Abstract
The Pelotas Basin, located on the SE Brazilian shelf, has evolved since the Aptian. Stratigraphical data from the basin can be used for delineation of the unconformity-bounded units (synthems) on the shelf, which is a first step towards a full understanding of its stratigraphic architecture, evolution, and hydrocarbon potential. Hiatuses in the Cenozoic succession of the Pelotas Basin are established with both biostratigraphic (planktonic foraminifers and calcareous nannofossils) and isotopic (87Sr/86Sr) data. The seven recognised hiatuses are dated respectively as (1) Palaeocene (Danian-Thanetian), (2) Palaeocene/Eocene boundary (Thanetian-Ypresian), (3) Eocene (Ypresian-Lutetian), (4) Eocene-Oligocene (Lutetian-Rupelian), (5) early-late Oligocene (Rupelian-Chattian), (6) early Miocene (Aquitanian-Burdigalian), and (7) middle-late Miocene (Serravallian-Tortonian). These intervals between the hiatuses are correlated with those of the Santos and Campos Basins north from the Pelotas Basin. The breaks in sedimentation that these basins have in common occurred (1) at the Palaeocene-Eocene and (2) Eocene-Oligocene transitions, (3) in the early Miocene, and (4) in the middle-late Miocene. These main unconformities outline five synthems on the SE Brazilian shelf, viz. the SEBS–1 (Palaeocene), SEBS–2 (Eocene), SEBS–3 (Oligocene), SEBS–4 (early-middle Miocene) and SEBS–5 (late Miocene-Holocene). The above unconformities are correlated with those established in the Cenozoic sedimentary successions of different regions such as Western Siberia, Arabia, NW and NE Africa, peninsular India, S Australia, the Gulf of Mexico, NW Europe, and South Africa. The only regional unconformity, near the Oligocene/Miocene boundary, coincides with the nearly-global sedimentation break. The latter was resulted from a climatic event, i.e., the ‘Mi-1 glaciation’. Thus, a eustatic origin is supposed for this regional unconformity. The other regional unconformities also correspond to global sea-level falls (probably with an exception for the Palaeocene/Eocene surface), which suggests that global eustatic movements controlled the development of the regional synthem architecture.
References
Abreu, V.S., 1998. Geologic evolution of conjugate volcanic passive margins: Pelotas Basin (Brazil) and offshore Namibia (Africa): implication for global sea-level changes. Ph.D. thesis, Rice University.
Abreu, V.S. & Anderson, J.B., 1998. Glacial eustasy during the Cenozoic: sequence stratigraphic implications. American Association of Petroleum Geologists Bulletin 82, 1385-1400.
Abreu, V.S. & Savini, R.R., 1994. Major paleoceanographic events of the Brazilian continental margin: relationships with the giant oil fields of the Oligo-Miocene of Campo Basin, Brazil. 26th Annual Offshore Technology Conference (Houston, Texas, 1994), 335-344. DOI: https://www.doi.org/10.4043/7411-MS
Anjos, G.S., 2004. Bioestratigrafia (Foraminiferida) do Mioceno- Plioceno da Plataforma de Florianópolis, porção setentrional da Bacia de Pelotas. [Biostratigraphy (Foraminiferida) of the Miocene-Pliocene of the Florianópolis Platform, northern part of the Pelotas Basin]. M.Sc. Thesis, Universidade Federal do Rio Grande do Sul. DOI: https://www.doi.org/10.4072/rbp.2004.2.05
Anjos, G.S. & Carreño, A. L., 2004. Bioestratigrafia (Foraminiferida) da sondagem 1-SCS-3B, Plataforma de Florianópolis, Bacia de Pelotas. [Biostratigraphy (Foraminiferida) of the drilling 1-SCS-3B, Florianópolis Platform, Pelotas Basin]. Revista Brasileira de Paleontologia 7, 127-138. DOI: https://www.doi.org/10.4072/rbp.2004.2.05
Anjos-Zerfass, G.S., 2009. Estudos paleoambientais com base em isótopos de carbono, oxigênio e estrôncio em foraminíferos do Terciário da Bacia de Pelotas. [Palaeoenvironmental study based on carbon, oxygen and strontium isotopes in foraminifers from the Tertiary of the Pelotas Basin]. Ph.D. Thesis, Universidade Federal do Rio Grande do Sul.
