29, 751-754. DOI: https://www.doi.org/10.1130/0091-7613(2001)029<0751:PSOPR>2.0.CO;2
Kiessling, W., Flügel, E. & Golonka, J., 2003. Patterns of Phanerozoic carbonate platform sedimentation. Lethaia 36, 195-226. DOI: https://www.doi.org/10.1080/00241160310004648
Krebs, W., 1974. Devonian carbonate complexes of central Europe. SEPM Special Publication 18, 155-208. DOI: https://www.doi.org/10.2110/pec.74.18.0155
Kreisa, R.D., 1981. Storm-generated sedimentary structures in subtidal marine facies with examples from the Middle and Upper Ordovician of Southwestern Virginia. Journal of Sedimentary Petrology 51, 823-848. DOI: https://www.doi.org/10.1306/212F7DBF-2B24-11D7-8648000102C1865D
Kullberg, J.C., Olóriz, F., Marques, B., Caetano, P.S. & Rocha, R.B., 2001. Flat-pebble conglomerates: a local marker for Early Jurassic seismicity related to syn-rift tectonics in the Sesimbra area (Lusitanian Basin, Portugal). Sedimentary Geology 139, 49-70. DOI: https://www.doi.org/10.1016/S0037-0738(00)00160-3
Lewandowski, M., 2003. Assembly of Pangea: combined paleomagnetic and paleoclimatic approach. Advances in Geophysics 46, 199-236. DOI: https://www.doi.org/10.1016/S0065-2687(03)46003-2
Lloyd, C.R., 1982. The Mid-Cretaceous earth: paleogeography; ocean circulation and temperature; atmospheric circulation. Journal of Geology 90, 393-415. DOI: https://www.doi.org/10.1086/628693
Małkowski, K., 1981. Upper Devonian deposits at Górno in the Holy Cross Mts. Acta Geologica Polonica 31, 223-231.
Marsaglia, K.M. & Klein, G.D., 1983. The paleogeography of Paleozoic and Mesozoic storm depositional systems. Journal of Geology 91,117-142. DOI: https://www.doi.org/10.1086/628752
Matyja, H., 1993. Upper Devonian of Western Pomerania. Acta Geologica Polonica 43, 27-94.
Molina, J.M., Ruiz-Ortiz, P.A. & Vera, J.A., 1997. Calcareous tempestites in pelagic facies (Jurassic, Betic Cordilleras, Southern Spain). Sedimentary Geology 109, 95-109. DOI: https://www.doi.org/10.1016/S0037-0738(96)00057-7
Monaco, P., 1992. Hummocky cross-stratified deposits and turbidites in some sequences of Umbria-Marche area (central Italy) during the Toarcian. Sedimentary Geology 77, 123-142. DOI: https://www.doi.org/10.1016/0037-0738(92)90107-3
Mount, J.F. & Kidder, D., 1993. Combined flow origin of edgewise intraclast conglomerates: Sellick Hill Formation (Lower Cambrian), South Australia. Sedimentology 40, 315-329. DOI: https://www.doi.org/10.1111/j.1365-3091.1993.tb01766.x
Myrow, P.M. & Southard, J.B., 1996. Tempestite deposition. Journal of Sedimentary Research 66, 875-887. DOI: https://www.doi.org/10.1306/D426842D-2B26-11D7-8648000102C1865D
Myrow, P.M., Tice, L., Archuleta, B., Clark, B., Taylor, J.F. & Ripperdan, R.L., 2004. Flat-pebble conglomerate: its multiple origins and relationship to metre-scale depositional cycles. Sedimentology 51, 973-996. DOI: https://www.doi.org/10.1111/j.1365-3091.2004.00657.x
Narkiewicz, M., 1978. Stratigraphy and facies development of the Upper Devonian in the Olkusz-Zawiercie area, Southern Poland. Acta Geologica Polonica 28, 415-468 (in Polish with English summary).
Narkiewicz, M., 1988. Turning points in sedimentary development in the Late Devonian in southern Poland. Canadian Society of Petroleum Geologist Memoirs 14, 610-635.
Narkiewicz, M., 1996. Devonian stratigraphy and depositional environments in proximity of the Sub-Carpathian Arch: Lachowice 7 well, southern Poland. Geological Quarterly 40, 65-88.
Narkiewicz, M., 2007. Development and inversion of Devonian and Carboniferous basins in the eastern part of the Variscan foreland (Poland). Geological Quarterly 51, 231-256.
Narkiewicz, M. & Racki, G., 1985. Elementy paleogeografii późnodewońskiej w rejonie przybrzeżnym szelfu południowej Polski [Major features of the Late Devonian palaeogegraphy in the near-shore shelf area of southern Poland; in Polish with English summary]. Przegląd Geologiczny 5, 271-274.
