Wave-induced bedload transport – a study of the southern Baltic coastal zone
PDF

Keywords

sediment transport models
non-cohesive sediments
bottom shear stress
northern Europe

How to Cite

Dudkowska, A., & Gic-Grusza, G. (2017). Wave-induced bedload transport – a study of the southern Baltic coastal zone. Geologos, 23(1), 1–13. https://doi.org/10.1515/logos-2017-0001

Abstract

The wave-induced bedload transport and spatial distribution of its magnitude in the southern Baltic coastal zone of Poland are estimated. The vicinity of Lubiatowo was selected as a representative part of the Polish coast. It was assumed that transport is a function of shear stress; alternative approaches, based on force balances and discharge relationships, were not considered in the present study. Four models were studied and compared over a wide range of bottom shear stress and wind-wave conditions. The set of models comprises classic theories that assume a simplified influence of turbulence on sediment transport (e.g., advocated by authors such as Du Boys, Meyer-Peter and Müller, Ribberink, Engelund and Hansen). It is shown that these models allow to estimate transport comparable to measured values under similar environmental conditions. A united general model for bedload transport is proposed, and a set of maps of wave bedload transport for various wind conditions in the study area is presented.

https://doi.org/10.1515/logos-2017-0001
PDF

References

Anderson, R.S. & Anderson S.P., 2010. Geomorphology: The Mechanics and Chemistry of Landscapes. Cambridge University Press, 651 pp.

Bakhtyar, R., Barrya, D.A., Lib, L., Jengc, D.S. & Yeganeh-Bakhtiaryd, A., 2009. Modeling sediment transport in the swash zone: A review. Ocean Engineering 36, 767–783.

Booij, N., Holthuijsen, L.H. & Ris, R.C., 1996. The SWAN wave model for shallow water. Proceedings of the 25th International Conference on Coastal Engineering, Orlando, USA, 668–676.

Brownlie, W.R., 1981. Prediction of flow depth and sediment discharge in open channels. W.M. Keck Laboratory of Hydraulics and Water Resources, California Institute of Technology, Pasadena, Report No. KH-R-43A.

Cieślak, A., 1985. Ruch rumowiska wzdłuż wybrzeża Polski [Sediment motion along the coast of Poland], Prace Instytutu Morskiego 690. Gdańsk.

Cieślikiewicz, W., Dudkowska, A., Janowczyk, R., Roščinski, V., Roziewski, S. & Badur, J., 2014. Wind wave modelling over the Baltic Sea using WAM model and the coupled ocean circulation-wave POM model. Proceedings of the International Conference on Coastal Engineering, ASCE, Soeul, Korea, 422–428.

Davies, A.G., van Rijn, L.C., Damgaard, J.S., van de Graaff, J. & Ribberink, J.S., 2002. Intercomparison of research and practical sand transport models. Coastal Engineering 46, 1–23.

Dey, S., 2011. Entrainment threshold of loose boundary streams. [In:] P. Rowinski (Ed.), Experimental methods in hydraulic research. series: Geoplanet: Earth and Planetary Sciences, 29–48. Springer.

Du Boys, P., 1879. Le Rhone et les rivieres a lit affouillable. Annales des Ponts et Chausse’es 18, 141–195.

Einstein, H.A., 1950. The bed-load function for sediment transportation in open channel flows. Technical Bulletin 1026, 1–71.

Engelund, F. & Hansen, E., 1967. A monograph on sediment transport in alluvial streams. Teknisk Forlag, Copenhagen, 65 pp.

Gic-Grusza, G. & Dudkowska, A., 2014. Modeling of wind wave induced sediment transport in the coastal zone of Polish marine areas (Southern Baltic). Baltic International Symposium (BALTIC), 2014 IEEE/OES, Tallin, 1–5.

Gic-Grusza, G., Kryla-Straszewska, L., Urbański, J. & Węsławski, J.M. (Eds), 2009. Atlas of Polish marine area bottom habitats. Environmental valorization of marine habitats. Broker-Innowacji, Gdynia, 180 pp.

Günther, H. & Behrens, A., 2012: The WAM Model – Validation Document, Version 4.5.4. Institute of Coastal Research Helmholtz-Zentrum Geesthacht.

Kramer, H., 1935. Sand mixtures and sand movement in fluvial models. Transactions of the American Society of Civil Engineers 100, 798–878.

Leliavsky, S., 1966. An introduction to fluvial hydraulics. Dover Publications, New York, 257 pp.

Madsen, O.S., 1994. Spectral wave-current bottom boundary layer flows. Proceedings of 24th International Conference on Coastal Engineering, ASCE, Kobe, 384–398.

Meyer-Peter, E. & Müller, R., 1948. Formulas for bed-load transport. Proceedings of 2nd Meeting, IAHR, Stockholm, 39–64.