Antunes, R.L., 1989. Cenozoic erosive events in central- northern portion of the Santos Basin-Brazil: a biochronoestratigraphical study based on calcareous nannofossils. Anais do XXI Congresso Brasileiro de Paleontologia, 1043-1058.
Arai, M., 2006. A grande elevação eustática do Mioceno e sua influência na origem do Grupo Barreiras. [The large eustatic rise of the Miocene and its influence on the origin of the Barreiras Group]. Revista do Instituto de Geociências-USP 6, 1-6. DOI: https://www.doi.org/10.5327/S1519-874X2006000300002
Asmus, H.E. & Baisch, P.R., 1983. Geological evolution of the Brazilian continental margin. Episodes 6, 3-9. DOI: https://www.doi.org/10.18814/epiiugs/1983/v6i4/001
Babushkin, A.E. (Ed.), 2001. Unifitsirovannye regional’nye stratigrafitcheskie skhemy neogenovykh i paleogeonovykh otlozhenij Zapadno-Sibirskoj ravniny. [Unified regional stratigraphic scales of Neogene and Paleogene deposits of the West Siberian plain]. SNIIGGiMS, Novosibirsk, 84 pp.
Bassetto, M., Alkmim, F., Szatmari, P., Mohriak, W.U., 2000. The oceanic segment of the southern Brazilian margin: morpho-structural domains and their tectonic significance. [In:] W.U. Mohriak & M. Talwani (Eds): Atlantic rifts and continental margins. American Geophysical Union, Monograph 115, 235-259. DOI: https://www.doi.org/10.1029/GM115p0235
Berggren, W.A. & Aubry, M.-P., 1996. A late Paleocene- early Eocene NW European and North Sea magnetobiochronological correlation network. [In:] R.W.O.B. Knox, R.M. Corfield & R.E. Dunay (Eds): Correlation of the Early Paleogene in Northwestern Europe. Geological Society of London Special Publication 101, 309-352. DOI: https://www.doi.org/10.1144/GSL.SP.1996.101.01.17
Billups, K., Channell, J.E.T. & Zachos, J., 2002. Late Oligocene to early Miocene geochronology and paleoceanography from the subantarctic South Atlantic. Paleoceanography U39-U49. DOI: https://www.doi.org/10.1029/2000PA000568
Bolli, H.M. & Saunders, J.B., 1985. Oligocene to Holocene low latitude planktic foraminifera. [In:] H.M. Bolli, J.B. Saunders & K. Perch-Nielsen (Eds): Plankton stratigraphy. Cambridge University Press, Cambridge, 155-262.
Bueno, G.V., Zacharias, A.A., Oeiro, S.G., Cupertino, J.A., Falkenhein, F.U.H. & Martins Neto, M.A., 2007. Bacia de Pelotas. [Pelotas Basin]. Boletim de Geociências da Petrobras 15, 551-559.
Burke, W.H., Denison, R.E., Hetherington, E.A., Koepnick, R.B., Nelson, H.F. & Otto, J.B., 1982. Variation of seawater 87Sr/86Sr through Phanerozoic time. Geology 10, 516-519. DOI: https://www.doi.org/10.1130/0091-7613(1982)10<516:VOSSTP>2.0.CO;2
Cainelli, C. & Mohriak, W.U., 1999. Some remarks on the evolution of sedimentary basins along the eastern Brazilian continental margin. Episodes 22, 206-216. DOI: https://www.doi.org/10.18814/epiiugs/1999/v22i3/008
Catuneanu, O., 2006. Principles of sequence stratigraphy. Elsevier, Amsterdam, 375 pp.