Nott, J., 2006. Extreme events - a physical reconstruction and risk assessment. Cambridge University Press, Cambridge, 297 pp. DOI: https://www.doi.org/10.1017/CBO9780511606625
Nyoumura, Y. & Yamashita, H., 1984. On the central pressure change of tropical cyclones as a function of sea-surface temperature and land effect. Geophysical Magazine 41, 45-59.
Pisarzowska, A., 2009. Geochemia stabilnych izotopów węgla i tlenu na pograniczu franu dolnego i środkowego (górny dewon) na obszarze południowego szelfu Laurussii [Stable isotopes of carbon and oxygen of the Early - Middle Frasnian transition on the area of southern Laurussia shelf - in Polish]. Unpublished Ph.D. thesis, University of Silesia, Sosnowiec, 122pp.
Pisarzowska, A., Sobstel, M. & Racki, G., 2006. Conodont- based event stratigraphy of the Early-Middle Frasnian transition on the South Polish carbonate shelf. Acta Palaeontologica Polonica 51, 609-646.
Pożaryski, W., 1986. Waryscyjski etap platformowego rozwoju tektonicznego Europy Środkowej [The Variscan stage of platform tectonical development of the Middle Europe - in Polish]. Przegląd Geologiczny 34, 117-127.
Pratt, B.R., 2002. Storms versus tsunamis: dynamic interplay of sedimentary, diagenetic, and tectonic processes in the Cambrian of Montana. Geology 30, 423-426. DOI: https://www.doi.org/10.1130/0091-7613(2002)030<0423:SVTDIO>2.0.CO;2
Preat, A. & Racki, G., 1993. Small-scale cyclic sedimentation in the Early Givetian of the Góry Świętokrzyskie Mountains: comparison with the Ardenne sequence. Annales Societatis Geologorum Poloniae 63, 13-31.
Pujol, F., Berner, Z. & Stüben, D., 2006. Paleoenvironmental changes at the Frasnian/Famennian boundary in key European sections: chemostratigraphic constrains. Palaeogeography, Palaeoclimatology, Palaeoecology 240, 120-145. DOI: https://www.doi.org/10.1016/j.palaeo.2006.03.055
Racki, G., 1985. Conodont biostratigraphy of the Givetian/ Frasnian boundary beds at Kostomłoty in the Holy Cross Mts. Acta Geologica Polonica 35, 265-275.
Racki, G., 1993. Evolution of the bank to reef complex in the Devonian of the Holy Cross Mountains. Acta Palaeontologica Polonica 37, 87-182.
Racki, G. & Bultynck, P., 1993. Conodont biostratigraphy of the Middle to Upper Devonian boundary beds in the Kielce area of the Holy Cross Mts. Acta Geologica Polonica 43, 1-25.
Racki, G. & Narkiewicz, M., 2000. Tectonic versus eustatic controls of sedimentary development of the Devonian in the Holy Cross Mountains, Central Poland. Przegląd Geologiczny 48, 65-76 (in Polish with English summary).
Racki, G., Piechota, A., Bond, D. & Wignall, P., 2004. Geochemical and ecological aspects of Lower Frasnian pyrite-ammonoid level at Kostomłoty (Holy Cross Mts, Poland). Geological Quarterly 48, 267-282.
Scotese, C.R. & McKerrow, W.S., 1990. Revised world maps and introduction. Geological Society, London, Memoirs 12, 1-21. DOI: https://www.doi.org/10.1144/GSL.MEM.1990.012.01.01
Schieber, J., 1994. Evidence for high-energy events and shallow-water deposition in the Chattanooga Shale, Devonian, central Tennessee, USA. Sedimentary Geology 93, 193-208. DOI: https://www.doi.org/10.1016/0037-0738(94)90005-1
Simon, L., Godderish, Y., Buggisch, W., Strauss, H. & Joachimski, M., 2007. Modeling the carbon and sulphur isotope composition of marine sediments: climate evolution during the Devonian. Chemical Geology 146, 19-38. DOI: https://www.doi.org/10.1016/j.chemgeo.2007.08.014
Skompski, S. & Szulczewski, M., 2000. Lofer-type cyclothems in the Upper Devonian of the Holy Cross Mts. (central Poland). Acta Geologica Polonica 50, 393-406.
Stel, J.H., 1975. The influence of hurricanes upon the quiet depositional conditions in the Lower Emsian La Vid Shales of Colle (NW Spain). Leidse Geologische Mededelingen 49, 475-486.
