First report on the occurrence of CO2-bearing fluid inclusions in the Meiduk porphyry copper deposit, Iran: implications for mineralisation processes in a continental collision setting
PDF

Keywords

CO2-bearing fluid inclusions
laser Raman spectroscopy
collision
Meiduk porphyry copper deposit
Iran

How to Cite

Asadi, S., Moore, F., Zarasvandi, A., & Khosrojerdi, M. (2014). First report on the occurrence of CO2-bearing fluid inclusions in the Meiduk porphyry copper deposit, Iran: implications for mineralisation processes in a continental collision setting. Geologos, 19(4), 301–320. https://doi.org/10.2478/logos-2013-0019

Abstract

Hydrothermal alteration of the Meiduk porphyry copper deposit, south of the Kerman Cenozoic magmatic arc and southeast of the central Iranian volcano-plutonic belt has resulted in three stages of mineralisation characterised by veins and veinlets. These are, from early to late: (1) quartz + K-feldspar + biotite + pyrite ± chalcopyrite ± pyrrhotite ± magnetite (early potassic alteration and type-A veins); (2) quartz + chalcopyrite + pyrite + bornite + pyrrhotite + K-feldspar + biotite + magnetite (potassic-sericitic alteration and type-B veins); and (3) quartz + pyrite + chalcopyrite + sericite (sericitic alteration and type-C veins). Most ores were formed during stages 2 and 3. Three main types of fluid inclusions are distinguished based on petrographical, microthermometrical and laser Raman spectroscopy analyses, i.e. type I (three-phase aqueous inclusions), type II (three-phase liquid-carbonic inclusions) and type III (multi-phase solid inclusions). The fluid inclusions in quartz veins of the stages are mainly homogenised at 340–530°C (stage 1), 270–385°C (stage 2) and 214–350°C (stage 3), respectively, with salinities of 3.1–16 wt.% NaCl equivalent, 2.2–43 wt.% NaCl equivalent and 8.2–22.8 wt.% NaCl equivalent, respectively. The estimated trapping pressures are 97.9-123.6 MPa (3.7-4.6 km) in stage 1 and 62.5-86.1 MPa (2.3-3.1 km) in stage 2, respectively. These fluid inclusions are homogenised in different ways at similar temperatures, suggesting that fluid boiling took place in stages 2 and 3. The fluid system evolved from high-temperature, medium-salinity, high-pressure and CO2-rich to low-temperature, low-pressure, high-salinity and CO2-poor, with fluid boiling being the dominating mechanism, followed by input of meteoric water. CO2 escape may have been a factor in increasing activities of NaCl and S2- in the fluids, diminishing the oxidation of the fluids from stage 1 to 3. The result was precipitation of sulphides and trapping of multi-phase solid inclusions in hydrothermal quartz veins.

https://doi.org/10.2478/logos-2013-0019
PDF

References

Ahmadian, J., Haschke, M., McDonald, I., Regelous, M., Ghorbani, M., Emami, M. & Murata, M., 2009. High magmatic flux during Alpine-Himalayan collision: Constraints from the Kal-e-Kafi complex, central Iran. Geological Society of America Bulletin 121, 857-868. DOI: https://www.doi.org/10.1130/B26279.1

Alavi, M., 2007. Structure of the the Zagros fold-thrust belt in Iran. American Journal of Science 307, 1064-1095. DOI: https://www.doi.org/10.2475/09.2007.02

Asadi, S., 2013. Selective geochemistry of barren and productive porphyry copper deposits in Urumiyeh-Dokhtar volcano-magmatic belt. National Iranian Copper Industries Company Internal Report (258/M/90/D) 2, 22-45.

Asadi, S., Moore, F. & Fattahi, N., 2013. Fluid inclusion and stable isotope constraints on the genesis of the Jian copper deposit, Sanandaj-Sirjan metamorphic zone, Iran. Geofluids 13, 66-81. DOI: https://www.doi.org/10.1111/gfl.12013

Bakker, R.J., 2003. Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties. Chemical Geology 194, 3-23. DOI: https://www.doi.org/10.1016/S0009-2541(02)00268-1

Bodnar, R.J., 1993. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochimica et Cosmochimica Acta 57, 683-684. DOI: https://www.doi.org/10.1016/0016-7037(93)90378-A

Bodnar, R.J., 1995. Fluid inclusion evidence for a magmatic source for metals in porphyry copper deposits. Mineralogical Association of Canada Short Course Series 23, 139-152.