Catuneanu, O., Abreu, V., Bhattacharya, J.P., Blum, M.D., Dalrymple, R.W., Eriksson, P.G., Fielding, C.R., Fisher, W.L., Galloway, W.E., Gibling, M.R., Giles, K.A., Holbrook, J.M., Jordan, R., Kendall, C.G.St.C., Macurda, B., Martinsen, O.J., Miall, A.D., Neal, J.E., Nummedal, D., Pomar, L., Posamentier, H.W., Pratt, B.R., Sarg, J.F., Shanley, K.W., Steel, R.J., Strasser, A., Tucker, M.E. & Winker, C., 2009. Towards the standardization of sequence stratigraphy. Earth-Science Reviews 92, 1-33. DOI: https://www.doi.org/10.1016/j.earscirev.2008. DOI: https://www.doi.org/10.003
Catuneanu, O., Bhattacharya, J.P., Blum, M.D., Dalrymple, R.W., Eriksson, P.G., Fielding, C.R., Fisher, W.L., Galloway, W.E., Gibling, M.R., Giles, K.A., Holbrook, J.M., Jordan, R., Kendall, C.G.St.C., Macurda, B., Martinsen, O.J., Miall, A.D., Nummedal, D., Posamentier, H.W., Pratt, B.R., Shanley, K.W., Steel, R.J., Strasser, A. & Tucker, M.E., 2010. Sequence stratigraphy: common ground after three decades of development. First Break 28, 21-34. DOI: https://www.doi.org/10.3997/1365-2397.2010002
Catuneanu, O., Galloway, W.E., Kendall, C.G.St.C., Miall, A.D., Posamentier, H.W., Strasser, A. & Tucker, M.E., 2011. Sequence stratigraphy: methodology and nomenclature. Newsletters on Stratigraphy 44, 173-245. DOI: https://www.doi.org/10.1127/0078-0421/2011/0011
Chang, K.H., 1975. Unconformity-bounded stratigraphic units. Geological Society of America Bulletin 86, 1544-1552. DOI: https://www.doi.org/10.1130/0016-7606(1975)86<1544:USU>2.0.CO;2
Chang, H.K., Kowsmann, R.O., Figueiredo, A.M.F. & Bender, A.A., 1992. Tectonics and stratigraphy of the East Brazil Rift System: An overview. Tectonophysics 213, 97-138. DOI: https://www.doi.org/10.1016/B978-0-444-89912-5.50032-6
Conceição, J.C.J., Zalán, P.V. & Wolff, S., 1988. Mecanismo, evolução e cronologia do rift Sul-Atlântico. [Mechanism, evolution and chronology of the South Atlantic rift]. Boletim de Geociências da Petrobras 2, 255-265.
Contreras, J., Zühlke, R., Bowman, S. & Bechstädt, T., 2010. Seismic stratigraphy and subsidence analysis of the southern Brazilian margin (Campos, Santos and Pelotas basins). Marine and Petroleum Geology 27, 1952-1980. DOI: https://www.doi.org/10.1016/j.marpetgeo.2010.06.007
Dias, J.L., 2009. Estratigrafia e sedimentação dos evaporitos neo-aptianos na Margem Leste Brasileira. [Stratigraphy and sedimentation of Late Aptian evaporites in the Brazilian eastern margin]. [In:] W. Mohriak, P., Szatmari, P., Anjos, S.M.C. (Eds): Sal: Geologia e Tectônica. [Salt: Geology and Tectonics]. Petrobras, Beca, São Paulo, 222-231.
Elderfield, H., 1986. Strontium isotope stratigraphy. Palaeogeography, Palaeoclimatology, Palaeoecology 57, 71-90. DOI: https://www.doi.org/10.1016/0031-0182(86)90007-6
Fontana, R.L., 1996. Geotectônica e sismoestratigrafia da Bacia de Pelotas e Plataforma de Florianópolis. [Geotectonics and seismostratigraphy of the Pelotas Basin and Florianópolis Platform]. Ph.D. Thesis, Universidade Federal do Rio Grande do Sul.
