Abstract
Our reconstruction of the pre-compactional thickness of the Main Dolomite strata from the so-called Grotów Peninsula (northwest Poland) was based on macroscopic observations of drill cores from three wells: Mokrzec-1, Sieraków-4 and Międzychód-5. These wells are located in various palaeogeographical zones of the Main Dolomite and cored rocks represent a range of microfacies. The amount of compactional reduction in thickness of the Main Dolomite was estimated by summing the total heights (Wst) of all stylolites encountered in logs of these wells. For calculations, a generalised model of a drill core was developed, which embraced all types of stylolite seams present in the Main Dolomite succession studied. Also the method of stylolite dimensioning was demonstrated. The number of stylolites in the drill cores studied varied from 511 in the Sieraków-4 well to 1,534 in the Międzychód-5 well. In all cores studied low-amplitude macrostylolites predominated, but the reduction of thickness was controlled mostly by the low- and medium-amplitude macrostylolites. The largest number of stylolites was found in the grainstone/packstone microfacies. The turnout of stylolites depends of microfacies. The highest density of stylolites was documented in mudstones/wackestones (24 stylolites per metre of rock thickness) and the lowest in boundstones (14 stylolites per metre of rock thickness). The low-amplitude stylolites appear most frequently in the mudstone/wackestone microfacies (15 stylolites per metre of rock thickness); in grainstones/packstones, rudstones/floatstones and boundstones middle-amplitude stylolites are rare (3 stylolites per metre of rock thickness). The degree of compaction of the Main Dolomite succession studied varied from 6 to 10%; hence, its calculated initial thickness also varied in the wells studied: from 41.3 m in the Sieraków-4 well to 56.9 m in the Mokrzec-1 well and to 97.1 m in the Międzychód-5 well. The volumes of reservoir fluids expelled during compaction of 1 m3 of Main Dolomite carbonates were estimated as 56 l in the Sieraków-4 well, 90 l in the Mokrzec-1 well and 97 l in the Międzychód-5 well.
References
Agosta, F. & Kirschner, D.L., 2003. Fluid conduits in carbonate-hosted seismogenic normal faults of Central Italy. Journal of Geophysical Research 108, B4, 1–13.
Agosta, F., Alessandroni, M., Tondi, E. & Aydin, A., 2009. Oblique normal faulting along the northern edge of the Majella anticline, central Italy: inferences on hydrocarbon migration and accumulation. Journal of Structural Geology 31, 674–690.
Agosta, F., Alessandroni, M., Antonellini, M., Tondi, E. & Giorgioni, M., 2010. From fractures to flow: a field-based quantitative analysis of an outcropping carbonate reservoir. Tectonophysics 490, 197–213.
Andrews, L.M. & Railsbak, L.B., 1997. Controls on stylolite development: morphologic, lithologic, and temporal evidence form bedding-parallel and transverse stylolites from the US Appalachians. Journal of Geology 105, 59–73.
Aplin, A.C., Yang, Y.& Hansen, S., 1995. Assessment of the compression coefficient of mudstones and its relationship with detailed lithology. Marine and Petroleum Geology 12, 995–963.
Aydin, A., 2000. Fractures, faults, and hydrocarbon entrapment, migration and flow. Marine and Petroleum Geology 17, 797–814.
Barrett, P. J., 1964. Residual Seams and Cementation in Oligocene Shell Calcarenites, Te Kuiti Group. Journal of Sedimentary Petrology 34, 524–531.
Bathurst, R.G.C.,1975. Carbonate Sediments and their Diagenesis. Elsevier, Amsterdam, 658.
Bathurst, R.G.C., 1984. The integration of pressure solution with mechanical compaction and cementation. In: Yahya, F.A. (Ed.), Stylolites and associated phenomena. Relevance to Hydrocarbon Reservoirs. Abu Dhabi National. Reserves. Found., 41–55.
Bathurst, R.G.C., 1987. Diagenetically enhanced bedding in argillaceous platform limestone: stratified cementation and selective compaction. Sedimentology 34, 749–779.
Bathurst, R.G.C., 1995. Burial diagenesis of limestones under simple overburden. Stylolites, cementation, and feedback: Bulletin de La Societe Geologique de France 166, 181–192.
Ben-Itzhak, L.L., Aharonov, E., Toussaint, R. & Sagy, A., 2012. Upper bound on stylolite roughness as indicator for amount of dissolution. Earth and Planetary Science Letters 337–338, 186–196.
Bonnetier, E., Misbah, C., Renard, F., Toussaint, R. & Gratier, J. P., 2009. Does roughening of rock-fluid-rock interfaces emerge from a stress-induced instability? European Physical Journal B. 67, 121–131.