Boomeri, M., Nakashima, K. & Lentz, D.R., 2009. The Miduk porphyry Cu deposit, Kerman, Iran: a geochemical analysis of the potassic zone including halogen element systematics related to Cu mineralization processes. Journal of Geochemical Exploration 103, 17-29. DOI: https://www.doi.org/10.1016/j.gexplo.2009.05.003

Bowers, T.S. & Helgeson, H.C., 1983. Calculation of the thermodynamic and geochemical consequences of nonideal mixing in the system H2O-CO2-NaCl on phase relations in geological systems: equation of state for H2O-CO2-NaCl fluids at high pressures and temperatures. Geochimica et Cosmochimica Acta 47, 1247-1275. DOI: https://www.doi.org/10.1016/0016-7037(83)90066-2

Brown, P.E., 1989. Flincor: a microcomputer program for the reduction and investigation of fluid inclusion data. American Mineralogist 74, 1390-1393.

Brown, P.E. & Hagemann, S.G., 1994. MacFlinCor: A computer program for fluid inclusion data reduction and manipulation. [In:] B. De Vivo & M.L. Frezzotti (Eds): Fluid inclusions in minerals: methods and applications. International Mineralogical Association 16th Short Course of the Working Group, Portignano-Siena, Italy, 231-250.

Burke, E.A.J., 2001. Raman microspectrometry of fluid inclusions. Lithos 55, 139-158. DOI: https://www.doi.org/10.1016/S0024-4937(00)00043-8

Castillo, P.R., 2006. An overview of adakite petrogenesis. Chinese Science Bulletin 51, 257-268. DOI: https://www.doi.org/10.1007/s11434-006-0257-7

Castillo, P.R., 2012. Adakite petrogenesis. Lithos 135, 304-316. DOI: https://www.doi.org/10.1016/j.lithos.2011.09.013

Chen, Y.J. & Fu, S.G., 1992. Gold mineralization in West Henan, China. China Seismological Press, Beijing, 234 pp.

Chen, Y.J. & Wang, Y., 2011. Fluid inclusion study of the Tangjiaping Mo deposit, Dabie Shan, Henan Province: implications for the nature of porphyry systems of postcollisional tectonic settings. International Geology Review 53, 635-655. DOI: https://www.doi.org/10.1080/00206811003783422

Chen, Y.J., Ni, P., Fan, H.R., Pirajno, F., Lai, Y., Su, W.C. & Zhang, H., 2007. Diagnostic fluid inclusions of different types hydrothermal gold deposits. Acta Petrologica Sinica 23, 2085-2108.

Chen,Y.J. & Li, N., 2009. Diagnostic fluid inclusion and wallrock alteration of intrusionrelated hypothermal ore-systems (porphyry, skarn, breccia pipe, vein and IOCG) formed in intracontinental settings: origin and difference from those in volcanic arc. Acta Petrologica Sinica 25, 2477-2508.

Cline, J.S. & Bodnar, R.J., 1991. Can economic porphyry copper mineralization be generated by a typical calc-alkaline melt? Journal of Geophysical Research 96, 8113-8126. DOI: https://www.doi.org/10.1029/91JB00053

Collins, P.L.F., 1979. Gas hydrates in CO2-bearing fluid inclusions and the use of freezing data for estimation of salinity. Economic Geology 74, 1435-1444. DOI: https://www.doi.org/10.2113/gsecongeo.74.6.1435

Conly, A.G., Beaudoin, G. & Scott, S.D., 2006. Isotopic constraints on fluid evolution and precipitation mechanisms for the Boléo Cu-Co-Zn district, Mexico. Mineralium Deposita 41, 27-151. DOI: https://www.doi.org/10.1007/s00126-005-0045-3

Dehghani, G.A. & Makris, T., 1983. The gravity field and crustal structure of Iran. Geological Survey of Iran Report 51, 51-68.