Galloway, W.E., 2005. Gulf of Mexico Basin depositional record of Cenozoic North American drainage basin evolution. International Association of Sedimentologists Special Publication 35, 409-423. DOI: https://www.doi.org/10.1002/9781444304350.ch22
Galloway, W.E., Bebout, D.G., Fisher, W.L., Dunlap, J.B., Jr., Cabrera-Castro, R., Lugo-Rivera, J.E. & Scott, T.M., 1991. Cenozoic. [In:] A. Salvador (Ed.): The geology of North America. Vol. J. The Gulf of Mexico Basin. Geological Society of America, Boulder, 245-324. DOI: https://www.doi.org/10.1130/DNAG-GNA-J.245
Galloway, W.E., Ganey-Curry, P.E., Li, X. & Buffler, R.T., 2000. Cenozoic depositional history of the Gulf of Mexico basin. American Association of Petroleum Geologists Bulletin 84, 1743-1774. DOI: https://www.doi.org/10.1306/8626C37F-173B-11D7-8645000102C1865D
Gomide, J., 1989. Bacia de Pelotas - Biocronoestratigrafia baseada em nanofósseis calcários. [Pelotas Basin - Biochronostratigraphy based on calcareous nannofossils]. Congresso Brasileiro de Paleontologia, Anais 11, 338-351.
Gornitz, V. (Ed.), 2009. Encyclopedia of paleoclimatology and ancient environments. Springer, Dordrecht, 1049 pp. DOI: https://www.doi.org/10.1007/978-1-4020-4411-3
Gradstein, F.M., Ogg, J.G., Smith, A.G., Agterberg, F.P., Bleeker, W., Cooper, R.A., Davydov, V., Gibbard, P., Hinnov, L.A., House, M.R., Lourens, L., Luterbacher, H.P., McArthur, J., Melchin, M.J., Robb, L.J., Shergold, J., Villeneuve, M., Wardlaw, B.R., Ali, J., Brinkhuis, H., Hilgen, F.J., Hooker, J., Howarth, R.J., Knoll, A.H., Laskar, J., Monechi, S., Plumb, K.A., Powell, J., Raffi, I., Rohl, U., Sadler, P., Sanfilippo, A., Schmitz, B., Shackleton, N.J., Shields, G.A., Strauss, H., Van Dam, J., Van Kolfschoten, T., Veizer, J. & Wilson, D., 2004. A geologic time scale 2004. Cambridge University Press, Cambridge, 589 pp. DOI: https://www.doi.org/10.4095/215638
Green, A., 2011. The late Cretaceous to Holocene sequence stratigraphy of a sheared passive upper continental margin, northern KwaZulu-Natal, South Africa. Marine Geology 289, 17-28. DOI: https://www.doi.org/10.1016/j.margeo.2011.09.001
Guiraud, R., Bosworth, W., Thierry, J. & Delplanque, A., 2005. Phanerozoic geological evolution of Northern and Central Africa: An overview. Journal of African Earth Sciences 43, 83-143. DOI: https://www.doi.org/10.1016/j.jafrearsci.2005.07.017
Haq, B.U., Hardenbol, J. & Vail, P.R., 1987. Chronology of fluctuating sea levels since the Triassic. Science 235, 1156-1167. DOI: https://www.doi.org/10.1126/science.235.4793.1156
Haq, B.U., Hardenbol, J. & Vail, P.R. 1988. Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change. Society of Economic Paleontologists and Mineralogists Special Publication 42, 71-108.
Haq, B.U. & Al-Qahtani, A.M., 2005. Phanerozoic cycles of sea-level change on the Arabian Platform. GeoArabia 10, 127-160. DOI: https://www.doi.org/10.2113/geoarabia1002127
Hess, J., Bender, M.L. & Schilling, J. 1986. Evolution of the ratio of strontium 87 to strontium 86 in seawater from Cretaceous to Present. Science 231, 979-984.
