An aeolian or a glaciolacustrine record? A case study from Mieļupīte, Middle Gauja Lowland, northeast Latvia
PDF

Keywords

dune
ice-dammed lake
quartz grains
optically stimulated luminescence
Linkuva ice-marginal zone
Baltic States

How to Cite

Nartišs, M., & Kalińska-Nartiša, E. (2017). An aeolian or a glaciolacustrine record? A case study from Mieļupīte, Middle Gauja Lowland, northeast Latvia. Geologos, 23(1), 15–28. https://doi.org/10.1515/logos-2017-0002

Abstract

In the Middle Gauja Lowland, northeast Latvia, dunes are distributed over a vast glaciolacustrine plain that formed during the retreat of the Fennoscandian ice sheet. Such a direct contact between aeolian and glaciolacustrine sediments can be used to infer depositional settings and decipher to what extent these sediments bear an aeolian component. Our proxies, although preliminary, reveal a limited range of variation in grain-size parameters, a significant presence of quartz grains with silica precipitation and matt-surface grains of various rounding degrees and massive structure combined with horizontal lamination. These are indicative of periglacial-aeolian depositional conditions in the foreland of the Linkuva ice-marginal zone. Sedimentary characteristics do not match a single luminescence date of 9.2±0.6 ka, which significantly postdates the minimum age of the Linkuva ice-marginal zone with 10Be ages between 15.4 and 12.0 ka. Whether deposition started directly after drainage of the Middle Gauja ice-dammed lake or if there is a gap of 2.8–6.2 ka is a matter of debate; only future studies at higher OSL resolution could resolve this.

https://doi.org/10.1515/logos-2017-0002
PDF

References

Alexanderson, H. & Henriksen, M., 2015. A short-lived aeolian event during the Early Holocene in southeastern Norway. Quaternary Geochronology 30, 175–180.

An, F., Ma, H., Wei, H. & Lai, Z., 2012. Distinguishing aeolian signature from lacustrine sediments of the Qaidam Basin in northeastern Qinghai-Tibetan Plateau and its palaeoclimatic implications. Aeolian Research 4, 17–30.

Antoine, P., Catt, J., Lautridou, J.-P. & Sommé, J., 2003. The loess and coversands of northern France and southern England. Journal of Quaternary Science 18, 309-318.

Axford, Y., Briner, J.P., Miller, G.H. & Francis, D.R., 2009. Paleoecological evidence for abrupt cold reversals during peak Holocene warmth on Baffin Island, Arctic Canada. Quaternary Research 71, 142–149.

Balog, K., Kalmár, J., Kuti, L., Szabó, A. & Tóth, T., 2014. Sand grain mineralogy and morphology under forest and grassland/arable fields in Eastern Hungary. Agrokémia és Talajtan 63, 29–38.

Björck, S. & Clemmensen, L.B., 2004. Aeolian sediment in raised bog deposits, Halland, SW Sweden: a new proxy record of Holocene winter storminess variation in southern Scandinavia. The Holocene 14, 677–688.

Blockley, S.P.E., Lane, C.S., Hardiman, M., Rasmussen, S.O., Seierstad, I.K., Steffensen, J.P., Svensson, A., Lotter, A.F., Turney, C.S.M. & Bronk Ramsey, C., 2012. Synchronisation of palaeoenvironmental records over the last 60,000 years, and an extended INTIMATE event stratigraphy to 48,000 b2k. Quaternary Science Reviews 36, 2–10.

Blott, S.J. & Pye, K., 2012. Particle size scales and classification of sediment types based on particle size distributions: Review and recommended procedures. Sedimentology 59, 2071–2096.

Boch, R., Spötl, C. & Kramers, J., 2009. High-resolution isotope records of early Holocene rapid climate change from two coeval stalagmites of Katerloch Cave, Austria. Quaternary Science Reviews 28, 2527–2538.