Dercourt, J., Zonenshain, L., Ricou, L.E., Kazmin, G., LePichon, X., Knipper, A.L., Grandjacquet, C., Sbortshikov, I.M., Geyssant, J., Lepvrier, C., Pechersky, D.H., Boulin, J., Sibuet, J.C., Savostin, L.A., Sorokhtin, O., Westphal, M., Bazhenov, M.L., Lauer, J.P. & Biju-Duval, B., 1986. Geological evolution of the Tethys belt from the Atlantic to Pamirs since the Lias. Tectonophysics 123, 241-315. DOI: https://www.doi.org/10.1016/0040-1951(86)90199-X

Dewey, J.F., Pitman, W.C., Ryan, W.B. & Bonnin, J., 1973. Plate tectonics and the evolution of the Alpine system. Geological Society of America Bulletin 84, 3137-3180. DOI: https://www.doi.org/10.1130/0016-7606(1973)84<3137:PTATEO>2.0.CO;2

Dimitrijevic, M.D., 1973. Geology of the Kerman region. Geological Survey of Iran Report 52, 245-334.

Dreher, A.M., Xavier, R.P., Taylor, B.E. & Martini, S., 2007. New geologic, fluid inclusion and stable isotope studies on the controversial Igarapé Bahia Cu-Au deposit, Carajás Province, Brazil. Mineralium Deposita 43, 161-184. DOI: https://www.doi.org/10.1007/s00126-007-0150-6

Dubessy, J., Buschaert, S., Lamb, W., Pironon, J. & Thiery, R., 2001. Methane-bearing aqueous fluid inclusions: raman analysis, thermodynamic modeling and application to petroleum basins. Chemical Geology 173, 193-205. DOI: https://www.doi.org/10.1016/S0009-2541(00)00275-8

Fan, H.R., Hu, F.F., Wilde, S.A., Yang, K.F. & Jin, C.W., 2011. The Qiyugou gold-bearing breccia pipes, Xiong’ershan region, central China: fluid inclusion and stable isotope evidence for an origin from magmatic fluids. International Geology Review 53, 25-45. DOI: https://www.doi.org/10.1080/00206810902875370

Guild, P.W., 1972. Metallogeny and the new global tectonics. International Geological Congress Proceedings 4, 17-24.

Hall, D.L., Sterner, S.M. & Bodnar, R.J., 1988. Freezing point depression of NaCl-KCl-H2O solutions. Economic Geology 83, 197-202. DOI: https://www.doi.org/10.2113/gsecongeo.83.1.197

Haschke, M., Ahmadian, J., Murata, M. & McDonald, I., 2010. Copper mineralization prevented by arc-root delamination during Alpine-Himalayan collision in central Iran. Economic Geology 105, 855-865. DOI: https://www.doi.org/10.2113/gsecongeo.105.4.855

Hassanzadeh, J., 1993. Metallogenic and tectono-magmatic events in the SE sector of the Cenozoic active continental margin of Iran (Shahr e Babak area, Ker man province). Unpublished Ph.D. thesis. University of California, 204 pp.

Hezarkhani, A., 2008. Hydrothermal evolution of the Miduk porphyry copper system, Kerman, Iran: a fluid inclusion investigation. International Geology Review 50, 665-684. DOI: https://www.doi.org/10.2747/0020-6814.50.7.665

Hou, Z.Q. & Cook, N.J., 2009. Metallogenesis of the Tibetan collisional orogen: a review and introduction to the special issue. Ore Geology Reviews 36, 2-24. DOI: https://www.doi.org/10.1016/j.oregeorev.2009.05.001

Hou, Z.Q., Gao, Y.F., Qu, X.M., Rui, Z.Y. & Mo, X.X., 2004. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet. Earth and Planetary Science Letters 220, 139-155. DOI: https://www.doi.org/10.1016/S0012-821X(04)00007-X

Hou, Z.Q., Zhang, H., Pan, X. & Yang, Z., 2011. Porphyry Cu (-Mo-Au) deposits related to melting of thickened mafic lower crust: examples from the eastern Tethyan metallogenic domain. Ore Geology Reviews 39, 21-45. DOI: https://www.doi.org/10.1016/j.oregeorev.2010.09.002

Huizenga, J.M., 1995. Fluid evolution in shear zones from the Late Archean Harare-Shamva-Bindura greenstone belt (NE Zimbabwe): thermodynamic calculations of the C-O-H system applied to fluid inclusions. Netherlands Research School of Sedimentary Geology Press, Amsterdam, 146 pp.