Hodell, D.A. & Kennett, J.P., 1985. Miocene paleoceanography of the South Atlantic Ocean at 22, 16 and 8 Ma. [In:] J.P. Kennett (Ed.): The Miocene ocean: paleoceanography and biogeography. Geological Society of America Memoir 163, 317-337.
Hodell, D.A., Mueller, P.A. & Garrido, J.R., 1991. Variation in the strontium isotope composition of the seawater during the Neogene. Geology 19, 24-27. DOI: https://www.doi.org/10.1130/0091-7613(1991)019<0024:VITSIC>2.3.CO;2
Hodell, D.A. & Woodruff, F., 1994. Variations in the strontium isotopic ratio of seawater during the Miocene: Stratigraphic and geochemical implications. Paleoceanography 9, 405-426. DOI: https://www.doi.org/10.1029/94PA00292
Ielpi, A., 2012. Orbitally-driven climate forcing in late Pliocene lacustrine siderite-rich clastic rhythms (Upper Valdarno Basin, Northern Apennines, Italy). Palaeogeography, Palaeoclimatology, Palaeoecology 331-332, 119-135. DOI: https://www.doi.org/10.1016/j.palaeo.2012.03.004
Keller, G. & Barron, J.A., 1983. Paleoceanographic implications of Miocene deep-sea hiatuses. Geological Society of America Bulletin 94, 590-613. DOI: https://www.doi.org/10.1130/0016-7606(1983)94<590:PIOMDH>2.0.CO;2
Koch, P.L., Zachos, J.C. & Gingerich, P.D., 1992. Correlation between isotope records in marine and continental carbon reservoirs near the Palaeocene/Eocene boundary. Nature 358, 319-322. DOI: https://www.doi.org/10.1038/358319a0
Kominz, M.A., Browning, J.V., Miller, K.G., Sugarman, P.J., Mizintseva, S. & Scotese, C.R., 2008. Late Cretaceous to Miocene sea-level estimates from the New Jersey and Delaware coastal plain boreholes: an error analysis. Basin Research 20, 211-226. DOI: https://www.doi.org/10.1111/j.1365-2117.2008.00354.x
Koutsoukos E.A.M., 1982. Geohistória e paleoecologia das bacias marginais de Florianópolis e Santos. [Geohistory and palaeoecology of the Florianópolis and Santos marginal basins]. Congresso Brasileiro de Geologia, Anais 32, 2369-2382.
Kowsmann, R.O., Francisconi, O. & Leyden, R., 1974. Refração sísmica marinha nas bacias de Pelotas, Santos Sul e na Plataforma de Torres. [Marine seismic refraction in the Pelotas and Southern Santos basins and Torres Platform]. Congresso Brasileiro de Geologia, Anais 28, 283-295.