Broichhausen, H., Littke, R. & Hantschel, T., 2005. Mudstone compaction and its influence on overpressure generation, elucidated by 3D case study in the North Sea. International Journal of Earth Sciences 94, 956–978.
Brouste, A., Renard, F., Gratier, J.P. & Schmittbuhl, J., 2007. Variety of stylolites morphologies and statistical characterization of the amount of heterogeneities in the rock. Journal of Structural Geology 29, 422–434.
Bushinskiy, G.I., 1961. Stylolites. Jzvestiya Akademia Nauk S.S.S.R., Serie Correlación Geológica 8, 31–46.
Buxton, T.M. & Sibley, D.F., 1981. Pressure solution features in a shallow buried limestone. Journal of Sedimentary Petrology 51, 19–26.
Choquette, P.W. & James, N.P., 1990. Limestones – The Burial Diagenetic Environment. Geoscience, Canada, 75–112.
Clari, P. & Martire, L., 1996. Interplay of cementation, mechanical compaction, and chemical compaction in nodular limestones of the Rosso Ammonitico Veronese (middle-upper Jurassic, northeastern Italy). Journal of Sedimentary Research 66, 447–458.
Conybeare, C.E.B., 1949. Stylolites in Pre-Cambrian quartzite. Journal of Geology 57, 83–85.
Coogan, A.H., 1970. Measurement of compaction in oolitic grainstone. Journal of Sedimentary Petrology 40, 921–929.
Czekański, E., Kwolek, K. & Mikołajewski, Z., 2010. Złoża węglowodorów w utworach cechsztyńskiego dolomitu głównego (Ca2) na bloku Gorzowa [Hydrocarbon fields in the Zechstein Main Dolomite (Ca2) of the Gorzów Block (NW Poland)]. Przegląd Geologiczny 58, 695–703.
Dadlez, R. & Jaroszewski, W., 1994. Tektonika [Tectonics] Wydawnictwo Naukowe PWN, Warszawa, 743.
Dunham, R.J., 1962. Classification of carbonare rocks according to depositional texture. In: Ham, W.E., (Ed.): Classification of carbonate rocks. A Symposium of American Associaction of Petroleum Geology, 1, 108–121.
Dunnington, H.V., 1967. Aspects of diagenesis and shape change in stylolitic limestone reservoirs. Proceedings of the 7th World Petroleum Congress. Journal of the Middle East Petroleum Geosciences 339–352.
Ebner, M., Koehn, D., Toussaint, R., Renard, F. & Schmittbuhl, J., 2009. Stress sensitivity of stylolite morphology. Earth and Planetary Science Letters 277, 394–398.
Ehrenberg, S.M., 2006. Porosity destruction in carbonate platforms. Journal of Petroleum Geology 29, 41–55.
Fairbridge, R.W.,1968. Encyclopedia of Geomorphology. Dowden, Hutchinson and Ross, Pennsylvania, 1295 pp.
Flügel, E., 2004. Microfacies of carbonate rocks. Analysis, Interpretation and Application. Springer, New York, 983.
Füchtbauer, H., 1974. Sediments and Sedimentary Rocks, 1. Schweizerbart`sche Verlagsbuchhandlung, Stuttgart, 1–464.
Glover, J. E., 1968. Significance of stylolites in dolomitic limestones. Nature 217, 835–836.
Goldhammer, R.K., 1997. Compaction and decompaction algorithms for sedimentary carbonates. Journal of Sedimentary Research 67, 26–35.
Gradziński, R., Kostecka, A., Radomski, A. & Unrug, R., 1986. Zarys sedymentologii [Outline of Sedimentology]. Wydawnictwa Geologiczne, Warszawa, 628 pp.
Heald, M.T., 1955. Stylolites in sandstone. Journal of Geology 63, 101–114.
Heap, M.J., Baud, P., Reuschlé, T. & Meredith, P.G., 2014. Stylolites in limestones: Barriers to fluid flow? Geology 42, 51–54.
Jaworowski, K. & Mikołajewski, Z., 2007. Oil- and gas-bearing sediments of the Main Dolomite (Ca2) in the Międzychód region: a depositional model and the problem of the boundary between the second and third depositional sequences in the Polish Zechstein Basin. Przegląd Geologiczny 55, 1017–1024.
Kaplan, M.Ye., 1976. Origin of stylolites. Earth Science Section 211, 205–207.
Katsman, R. & Aharonov, E., 2006. A study of compaction bands originating from crack, notches, and compacted defects. Journal of Structural Geology 28, 508–518.
Katsman, R., Aharonov, E. & Scher, H., 2005. Numerical simulation of compaction bands in high-porosity sedimentary rock. Mechanics of Materials 37, 143–162.