Hurai, H., Kihle, J., Kotulova, J., Marko, F.S. & Wierczewska, A., 2002. Origin of methane in quartz crystals from the Tertiary accretionary wedge and fore-arc basin of the Western Carpathians. Applied Geochemistry 17, 1259-1271. DOI: https://www.doi.org/10.1016/S0883-2927(01)00128-7

IGME-INOMRM (Institute for Geological & Mining Exploration & Institution of Nuclear and Other Mineral Raw Materials), 1973. Exploration for ore deposits in Kerman Region. Iran Geological Survey Report No. Yu/53; Iran Geological Survey (Beograd, Yugoslavia), 247 pp.

Karsli, O., Dokuz, A., Uysal, I., Aydin, F., Kandemir, R. & Wijbrans, R.J., 2010. Generation of the Early Cenozoic adakitic volcanism by partial melting of mafic lower crust, eastern Turkey: implications for crustal thickening to delamination. Lithos 114, 109-120. DOI: https://www.doi.org/10.1016/j.lithos.2009.08.003

Kirkham, R.V. & Dunne, K.P., 2000. World distribution of porphyry, porphyry-associated skarn, and bulk-tonnage epithermal deposits and occurrences. Geological Survey of Canada Report 3792, 1-26. DOI: https://www.doi.org/10.4095/211230

Klemm, L.M., Pettke, T. & Heinrich, C.A., 2008. Fluid and source magma evolution of the Questa porphyry Mo deposit, New Mexico, USA. Mineralium Deposita 43, 533-552. DOI: https://www.doi.org/10.1007/s00126-008-0181-7

Klemm, L.M., Pettke, T., Heinrich, C.A. & Campos, E., 2007. Hydrothermal evolution of the El Teniente deposit, Chile: porphyry Cu-Mo ore deposition from low-salinity magmatic fluids. Economic Geology 102, 1021-1045. DOI: https://www.doi.org/10.2113/gsecongeo.102.6.1021

Landtwing, M.R., Furrer, C., Redmond, P.B., Pettke, T., Guillong, M. & Heinrich, C.A., 2010. The Bingham Canyon porphyry Cu-Mo-Au deposit. III. Zoned copper-gold ore deposition by magmatic vapor expansion. Economic Geology 105, 91-118. DOI: https://www.doi.org/10.2113/gsecongeo.105.1.91

Landtwing, M.R., Pettke, T., Halter, W.E., Heinrich, C.A., Redmond, P.B., Einaudi, M.T. & Kunze, K., 2005. Copper deposition during quartz dissolution by cooling magmatic-hydrothermal fluids: the Bingham porphyry. Earth and Planetary Science Letters 235, 229-243. DOI: https://www.doi.org/10.1016/j.epsl.2005.02.046

Li, N., Carranza, E.J.M., Ni, Z.Y. & Guo, D.S., 2012. The CO2-rich magmatic-hydrothermal fluid of the Qiyugou breccia pipe, Henan Province, China: implication for breccia genesis and gold mineralization. Geochemistry: Exploration, Environment, Analysis 12, 147-160. DOI: https://www.doi.org/10.1144/1467-7873/10-MINDEP-057

Liang, H.Y., Sun, W.D., Su, W.C. & Zartman, R.E., 2009. Porphyry copper-gold mineralization at Yulong, China, promoted by decreasing redox potential during magnetite alteration. Economic Geology 104, 587-596. DOI: https://www.doi.org/10.2113/gsecongeo.104.4.587

Lowenstern, J.B., 2001. Carbon dioxide in magmas and implications for hydrothermal systems. Mineralium Deposita 36, 490-502. DOI: https://www.doi.org/10.1007/s001260100185

Lu, H.Z., Fan, H.R., Ni, P., Ou, G.X., Shen, K. & Zhang, W.H., 2004. Fluid inclusions. Science Press, Beijing, 78 pp.