Kurz, A.C., Kump, L.R., Arthur, M.A., Zachos, J.C. & Paytan, A., 2003. Early Cenozoic decoupling of the global carbon and sulphur cycles. Paleoceanography 18, DOI: 10.1029/2003PA000908.10.1029/2003PA000908
Laga, P., Louwye, S. & Geets, S., 2001. Paleogene and Neogene lithostratigrafie units (Belgium). Geologica Belgica 4, 135-152.10.20341/gb.2014.050
Louwye, S., 2005. The Early and Middle Miocene transgression at the southern border of the North Sea Basin (northern Belgium). Geological Journal 40, 441-456.10.1002/gj.1021
Louwye, S., De Coninck, J. & Verniers, J., 2000. Shallow marine Lower and Middle Miocene deposits at the southern margin of the North Sea Basin (northern Belgium): dinoflagellate cyst biostratigraphy and depositional history. Geological Magazine 137, 381-394. DOI: https://www.doi.org/10.1017/S0016756800004258
Louwye, S., De Schepper, S., Laga, P. & Vandenberghe, N., 2007. The Upper Miocene of the southern North Sea Basin (northern Belgium): a palaeoenvironmental and stratigraphical reconstruction using dinoflagellate cysts. Geological Magazine 144, 33-52. DOI: https://www.doi.org/10.1017/S0016756806002627
McArthur, J.M., Howarth, R.J. & Bailey, T.R., 2001. Strontium isotope stratigraphy: LOWESS Version 3. Best-fit line to the marine Sr-isotope curve for 0 to 509 Ma and accompanying look-up table for deriving numerical age. Journal of Geology 109, 155-169. DOI: https://www.doi.org/10.1086/319243
McGowran, B., Li, Q. & Moss, G., 1997. The Cenozoic neritic record in southern Australia: The biogeohistorical framework. [In:] N.P. James & J.D.A. Clarke (Eds): Cool-water carbonates in space and time. SEPM, Special Volume 56, 185-203. DOI: https://www.doi.org/10.2110/pec.97.56.0185
McGowran, B., Holdgate, G.R., Li, Q. & Gallagher, S.J., 2004. Cenozoic stratigraphic succession in southeastern Australia. Australian Journal of Earth Sciences 51, 459-496. DOI: https://www.doi.org/10.1111/j.1400-0952.2004.01078.x
Menning, M. & Hendrich, A. (Eds), 2002. Stratigraphische Tabelle von Deutschland. Deutsche Stratigraphische Kommission, Potsdam, 1 pl.
Miller, K., Fairbanks, R.G. & Mountain, G.S., 1987. Tertiary isotope oxygen isotope synthesis, sea level history and continental margin erosion. Paleoceanography 2, 1-19. DOI: https://www.doi.org/10.1029/PA002i001p00001
Miller, K.G., Kominz, M.A., Browning, J.V., Wright, J.D., Mountain, G.S., Katz, M.E., Sugarman, P.J., Cramer, B.S., Christie-Blick, N. & Pekar, S.F., 2005. The Phanerozoic record of global sea-level change. Science 310, 1293-1298. DOI: https://www.doi.org/10.1126/science.1116412
Miller, K.G., Wright, J.D., Katz, M.E., Browning, J.V., Cramer, B.S., Wade, B.S. & Misintzeva, S.F., 2008. A view of Antarctic ice-sheet evolution from sea-level and deep-sea isotope changes during the Late Cretaceous-Cenozoic. [In:] A.K. Cooper, P. Barrett, H. DOI: https://www.doi.org/10.3133/ofr20071047KP06
Stagg, B. Storey, E. Stump & W. Wise (Eds): Antarctica: A key in a changing world. 10th International Symposium on Antarctic Earth Sciences (Santa Barbara), 55-70.
Moreira, J.L.P., Madeira, C.V., Gil, J.A. & Machado, M.A.P., 2007. Bacia de Santos. [Santos Basin]. Boletim de Geociências da Petrobras 15, 531-549.
Müller, R.D., Sdrolias, M., Gaina, C., Steinberger, B. & Heine, C., 2008. Long-term sea-level fluctuations driven by ocean basin dynamics. Science 319, 1357-1362. DOI: https://www.doi.org/10.1126/science.1151540
Murphy, M.A. & Salvador, A., 1998. International stratigraphic guide - an abridged version. Episodes 22, 255-271. DOI: https://www.doi.org/10.18814/epiiugs/1999/v22i4/002
Ogg, J.G., Ogg, G. & Gradstein, F.M., 2008. The concise geologic time scale. Cambridge University Press, Cambridge, 177 pp.