Kiełt, M., 2002. Geofizyka wiertnicza w poszukiwaniach węglowodorów. Strukturalne i sedymentologiczne zastosowanie otworowych profilowań geofizycznych [Well-log geophysics in hydrocarbon exploration. Structural and sedimentological application of geophysical logs]. Adam Marszałek Publishing House, Toruń, 543.
Kijewski, P. & Kaszper, J., 1973. Tekstury stylolitowe w cechsztyńskich skałach węglanowych poziomu W1 monokliny przedsudeckiej [Stylolitic textures in the Zeichstein carbonate rocks of the horizon W1 of the Fore-Sudetic Monocline]. Geological Quarterly 17, 497–506.
Kochman, A., 2006. Wybrane metody szacowania kompakcji w osadach węglanowych [Different methods for reconstruction of compaction applied in limestones]. Technika Poszukiwań Geologicznych: Geotermia, Zrównoważony Rozwój 45, 35–43.
Koepnick, R.B., 1988. Significance of Stylolite Development in Hydrocarbon Reservoirs with an Emphasis on the Lower Cretaceous of the Middle East. Geological Society of Malaysia, Bulletin 22, 23–43.
Kotarba, M.& Wagner, R., 2007. Generation potential of the Zechstein Main Dolomite (Ca2) carbonates in the Gorzów Wielkopolski–Międzychód–Lubiatów area: geological and geochemical approach to microbial-algal source rock. Przegląd Geologiczny 55, 1025–1036.
Krzesińska, A., Redlińska-Marczyńska, A., Wilkosz, P. & Żelaźniewicz, A., 2010. Struktury hydratacyjne i deformacyjne w skalach czapy gipsowej wysadu solnego Dębiny w rowie Kleszczowa [Deformation and hydrational structures in cap rocks of the Dębina Salt Dome, the Kleszczów Graben, central Poland]. Przegląd Geologiczny 58, 522–530.
Larsen, G. & Chilingar, G.V., 1979. Diagenesis in Sediments and Sedimentary Rocks. Elsevier, Amsterdam, 579 pp.
Leythaeuser, D., Borromeo, O., Mosca, F., Primio, R., Radke, M. & Schaefer, R.G., 1995. Pressure solution in carbonate source rocks and its control on petroleum generation and migration. Marine and Petroleum Geology 12, 711–733.
Matyszkiewicz, J., 1996. Wybrane problemy diagenezy osadów węglanowych [Selected problems of diagenesis of carbonate rocks]. Przegląd Geologiczny 44, 596–603.
Mikołajewski, Z. & Słowakiewicz, M., 2008. Microfacies and diagenesis of the Main Dolomite (Ca2) strata in the Międzychód barrier area (Grotów Peninsula, Western Poland). Biuletyn Państwowego Instytutu Geologicznego 429, 191–198.
Moore, C.H., 2001. Carbonate Reservoirs: Porosity Evolution and Diagenesis in a Sequence Stratigraphic Framework. Elsevier, Amsterdam, 444 pp.
Mossop, G.D., 1972. Origin of the peripheral rim, Redwater Reef, Alberta. Bulletin of Canadian Petroleum Geology 20, 238–280.
Neugenbauer, J., 1973. The diagenetic problem of chalk the role of pressure solution and pore fluid. Neues Jahrbuch fur Geologie und Palaontologie 143, 223–245.
Park, W.C. & Schot, E.K., 1968. Stylolites: Their nature and origin. Journal of Sedimentary Petrology 38, 175–191.
Peacock, D.C.P. & Azzam, I.N., 2006. Development and scaling relationships of a stylolite population. Journal of Structural Geology 28, 1883–1889.
Peryt, T. M., 1978. Charakterystyka mikrofacjalna cechsztyńskich osadów węglanowych cyklotemu pierwszego i drugiego na obszarze Monokliny Przedsudeckiej [Microfacies of the carbonate sediments of the Zechstein Werra and Stassfurt cyclothems in the Fore-Sudetic Monocline]. Studia Geologica Polonica 54, 1–88.
Peryt, T.M. & Dyjaczyński, K., 1991. An isolated carbonate bank in the Zechstein Main Dolomite basin, Western Poland. Journal of Petroleum Geology 14, 445–458.
Protas, A., Wojtkowiak, Z., 2000. Blok Gorzowa. Geologia dolnego cechsztynu [The Gorzów Block. Geology of the Lower Zechstein]. Guide to 71st Congress of the Polish Geological Society, 163–171.
Radlicz, K., 1966. Tekstury stylolitowe [The structures of stylolites]. Geological Quarterly 10, 367–382.