Miedema, S.A., 2013. Constructing the Shields Curve, Part C: Cohesion by Silt, Hjulstrom, Sundborg. WODCON XX, Brussels, 1–15.

O’Brien, M.P. & Rindlaub, B.D., 1934. The transportation of bedload by streams. Transaction of the American Geophysical Union 100, 393–419.

Ostrowski, R., Piotrowska, D., Schönhofer, J., Skaja, M., Stella, M. & Szmytkiewicz, P., 2013. Parametry procesów hydrodynamicznych i morfodynamicznych w rejonie Morskiego Laboratorium Brzegowego w Lubiatowie [Hydrodynamic and morphodynamic processes parameters in the vicinity of the Coastal Research Station at Lubiatowo]. Instytut Budownictwa Wodnego PAN, Gdańsk, 24 pp.

Ostrowski, R. & Pruszak, Z., 2003. Coastal Research Station at Lubiatowo. Summerschool-Workshop Coastal Zone. CEM, IBW PAN. Gdańsk, 65–80.

Paplińska-Swerpel, B., 2003. Coastal Research Station at Lubiatowo. Summerschool-Workshop Coastal Zone. CEM, IBW PAN. Gdansk, Poland, 9–30.

PN-EN ISO 14688-1:2006/A1:2014-02E Geotechnical investigation and testing – Identification and classification of soil – Part 1: Identification and description – Amendment 1 (ISO 14688-1:2002/Amd 1:2013), Warsaw, Poland, 12 pp.

Pruszak, Z., Szmytkiewicz, P., Ostrowski, R., Skaja, M. & Szmytkiewicz, M., 2008. Shallow-water wave energy dissipation in a multi-bar coastal zone. Oceanologia 50, 43–58.

Pruszak, Z. & Zeidler, R.B., 1995. Sediment transport in various time scale. Proceedings of the 24th International Conference on Coastal Engineering, New York 1, 2513–2526.

Ribberink, J.S., 1998. Bed-load transport for steady flows and unsteady oscillatory flows. Coastal Engineering 34, 59–82.

Schoklitsch, A., 1914. Uber Schleppkraft und Geschiebebewegung. Engelmann, Leipzig, 74 pp.

Shields, A., 1936. Application of similarity principles and turbulence research to bed-load movement. Mitteilungen der Preußischen Versuchsans-talt für Wasserbau, Berlin, 26 pp.

Soulsby, R., 1998. Dynamics of marine sands. Thomas Tel-ford Publ., London, 272 pp.

Soulsby, R. & Whitehouse, R., 1997. Threshold of sediment motion in coastal environment. Proceedings of the Pacific Coasts and Ports Conference. University of Canterbury, Christchurch, 149–154.

Straub, L.B., 1935. Discussion on sand mixtures and sand movement in fluvial models. Proceedings of the American Society of Civil Engineers 61, 101–107.

Swart, D.H., 1974. Offshore sediment transport and equilibrium beach profiles. Delft Hydraulics Laboratory Publication, 131 pp.

Tarnowska, K., 2011. Strong winds on Poland’s Baltic Sea Coast. Prace i Studia Geograficzne 47, 197–204.

Urbański, J., Grusza, G., Chlebus, N. & Kryla, L., 2008. A GIS-based WFD oriented typology of shallow micro-tidal soft bottom using wave exposure and turbidity mapping. Estuarine, Coastal and Shelf Science 78, 1, 27–37.

USWES, 1936. Flume tests made to develop a synthetic sand which will not form ripples when used in movable bed models. Technical Memorandum 99-1, US Waterways Experiment Station, Viecksburg.

Uścinowicz, S., Zachowicz, J., Graniczny, M. & Dobracki, R., 2004. Geological structure of the southern Baltic coast and related hazards. Polish Geological Institute Special Papers 15, 61–68.

van Rijn, L.C., 1993. Principles of Sediment Transport in Rivers, Estuaries and Coastal Seas. Aqua Publications, Amsterdam, 673 pp.

Viška, M. & Soomere, T., 2013. Simulated and observed reversals of wave driven alongshore sediment transport at the eastern Baltic Sea coast. Baltica 26, 145–56.

WAMDI Group, 1988. The WAM model – A third generation ocean wave prediction model. Journal of Physical Oceanography 18, 1775–1810.

Wong, M., 2003. Does the bedload transport relation of Meyer-Peter and Müller fits its own data? Proceedings of the 30th IAHR Congress. Thessaloniki, 8 pp.

Wong, M. & Parker, G., 2006. Reanalysis and correction of bed-load relation of Meyer-Peter and Müller using their own database. Journal of Hydraulic Engineering 132, 1159–1168.