Ojeda, H.A.O., 1981. Estrutura, estratigrafia e evolução das bacias marginais brasileiras. [Structure, stratigraphy and evolution of the marginal Brazilian basins]. Revista Brasileira de Geociências 11, 257-273. DOI: https://www.doi.org/10.25249/0375-7536.1981257273
Oslick, J.S., Miller, K.G., Feigenson, M.D. & Wright, J.D., 1994, Oligocene-Miocene strontium isotopes: stratigraphic revisions and correlation to an inferred glacioeustatic record. Paleoceanography 9, 427-444. DOI: https://www.doi.org/10.1029/94PA00249
Pasley, M.A., Shepherd, D.B., Pocknall, D.T., Boyd, K.P., Andrade, V. & Figueiredo, J.P., 2005. Sequence stratigraphy and basin evolution of the Foz do Amazonas Basin, Brazil. Search and Discovery Article #10082.
Raju, D.S.N. (Ed.), 2007. Stratigraphic mega charts for the Indian subcontinent. International Commission on Stratigraphy, 2 pls.
Rosa, A.P., 2007. Interpretação sismo-estratigráfica da porção da Bacia de Pelotas que engloba o Cone do Rio Grande e a avaliação do seu potencial petrolífero. [Seismic-stratigraphic interpretation of the portion of the Pelotas Basin embracing the Rio Grande Cone and evaluation of its oil potential]. Ph.D. Thesis Universidade Estadual do Norte Fluminense.
Rossetti, D.F., 2001. Late Cenozoic sedimentary evolution in northerneastern Pará, Brazil, within the context of sea level changes. Journal of South American Earth Sciences 14, 77-89. DOI: https://www.doi.org/10.1016/S0895-9811(01)00008-6
Ruban, D.A., 2007. Principal elements of the complex stratigraphical analysis of oil-gas-bearing basins. Stratigraphy and sedimentology of oil-gas basins 1, 20-27.
Ruban, D.A., Zerfass, H. & Pugatchev, V.I., 2009. Triassic synthems of southern South America (southwestern Gondwana) and the Western Caucasus (the northern Neotethys), and global tracing of their boundaries. Journal of South American Earth Sciences 28, 155-167. DOI: https://www.doi.org/10.1016/j.jsames.2009.03.003
Ruban, D.A., Zorina, S.A. & Conrad, C.P., 2010. No global- scale transgressive-regressive cycles in the Thanetian (Paleocene): Evidence from interregional correlation. Palaeogeography, Palaeoclimatology, Palaeoecology 295, 226-235. DOI: https://www.doi.org/10.1016/j.palaeo.2010.05.040
Ruban, D.A., Zorina, S.A., Conrad, C.P. & Afanasieva, N.I., 2012. In quest of Paleocene global-scale transgressions and regressions: constraints from a synthesis of regional trends. Proceedings of the Geologists’ Association 123, 7-18. DOI: https://www.doi.org/10.1016/j.pgeola.2011.08.003
Sacchi, M., Horvath, F. & Magyari, O., 1999. Role of unconformity- bounded units in the stratigraphy of the continental record: a case study from the Late Miocene of the western Pannonian basin, Hungary. [In:] B. Durand, L. Jolivet, F. Hovarth & M. Seranne (Eds): The Mediterranean basins: Tertiary extension within the Alpine orogen. Geological Society, London, Special Publication 156, 357-390. Salvador, A., 1987. Unconformity-bounded stratigraphic units. Geological Society of America Bulletin 98, 232-237. DOI: https://www.doi.org/10.1144/GSL.SP.1999.156.01.17
Salvador, A. (Ed), 1994. International stratigraphic guide - a guide to stratigraphic classification, terminology, and procedure. International Subcommission on Stratigraphic Classification, Geological Society of America, 214 pp.
Salvador, A., 2003. Review of the concepts and recommended terminology for unconformity-related units. International Subcommission on Stratigraphic Classification, Newsletter 1, 17-19.