Martin, H., Smithies, R.H., Rapp, R., Moyen, J.F. & Champion, D., 2005. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos 79, 1-24. DOI: https://www.doi.org/10.1016/j.lithos.2004.04.048

McClay, K.R., Whitehouse, P.S., Dooley, T. & Richards, M., 2004. 3D evolution of fold and thrust belts formed by oblique convergence. Marine Geology 21, 857-877. DOI: https://www.doi.org/10.1016/j.marpetgeo.2004.03.009

McClusky, S., Balassanian, S., Barka, A., Demir, C., Ergintav, S., Georgiev, I., Gurkan, O., Hamburger, M., Hurst, K., Kahle, H., Kastens, K. & Kekelidze, G., 2000. Global positioning system constrains on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. Journal of Geophysical Research 105, 5695-5719. DOI: https://www.doi.org/10.1029/1996JB900351

McCuaig, T.C. & Kerrich, R., 1998. P-T-t-deformation-fluid characteristics of lode gold deposits: evidence from alteration systematics. Ore Geology Reviews 12, 381-453. DOI: https://www.doi.org/10.1016/S0169-1368(98)00010-9

McInnes, B.I.A., Evans, N.J., Fu, F.Q., Garwin, S., Belousova, E., Griffin, W.L., Bertens, A., Sukarna, D., Permanadewi, S., Andrew, R.L. & Deckart, D., 2005. Thermal history analysis of selected Chilean, Indonesian, and Iranian porphyry Cu-Mo-Au deposits. [In:] T.M. Porter (Ed.): Super porphyry copper and gold deposits: a global perspective. PGC Publishing, Adelaide, 1-16.

Mohajjel, M., Fergusson, C.L. & Sahandi, M.R., 2003. Cretaceous-Tertiary convergence and continental collision, Sanandaj-Sirjan zone, western Iran. Journal of Asian Earth Sciences 21, 397-412. DOI: https://www.doi.org/10.1016/S1367-9120(02)00035-4

Moore, F., 1992. Fluid inclusion studies and mineralization at Meiduk porphyry copper deposit, Kerman. National Iranian Copper Industries Company Report 8, 1-26.

Mungall, J.E., 2002. Roasting the mantle: slab melting and the genesis of major Au and Au-rich Cu deposits. Geology 30, 915-918. DOI: https://www.doi.org/10.1130/0091-7613(2002)030<0915:RTMSMA>2.0.CO;2

Nwe, Y.Y. & Morteani, G., 1993. Fluid evolution in the H2O-CH4-CO2-NaCl system during emerald mineralization at Gravelotte, Murchison greenstone belt, Northeast Transvaal, South Africa. Geochimica et Cosmochimica Acta 57, 89-103. Ohmoto, H. & Kerrick, D., 1977. Devolatilization equilibria in graphitic systems. American Journal of Science 277, 1013-1044. DOI: https://www.doi.org/10.1016/0016-7037(93)90471-8

Pirajno, F., 2009. Hydrothermal processes and mineral systems. Springer, Heidelberg, 1250 pp. DOI: https://www.doi.org/10.1007/978-1-4020-8613-7

Razique, A.L., Grasso, G. & Livesey, T., 2007. Porphyry copper-gold deposits at Reko Diq complex, Chagai Hills Pakistan. Proceedings of Ninth Biennial SGA Meeting (Dublin), 1-7.

Redmond, P.B., Einaudi, M.T., Inan, E.E., Landtwing, M.R. & Heinrich, C.A., 2004. Copper deposition by fluid cooling in intrusion-centered systems: new insights from the Bingham porphyry ore deposit, Utah. Geology 32, 217-220. DOI: https://www.doi.org/10.1130/G19986.1

Richards, J.P., Spell, T., Rameh, E., Razique, A. & Fletcher, T., 2012. High Sr/Y magmas reflect arc maturity, high magmatic water content, and porphyry Cu ± Mo ± Au potential: examples from the Tethyan arcs of central and eastern Iran and western Pakistan. Economic Geology 107, 295-332. DOI: https://www.doi.org/10.2113/econgeo.107.2.295

Richards, J.R. & Kerrich, R., 2007. Adakite-like rocks: their diverse origins and questionable role in metallogenesis. Economic Geology 102, 537-576. DOI: https://www.doi.org/10.2113/gsecongeo.102.4.537

Robb, L., 2005. Introduction to ore-forming processes. Blackwell Publishing, Oxford, 386 pp.