Szulczewski, M., 1968. Slump structures and turbidites in Upper Devonian limestones of the Holy Cross Mts. Acta Geologica Polonica 17, 304-326.
Szulczewski, M., 1971. Upper Devonian conodonts, stratigraphy and facial development in the Holy Cross Mts. Acta Geologica Polonica 21, 1-129.
Szulczewski, M., 1977. Main facial regions in the Paleozoic of Holy Cross Mts. Przegląd Geologiczny 25, 428-432 (in Polish with English summary).
Szulczewski, M., 1995. Depositional evolution of the Holy Cross Mts. (Poland) in the Devonian and Carboniferous - a review. Geological Quarterly 39, 471-488.
Szulczewski, M., Bełka, Z. & Skompski, S., 1996. The drowning of a carbonate platform: an example from the Devonian-Carboniferous of the southwestern Holy Cross Mountains, Poland. Sedimentary Geology 106, 21-49. DOI: https://www.doi.org/10.1016/0037-0738(95)00145-X
Tait, J., Schätz, M., Bachtadse, V. & Soffel, H., 2000. Palaeomagnetism and Palaeozoic palaeogeography of Gondwana and European terranes. Geological Society, London, Special Publications 179, 21-34. DOI: https://www.doi.org/10.1144/GSL.SP.2000.179.01.04
Torsvik, T.H., Smethurst, M.A., Briden, J.C. & Sturt, B.A., 1990. A review of paleomagnetic data from Europe and their palaeographical implications. Geological Society, London, Memoirs 12, 25-41. DOI: https://www.doi.org/10.1144/GSL.MEM.1990.012.01.02
Tsien, H.H., 1988. Devonian palaeogeography and reef development of northwestern and central Europe. Canadian Society of Petroleum Geologists 1, 341-358.
van Loon, A.J., Han, Z., Han, Y., 2012. Slide origin of breccia lenses in the Cambrian of the North China Platform: new insight into mass transport in an epeiric sea. Geologos 18, 223-235.
van Loon, A.J., Han, Z. & Han, Y., 2013. Origin of the vertically orientated clasts in brecciated shallow-marine limestones of the Chaomidian Formation (Furongian, Shandong Province, China). Sedimentology 60, 1059-1070. DOI: https://www.doi.org/10.1111/sed.12018
Vierek, A., 2007a. Transitional reef-to-basin facies of Lower Frasnian limestones determined by microfacies analysis (Wietrznia, Holy Cross Mts, Poland). Facies 53,, 141-155. DOI: https://www.doi.org/10.1007/s10347-006-0079-8
Vierek, A., 2007b. Storm-dominated deposition on a Frasnian carbonate platform margin (Wietrznia, Holy Cross Mts., Poland). Geological Quarterly 51, 307-318.
Vierek, A., 2008. Sedimentology of the upper part of the Szydłówek Beds. Przegląd Geologiczny 56, 848-856.
Vierek, A., 2010. Source and depositional processes of coarse-grained limestone event beds in Frasnian slope deposits (Kostomłoty-Mogiłki quarry, Holy Cross Mountains, Poland). Geologos 16, 153-168. DOI: https://www.doi.org/10.2478/v10118-009-0010-1
Vierek, A. & Racki, G., 2011. Depositional versus ecological control on the conodont distribution in the Lower Frasnian fore-reef facies, Holy Cross Mountains, Poland. Palaeogeography, Palaeoclimatology, Palaeoecology 312, 1-23. DOI: https://www.doi.org/10.1016/j.palaeo.2011.07.032
Walker, R.G., 1984. Facies models. 2nd ed. Geosciences Canada Reprint Series 1, 1-318.
Walker, R.G., Duke, W.L. & Leckie, D.A., 1983. Hummocky stratification: significance of its variable bedding sequences: discussion. Geological Society of America Bulletin 94, 1245-1249. DOI: https://www.doi.org/10.1130/0016-7606(1983)94<1245:HSSOIV>2.0.CO;2
Whalen, M.T., Day, J., Eberli, G.P. & Homewood, P.W., 2002. Microbial carbonates as indicators of environmental change and biotic crises in carbonate systems: examples from the Late Devonian, Alberta Basin, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology 181, 127-151. DOI: https://www.doi.org/10.1016/S0031-0182(01)00476-X
Witzke, B.J., 1990. Paleoclimatic constraints for Paleozoic palaeolatitudes of Laurentia and Euramerica. Geological Society, London, Memoirs 12, 257-265. DOI: https://www.doi.org/10.1144/GSL.MEM.1990.012.01.05
Ziegler, W. & Sandberg, A.S., 1990. The Late Devonian standard conodont zonation. Courier Forschungsinstitut Senckenberg 121, 1-115.
License
This content is open access.