Schmitz, B., Molina, E. & v. Salis, K., 1998. The Zumaya section in Spain: A possible global stratotype section for the Selandian and Thanetian Stages. Newsletters on Stratigraphy 36, 35-42. DOI: https://www.doi.org/10.1127/nos/36/1998/35
Scotese, C.R., 2004. A continental drift flipbook. Journal of Geology 112, 729-741. DOI: https://www.doi.org/10.1086/424867
Shackleton, N.J. & Kennett, J.P., 1975. Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation: oxygen and carbon isotope analyses in DSDP Sites 277, 279, and 281. Initial Reports of the Deep Sea Drilling Project 29, 743-755. DOI: https://www.doi.org/10.2973/dsdp.proc.29.117.1975
Shackleton, N.J. & Hall, M.A., 1984. Carbon isotope data from Leg 74 sediments. Initial Reports of the Deep Sea Drilling Project 74, 613-619. DOI: https://www.doi.org/10.2973/dsdp.proc.74.116.1984
Sharland, P.R., Archer, R., Casey, D.M., Davies, R.B., Hall, S.H., Heward, A.P., Horbury, A.D. & Simmons, M.D., 2001. Arabian Plate sequence stratigraphy. GeoArabia Special Publication 2, 1-371.
Shimabukuro, S., 1994. “Braarudosphaera chalk”: investigações sobre a gênese de um marco estratigráfico. [“Braarusphaera chalk”: investigation on the genesis of a stratigraphic mark]. M.Sc. Thesis Universidade Federal do Rio Grande do Sul.
Simmons, M.D., Sharland, P.R., Casey, D.M., Davies, R.B. & Sutcliffe, O.E., 2007. Arabian plate sequence stratigraphy: potential implications for global chronostratigraphy. GeoArabia 12, 101-130. DOI: https://www.doi.org/10.2113/geoarabia1204101
Soto, M., Morales, E., Verolavsky, G., Santa Ana, H. & Ucha, N., 2011. The continental margin of Uruguay: crustal architecture and segmentation. Marine and Petroleum Geology 28, 1676-1689. DOI: https://www.doi.org/10.1016/j.marpetgeo.2011.07.001
Swezey, C.S., 2009. Cenozoic stratigraphy of the Sahara, Northern Africa. Journal of African Earth Sciences 53, 89-121. DOI: https://www.doi.org/10.1016/j.jafrearsci.2008.08.001
Vail, P.R. & Hardenbol, J., 1979. Sea level changes during Tertiary. Oceanus 22, 71-79.
Viana, A.R., Castro, D.D. & Kowsmann, R.O., 1990. A discordância do Mioceno médio superior: um marco regional no talude da Bacia de Campos. [The Upper Middle Miocene discordance: a regional mark in the slope of the Campos Basin]. Congresso Brasileiro de Geologia, 1990, Anais. Curitiba, 313-333.
Walsh, S.L., 2004. Solutions in chronostratigraphy: the Paleocene/Eocene boundary debate, and Aubry vs. Hedberg on chronostratigraphic principles. Earth-Science Reviews 64, 119-155. DOI: https://www.doi.org/10.1016/S0012-8252(03)00040-0
Wigley, R.A. & Compton, J.S., 2006. Late Cenozoic evolution of the outer continental shelf at the head of the Cape Canyon, South Africa. Marine Geology 226, 1-23. DOI: https://www.doi.org/10.1016/j.margeo.2005.09.015
Winter, W.R., Jahnert, R.J., França, A.B., 2007. Bacia de Campos. [Campos Basin]. Boletim de Geociências da Petrobras 15, 511-529.
Zachos, J.C., Dickens, G.R. & Zeebe, R.E., 2008. An Early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279-283. DOI: https://www.doi.org/10.1038/nature0658818202643
Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K., 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686-693. DOI: https://www.doi.org/10.1126/science.105941211326091
Zalasiewicz, J. & Williams, M., 2012. The Goldilocks planet - the four billion year story of Earth’s climate. Oxford University Press, Oxford, 303 pp. DOI: https://www.doi.org/10.1093/oso/9780199593576.001.0001
License
This content is open access.