Roedder, E., 1984. Fluid inclusions, reviews in mineralogy. Mineralogical Society of America 12, 325-340. DOI: https://www.doi.org/10.1515/9781501508271

Rusk, B. & Reed, M., 2002. Scanning electron microscope- cathodoluminescence analysis of quartz reveals complex growth histories in veins from the Butte porphyry copper deposit, Montana. Geology 30, 727-730. DOI: https://www.doi.org/10.1130/0091-7613(2002)030<0727:SEMCAO>2.0.CO;2

Rusk, B., Reed, M. & Dilles, J., 2008. Fluid inclusion evidence for magmatic-hydrothermal fluid evolution in the porphyry copper-molybdenum deposit at Butte, Montana. Economic Geology 103, 307-334. DOI: https://www.doi.org/10.2113/gsecongeo.103.2.307

Saric, V. & Mijalkovic, N., 1973. Metallogenic map of Kerman region, 1:500000 scale. Exploration for ore deposits in Kerman region. Geological Survey of Iran Report 53, 244-247.

Shafiei, B., Haschke, M. & Shahabpour, J., 2009. Recycling of orogenic arc crust triggers porphyry Cu mineralization in Kerman Cenozoic arc rocks, southeastern Iran. Mineralium Deposita 44, 265-283. DOI: https://www.doi.org/10.1007/s00126-008-0216-0

Shafiei, B., 2008. Metallogenic model for Kerman porphyry copper belt and its implications for exploration. Unpublished Ph.D. Thesis. University of Kerman (Shaheed Bahonar), Iran, 257 pp.

Shafiei, B., 2010. Lead isotope signatures of the igneous rocks and porphyry copper deposits from the Kerman Cenozoic magmatic arc (SE Iran), and their magmatic- metallogenetic implications. Ore Geology Reviews 38, 27-36. DOI: https://www.doi.org/10.1016/j.oregeorev.2010.05.004

Shahabpour, J., 2005. Tectonic evolution of the orogenic belt in the region located between Kerman and Neyriz. Journal of Asian Earth Sciences 24, 405-417. DOI: https://www.doi.org/10.1016/j.jseaes.2003.11.007

Shen, P., Shen, Y., Wang, J., Zhu, H., Wang, L. & Meng, L., 2010. Methane-rich fluid evolution of the Baogutu porphyry Cu-Mo-Au deposit, Xinjiang, NW China. Chemical Geology 275, 78-98. DOI: https://www.doi.org/10.1016/j.chemgeo.2010.04.016

Shepherd, T.J., Rankin, A.H. & Alderton, D.H.M., 1985. A practical guide to fluid inclusion studies. Blackie Press, London, 239 pp.

Sun, W.D., Arculus, R.J., Kamenetsky, V.S. & Binns, R.A., 2004. Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization. Nature 431, 975-978. DOI: https://www.doi.org/10.1038/nature0297215496920

Sun, W.D., Liang, H.Y., Ling, M.X., Zhan, M.Z., Ding, X., Zhang, H., Yang, X.Y., Li, Y.L., Ireland, T.R., Wei, Q.R. & Fan, W.M., 2013. The link between reduced porphyry copper deposits and oxidized magmas. Geochimica et Cosmochimica Acta 103, 263-275. DOI: https://www.doi.org/10.1016/j.gca.2012.10.054

Taghipour, N., 2007. The application of fluid inclusions and isotope geochemistry as guides for exploration, alteration and mineralization at the Meiduk porphyry copper deposit, Shahr-Babak, Kerman. Unpublished Ph.D. Thesis. Shaheed Bahonar University (Kerman), Iran, 321 pp.