Böse, M., Lüthgens, C., Lee, J.R. & Rose, J., 2012. Quaternary glaciations of northern Europe. Quaternary Science Reviews 44, 1–25.

Brynjólfsson, S., Schomacker, A., Ingólfsson, Ó. & Keiding, J.K., 2015. Cosmogenic 36Cl exposure ages reveal a 9.3 ka BP glacier advance and the Late Weichselian-Early Holocene glacial history of the Drangajökull region, northwest Iceland. Quaternary Science Reviews 126, 140–157.

Cailleux, A., 1942. Les actiones éoliennes périglaciaires en Europe. Mémoires de la Société Géologique de France 41, 1–176.

Celiņš, I., Karušs, J., Kalińska-Nartiša, E. & Nartišs, M., 2014. Morphology, internal structure and texture of inland dunes at the Smilškalni site, Middle Gauja Lowland. [In:] V. Zelčs & M. Nartišs (Eds), Late Quaternary Terrestrial Processes, Sediments and History: From Glacial to Postglacial Environments. Excursion Guide and Abstracts of the INQUA Peribaltic Working Group Meeting and Field Excursion in Eastern and Central Latvia. University of Latvia, Rīga, 42–46.

Crombe, P., Van Strydonck, M., Boudin, M., Van den Brande, T., Derese, C., Vandenberghe, D.A.G., Van den Haute, P., Verniers, J., Gelorini, V., Boss, J.A.A., Verbruggen, F., Antrop, M., Bats, M., Bourgeois, J., De Reu, J., De Maeyer, P., De Smedt, P., Finke, P.A., Van Meirvenne, M. & Zwertvaegher, A., 2012. Absolute dating (14C and OSL) of the formation of coversand ridges by prehistoric hunter-gatherers in NW Belgium. Radiocarbon 54, 715–726.

Fleitmann, D., Mudelsee, M., Burns, S.J., Bradley, R.S., Kramers, J. & Matter, A., 2008. Evidence for a widespread climatic anomaly at around 9.2 ka before present. Paleoceanography 23, 1–6.

Folk, R.L., 1971. Longitudinal dunes of the nortwesten edge of the Simpson Desert, Northern Territory, Australia. 1. Geomorphology and grain size relationships. Sedimentology 16, 5–54.

Folk, R.L. & Ward, W.C., 1957. Brazos River Bar: A study in the significance of grain size parameters. Journal of Sedimentary Research 27, 3–26.

Forman, S.L. & Waters, M.R., 2016. Optically stimulated luminescence dating and the pepoling of the Americas. PaleoAmerica 2, 6–10.

Galbraith, R.F., Roberts, R.G., Laslett, G.M., Yoshida, H. & Olley, J.M., 1999. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, Northern Australia: Part I, Experimetal design and statistical models. Archaeometry 41, 339–364.

Gilbert, E.R., De Camargo, M.G. & Sandrini-Neto, L., 2012. Rysgran: Grain size analysis, textural classifications and distribution of unconsolidated sediments. R package version 2.0 https://CRAN.R-project.org/package=rysgran

Gryguc, G., Kisielienė, D., Stančikaitė, M., Šeirienė, V., Skuratovič, Ž., Vaitkevičius, V., & Gaidamavičius, A., 2013. Holocene sediment record from Briaunis palaeolake, Eastern Lithuania: history of sedimentary environment and vegetation dynamics. Baltica 26, 121–136.

Hamdan, M.A., Refaat, A.A., Anwar, E.A., Shallaly, N.A. & Hamdan, M.A., 2015. Mineralogy and grain morphology of the aeolian dune sand of Toshka area, southeastern Western Desert, Egypt. Aeolian Research 17, 243–254.

Heikkilä, M. & Seppä, H., 2010. Holocene climate dynamics in Latvia, eastern Baltic region: a pollen-based summer temperature reconstruction and regional comparison. Boreas 39, 705–719.