Ramsden, R.M., 1952. Stylolites and oil migration. American Association of Petroleum Geologists Bulletin 36, 2185–2192.
Renard, F., Schmittbuhl, J., Gratier, J.P., Meakin, P. & Merino, E.M., 2004. Three-dimensional roughness of stylolites in limestones. Journal of Geophysical Research 109, B3, 1–12.
Ricken, W., 1987. The carbonate compaction law: a new tool. Sedimentology 34, 571–584.
Rustichelli, A., Tondi, E., Agosta, F., Cilona, A. & Giorgioni, M., 2012. Development and distribution of bed-parallel compaction bands and pressure solution seams in carbonates (Bolognano Formation, Majella Mountain, Italy). Journal of Structural Geology 37, 181–199.
Schmittbuhl, J., Renard, F., Gratier, J.P. & Toussaint, R., 2004. Roughness of Stylolites: Implications of 3D High Resolution Topography Measurements. The American Physical Society 93, 1–4.
Scholle, P.A. & Halley, R.B., 1985. Burial diagenesis: out of sight, out of mind. In: Carbonate Cements. Society of Economic Paleontologists and Mineralogists Special Publication 36, 135–160.
Semyrka, R., 1985. Uwarunkowania roponośności dolomitu głównego na obszarze Pomorza Zachodniego [Dependences of oil-bearing capacity of Main Dolomite in the region of Pomorze Zachodnie]. Prace Geologiczne Polskiej Akademii Nauk 129, 1–113.
Sheppard, T.H., 2002. Stylolite development at sites of primary and diagenetic fabric contrast within the Sutton Stone (Lower Lias), Ogmore-by-Sea, Glamorgan, UK. Proceedings of the Geologists Association II3, 97–109.
Shinn, E.A. & Robbin, D.M., 1983. Mechanical and chemical compaction in fine-grained shallow-water limestones. Journal of Petroleum Geology 53, 595–618.
Sinha-Roy, S., 2002. Kinetics of differentiated stylolite formation. Current Science 82, 1038–1046.
Słowakiewicz, M. & Mikołajewski, Z., 2009. Sequence stratigraphy of the Upper Permian Zechstein Main Dolomite carbonates in Western Poland: a new approach. Journal of Petroleum Geology 32, 215–234.
Stockdale, P.B., 1926. The stratigraphic significance of solution in rocks. Journal of Geology 34, 399–414.
Strzetelski, W., 1977. Rozwój procesów stylolityzacji i deformacji epigenetycznych w aspekcie roponośności piaskowców kwarcytowych kambru środkowego w rejonie Żarnowca [The evolution of stylolitization and epigenetic deformations in the Middle Cambrian oil-bearing quartzose sandstones in the area of Żarnowiec (Northern Poland)]. Rocznik Polskiego Towarzystwa Geologicznego 47, 559–584.
Środoń, J., 1996. Minerały ilaste w procesach diagenezy [Clay minerals in diagenetic processes]. Przegląd Geologiczny 44, 604–607.
Tucker, M.E. & Wright, V.P., 1990. Carbonate Sedimentology. Blackwell, Oxford, 482 pp.
Twardowski, K. & Traple, J., 2008. O kompakcji utworów geologicznych. [Compaction of geologic formations]. Wiertnictwo, Nafta, Gaz 25, 53–62.
Vandeginste, V. & John, C.M., 2013. Diagenetic implications of stylolitization in pelagic carbonates, Canterbury Basin, Offshore New Zealand. Journal of Sedimentary Research 83, 226–240.
Wagner, R., 1994. Stratigraphy and evolution of the Zechstein basin in the Polish Lowland. Prace Państwowego Instytutu Geologicznego 166, 1–71.
Wanless, H.R., 1979. Limestone response to stress: pressure solution and dolomitization. Journal of Sedimentary Petrology 49, 437–462.
Waschs, D. & Hein, J.R., 1974. Petrography and diagenesis of Franciscan limestone. Journal of Sedimentary Petrology 44, 1217–1231.
Westphal, H., 1998. Carbonate platform slopes – a record of changing conditions. The Pliocene of the Bahamas. Lecture Notes in Earth Sciences 75, Springer, Heidelberg, 197.
Westphal, H.& Munnecke, A., 1997. Mechanical compaction versus early cementation in fine-grained limestones: differentiation by the presentation of organic microfossils. Sedimentary Geology 112, 33–42.
Young, R.B., 1945. Stylolitic solution in Witwatersrand quartzites. Transactions of Geological Society of South Africa 47, 137–142.
License
Copyright (c) 2015 Grażyna Semyrka, Marzena Gancarz, Zbigniew Mikołajewski
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.