Taghipour, N., Aftabi, A. & Mathur, R., 2008. Geology and Re-Os geochronology of mineralization of the Miduk porphyry copper deposit, Iran. Resource Geology 2, 143-160. DOI: https://www.doi.org/10.1111/j.1751-3928.2008.00054.x

Topuz, G., Okay, A.I., Altherr, R., Schwar, W.H., Siebel, W., Zack, T., Muharrem, S. & Cuneyt, S., 2011. Post-collisional adakite-like magmatism in the Ağvanis massif and implications for the evolution of the Eocene magmatismin the Eastern Pontides (NE Turkey). Lithos 125, 131-150. DOI: https://www.doi.org/10.1016/j.lithos.2011.02.003

Ulrich, T., Guenther, D. & Heinrich, C.A., 2001. The evolution of a porphyry Cu-Au deposit, based on LAICP-MS analysis of fluid inclusions: Bajo de la Alumbrera, Argentina. Economic Geology 96, 1743-1774. DOI: https://www.doi.org/10.2113/gsecongeo.96.8.1743

Ulrich, T., Gunther, D. & Heinrich, C.A., 2002. Evolution of a porphyry Cu-Au deposit, based on LA-ICP-MS analysis of fluid inclusions: Bajo de la Alumbrera, Argentina. Economic Geology 97, 1863-1920. DOI: https://www.doi.org/10.2113/gsecongeo.97.8.1889

Volkov, A.V., Savva, N.E., Sidorov, A.A., Prokofev, V.Y., Goryachev, N.A., Voznesensky, S.D., Al’Shevsky, A.V. & Chernova, A.D., 2011. Shkol’noe gold deposit, the Russian Northeast. Geology of Ore Deposits 53, 1-26. DOI: https://www.doi.org/10.1134/S1075701511010065

Wang, L.L., Mo, X.X., Li, B., Dong, G.C. & Zhao, Z.D., 2006. Geochronology and geochemistry of the ore-bearing porphyry in Qulong Cu (Mo) ore deposit, Tibet. Acta Petrologica Sinica 22, 1001-1008.

Wilkinson, J.J., 2001. Fluid inclusions in hydrothermal ore deposit. Lithos 55, 229-272. DOI: https://www.doi.org/10.1016/S0024-4937(00)00047-5

Yang, Y., Zhang, J., Yang, Y.F. & Shi, Y.X., 2009. Fluid inclusions geochemistry and ore genesis of Shangfanggou Mo-Fe deposit in Luanchuan County, Henan Province. Acta Petrologica Sinica 25, 2563-2574.

Yang, Y.F., Chen, Y.J., Li, N., Mi, M., Xu, Y.L., Li, F.L. & Wanc, S.Q., 2013. Fluid inclusion and isotope geochemistry of the Qian’echong giant porphyry Mo deposit, Dabie Shan, China: a case of NaCl-poor, CO2- rich fluid systems. Journal of Geochemical Exploration 124, 1-13. DOI: https://www.doi.org/10.1016/j.gexplo.2012.06.019

Yang, Y.F., Li, N. & Chen, Y.J., 2012. Fluid inclusion study of the Nannihu giant porphyry Mo-W deposit, Henan Province, China: implications for the nature of por phyry ore-fluid systems formed in a continental collision setting. Ore Geology Reviews 46, 83-94. DOI: https://www.doi.org/10.1016/j.oregeorev.2012.02.003

Zarasvandi, A., Liaghat, S. & Zentilli, M., 2005. Geology of the Darreh-Zerreshk and Ali-Abad porphyry copper deposit, central Iran. International Geology Review 47, 620-646. DOI: https://www.doi.org/10.2747/0020-6814.47.6.620

Zarasvandi, A., Liaghat, S. Zentilli, M. & Reynolds, P.H., 2007. 40Ar/39Ar geochronology of alteration and petrogenesis of porphyry copper-related granitoids in the Darreh-Zerreshk and Ali-Abad area, central Iran. Exploration and Mining Geology 16, 11-24. DOI: https://www.doi.org/10.2113/gsemg.16.1-2.11-a

Zhang, Y. & Frantz, J.D., 1987. Determination of the homogenization temperatures and densities of supercritical fluids in the system NaCl-KCl-CaCl2-H2O using synthetic fluid inclusion. Chemical Geology 64, 335-350. DOI: https://www.doi.org/10.1016/0009-2541(87)90012-X

Zhong, J., Chen, Y.J., Chen, J., Li, N., Li, J., Qi, J.P. & Mao- Chang, D.A.I., 2011. Fluid inclusion study of Luoboling porphyry Cu-Mo deposit in Zijinshan ore field, Fujian Province. Acta Petrologica Sinica 27, 1410-1424.