Helland, P.E. & Holmes, M.A., 1997. Surface textural analysis of quartz sand grains from ODP Site 918 off the southeast coast of Greenland suggests glaciation of southern Greenland at 11 Ma. Palaeogeography Palaeoclimatology Palaeoecology 135, 109–121.

Howari, F.M., Baghdady, A. & Goodell, P.C., 2007. Mineralogical and gemorphological characterization of sand dunes in the eastern part of United Arab Emirates using orbital remote sensing integrated with field investigations. Geomorphology 83, 67–81.

Hunter, R.E., 1977. Basic types of stratification in small eolian dunes. Sedimentology 24, 361–387.

Juškevičs, V. & Skrebels, J., 2002. Quaternary Deposits. Sheets 44, 45, 54 (Alūksne, Viļaka, Valka), [In:] O.P. Āboltiņš & A. Brangulis (Eds), Geological Map of Latvia. Scale 1:200 000. Valsts ģeoloģijas dienests, Rīga.

Kalińska, E. & Nartišs, M., 2014. Pleistocene and Holocene aeolian sediments of different location and geological history: A new insight from rounding and frosting of quartz grains. Quaternary International 328–329, 311–322.

Kalińska-Nartiša, E. & Nartišs, M., 2016a. The fan-like forms in the southern margin of the Mazovian Lowland area (Central Poland): a new high-resolution textural-timing study. International Journal of Earth Sciences 105, 885–903.

Kalińska-Nartiša, E. & Nartišs, M., 2016b. Sandy fan-like forms in the central-eastern Mazovian Lowland (Central Poland): textural record and chronology. Geografiska Annaler, Series A, Physical Geography 98, 111–127.

Kalińska-Nartiša, E., Soms, J., Strode, S. & Nartišs, M., 2014. Inland dune field near Daugavpils, East-Latvian Lowland. [In:] V. Zelčs & M. Nartišs (Eds.), Late Quaternary Terrestrial Processes, Sediments and History: From Glacial to Postglacial Environments. Excursion Guide and Abstracts of the INQUA Peribaltic Working Group Meeting and Field Excursion in Eastern and Central Latvia. University of Latvia, Rīga, 77–80.

Kalińska-Nartiša, E., Nartišs, M., Thiel, C., Buylaert, J.-P. & Murray, A.S., 2015a. Late-glacial to Holocene aeolian deposition in northeastern Europe – The timing of sedimentation at the Iisaku site (NE Estonia). Quaternary International 357, 70–81.

Kalińska-Nartiša, E., Thiel, C., Nartišs, M., Buylaert, J.-P. & Murray, A.S., 2015b. Age and sedimentary record of inland aeolian sediments in Lithuania, NE European Sand Belt. Quaternary Research 84, 82–95.

Kalińska-Nartiša, E., Thiel, C., Nartišs, M., Buylaert, J.-P. & Murray, A.S., 2016. The north-eastern aeolian “European Sand Belt” as potential record of environmental changes: a case study from Eastern Latvia and Southern Estonia. Aeolian Research 22, 59–72.

Kasse, C., Vandenberghe, J., van Huissteden, J., Bohncke, S.J.P. & Bos, J.A.A., 2003. Sensitivity of Weichselian fluvial systems to climate change (Nochten mine, eastern Germany). Quaternary Science Reviews 22, 2141–2156.

Käyhkö, J.A., Worsley, P., Pye, K. & Clarke, M.L., 1999. A revised chronology for aeolian activity in subarctic Fennoscandia during the Holocene. The Holocene 9, 195–205.

Kleesment, A., Kirsimäe, K., Martma, T., Shogenova, A., Urtson, K. & Shogenov, K., 2012. Linkage of diagenesis to depositional environments and stratigraphy in the northern part of the Baltic basin. Estonian Journal of Earth Sciences 61, 15–32.

Kolstrup, E., 1986. Reappraisal of the upper Weichselian periglacial environment from Danish frost wedge casts. Palaeogeography Palaeoclimatology Palaeoecology 56, 237–249.

Kolstrup, E., 2007. Lateglacial older and younger cover-sand in northwest Europe: chronology and relation to climate and vegetation. Boreas 36, 65–75.

Krajcarz, M.T., Cyrek, K., Krajcarz, M., Mroczek, P., Sudoł, M., Szymanek, M., Tomek, T., & Madeyska, T., 2016. Loess in a cave: Lithostratigraphic and correlative value of loess and loess-like layers in caves from the Kraków-Czestochowa Upland (Poland). Quaternary International 399, 13–30.

Krinsley, D.H. & Doornkamp, J.C., 1973. Atlas of Quartz Sand Surface Textures, Cambridge University Press, Oxford, 93 pp.

Kuenen, P.H. & Peredok, W.G., 1962. Experimental Abrasion 5. Frosting and Defrosting of Quartz Grains. Journal of Geology 70, 648–658.

Küster, M., Fülling, A., Kaiser, K. & Ulrich, J., 2014. Aeolian sands and buried soils in the Mecklenburg Lake District, NE Germany: Holocene land-use history and pedo-geomorphic response. Geomorphology 211, 64–76.

Lang, B., Bedford, A., Brooks, S., Jones, R., Richardson, N., Birks, H. & Marshall, J., 2010. Early-Holocene temperature variability inferred from chironomid assemblages at Hawes Water, northwest England. The Holocene 20, 943–954.

Lord, T., Thorp, J. & Wilson, P., 2015. A wild boar dominated ungulate assemblage from an early Holocene natural pit fall trap: Cave shaft sediments in north-west England associated with the 9.3 ka BP cold event. The Holocene 147–153.

Mahaney, W.C., 2002. Atlas of sand grain surface, textures and applications. Oxford University Press, Oxford, 256 pp.

Mahaney, W.C. & Kalm, V., 1995. Scanning electron microscopy of Pleistocene tills in Estonia. Boreas 24, 13–19.

Mahaney, W.C. & Kalm, V., 2000. Comparative scanning electron microscopy study of oriented till blocks, glacial grains and Devonian sands in Estonia and Latvia. Boreas 29, 35–51.

Mahaney, W.C., Stewart, A. & Kalm, V., 2001. Quantification of SEM microtextures useful in sedimentary environmental discrimination. Boreas 30, 165–171.

Margielewski, W., Krąpiec, M., Jankowski, L., Urban, J. & Zernitskaya, V., 2015. Impact of aeolian processes on peat accumulation: Late Glacial e Holocene history of the Hamernia peat bog (Roztocze region, south-eastern Poland). Quaternary International 386, 212–225.

Marks, L., 2012. Timing of the Late Vistulian (Weichselian) glacial phases in Poland. Quaternary Science Reviews 44, 81–88.

Matthews, J.A. & Seppälä, M., 2013. Holocene environmental change in subarctic aeolian dune fields: The chronology of sand dune re-activation events in relation to forest fires, palaeosol development and climatic variations in Finnish Lapland. The Holocene 24, 149–164.

Mountney, N.P., 2012. A stratigraphic model to account for complexity in aeolian dune and interdune successions. Sedimentology 59, 964–989.

Muhs, D.R., 2004. Mineralogical maturity in dunefields of North America, Africa and Australia. Geomorphology 59, 247–269.

Murray, A.S. & Wintle, A.G., 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32, 57–73.

Mycielska-Dowgiałło, E. & Ludwikowska-Kędzia, M., 2011. Alternative interpretations of grain-size data from Quaternary deposits. Geologos 17, 189–203.

Mycielska-Dowgiałło, E. & Woronko, B., 1998. Analiza obtoczenia i zmatowienia powierzchni ziarn kwarcowych frakcji piaszczystej i jej wartość interpretacyjna [Rounding and frosting analysis of quartz sand-grain surfaces and their interpretative significance]. Przegląd Geologiczny 46, 1275–1281.

Narayana, A.C., Mohan, R. & Mishra, R., 2010. Morphology and surface textures of quartz grains from freshwater lakes of McLeod Island, Larsemann Hills, East Antarctica. Current Science 99, 1420–1424.

Nartišs, M., 2014. Ice meltwater lake of Northern Vidzeme and Middle Gauja Lowlands during the Late Weichselian deglaciation. Doctoral thesis. University of Latvia, Rīga, 142 pp.

Nartišs, M., Celiņš, I., Zelčs, V. & Dauškans, M., 2009. History of the development and palaeogeography of ice-dammed lakes and inland dunes at Seda sandy plain, North Western Vidzeme, Latvia. [In:] V. Kalm, L. Lauments & T. Hang (Eds), Extent and Timing of the Weichselian Glaciation Southeast of the Baltic Sea: Abstracts & Guidebook. The INQUA Peribaltic Working Group Field Symposium in Southern Estonia and Northern Latvia. Ülikooli Kirjastus, Tartu, 79–81.

Pettijohn, F.J., Potter, P.E. & Siever, R., 1972. Sand and Sandstones. Springer-Verlag, Cambridge, 618 pp.

Rasmussen, S.O., Vinther, B.M., Clausen, H.B. & Andersen, K.K., 2007. Early Holocene climate oscillations recorded in three Greenland ice cores. Quaternary Science Reviews 26, 1907–1914.

Refaat, A.A. & Hamdan, M.A., 2015. Mineralogy and grain morphology of the aeolian dune sand of Toshka area, southeastern Western Desert, Egypt. Aeolian Research 17, 243–254.

Rinterknecht, V.R., Clark, P.U., Raisbeck, G.M., Yiou, F., Bitinas, A., Brook, E.J., Marks, L., Zelcs, V., Lunkka, J.-P., Pavlovskaya, I.E., Piotrowski, J.A. & Raukas, A., 2006. The last deglaciation of the southeastern sector of the Scandinavian ice sheet. Science 311, 1449–52.

Ritchot, G. & Cailleux, A., 1971. Taxonomie, géomorphologie et morphoscopie de sables au Québec méridional. Cahiers de géographie du Québec 15, 423.

Rodríguez-López, J.P., Meléndez, N., de Boer, P.L. & Soria, A.R., 2008. Aeolian sand sea development along the mid-Cretaceous western Tethyan margin (Spain): erg sedimentology and palaeoclimate implications. Sedimentology 55, 1253–1292.

Román-Sierra, J., Muñoz-Pérez, J.J. & Navarro-Pons, M., 2013. Influence of sieving time on the efficiency and accuracy of grain-size analysis of beach and dune sands. Sedimentology 60, 1484–1497.

Roskosch, J., Tsukamoto, S., Meinsen, J., Frechen, M. & Winsemann, J., 2012. Luminescence dating of an Upper Pleistocene alluvial fan and aeolian sandsheet complex: The Senne in the Münsterland Embayment, NW Germany. Quaternary Geochronology 10, 94–101.

Saarse, L., 2015. Cyclic sedimentation pattern in Lake Veetka, southeast Estonia: A case study. Geologos 21, 59–69.

Stivrins, N., Kalnina, L., Veski, S. & Zeimule, S., 2014. Local and regional Holocene vegetation dynamics at two sites in eastern Latvia. Boreal Environment Research 19, 310–322.

Stivrins, N., Kolaczek, P., Reitalu, T., Seppä, H. & Veski, S., 2015. Phytoplankton response to the environmental and climatic variability in a temperate lake over the last 14,500 years in eastern Latvia. Journal of Paleolimnology 54, 103–119.

Sweet, D.E. & Soreghan, G.S., 2010. Application of Quartz Sand Microtextural Analysis to Infer Cold-Climate Weathering for the Equatorial Fountain Formation (Pennsylvanian-Permian, Colorado, U.S.A.). Journal of Sedimentary Research 80, 666–677.

Tate, S.E., Greene, R.S.B., Scott, K.M. & McQueen, K.G., 2007. Recognition and characterisation of the aeolian component in soils in the Girilambone Region, north western New South Wales, Australia. Catena 69, 122–133.

Tolksdorf, J.F. & Kaiser, K., 2012. Holocene aeolian dynamics in the European sand-belt as indicated by geo-chronological data. Boreas 41, 408–421.

Vandenberghe, D.A.G., Derese, C., Kasse, C. & van den Haute, P., 2013. Late Weichselian (fluvio-)aeolian sediments and Holocene drift-sands of the classic type locality in Twente (E Netherlands): a high-resolution dating study using optically stimulated luminescence. Quaternary Science Reviews 68, 96–113.

Velichko, A.A. & Timirieva, S.N., 1995. Morphoscopy and morphometry of quartz grains from loess and buried soil layers. GeoJournal 36, 143–149.

Veski, S., Seppä, H., & Ojala, A.E.K., 2004. Cold event at 8200 yr B.P. recorded in annually laminated lake sediments in eastern Europe. Geology 32, 681–684.

Veski, S., Seppä, H., Stančikaitė, M., Zernitskaya, V., Reitalu, T., Gryguc, G., Heinsalu, A., Stivrins, N., Amon, L., Vassiljev, J. & Heiri, O., 2015. Quantitative summer and winter temperature reconstructions from pollen and chironomid data between 15 and 8 ka BP in the Baltic and Belarus area. Quaternary International 388, 4–11.

Visher, G.S., 1969. Grain size distribution and depositional processes. Journal of Sedimentary Research 39, 1074–1106.

Vos, K., Vandenberghe, N. & Elsen, J., 2014. Surface textural analysis of quartz grains by scanning electron microscopy (SEM): From sample preparation to environmental interpretation. Earth-Science Reviews 128, 93–104.

Woronko, B., Zieliński, P. & Sokołowski, R.J., 2015. Climate evolution during the Pleniglacial and Late Glacial as recorded in quartz grain morphoscopy of flu-vial to aeolian successions of the European Sand Belt. Geologos 21, 89–103.

Young, N.E., Briner, J.P., Rood, D.H., Finkel, R.C., Corbett, L.B. & Bierman, P.R., 2013. Age of the Fjord Stade moraines in the Disko Bugt region, western Greenland, and the 9.3 and 8.2 ka cooling events. Quaternary Science Reviews 60, 76–90.

Yu, S.-Y., Colman, S.M., Lowell, T.V., Milne, G.A., Fisher, T.G., Breckenridge, A., Boyd, M. & Teller, J.T., 2010. Freshwater outburst from Lake Superior as a trigger for the cold event 9300 years ago. Science 328 (5983), 1262–1266.

Zeeberg, J., 1998. The European sand belt in eastern Europe – and comparison of Late Glacial dune orientation with GCM simulation results. Boreas 27, 127–139.

Zelčs, V. & Markots, A., 2004. Deglaciation history of Latvia. [In:] J. Ehlers & P.L. Gibbard (Eds), Quaternary Glaciations Extent and Chronology Part I: Europe, Developments in Quaternary Science. Elsevier, Amsterdam, 225–243.

Zelčs, V., Markots, A., Nartišs, M. & Saks, T., 2011. Pleistocene Glaciations in Latvia. [In:] J. Ehlers, P.L. Gib-bard & P.D. Hughes (Eds.): Quaternary Glaciations–Extent and Chronology, Developments in Quaternary Science. Elsevier, Amsterdam, 221–229.

Zhang, P., Song, C., Yang, Y., Gao, H., Zhang, H., Liu, W.M., Pan, M.H., Liu, P., Hu, S.H. & Xia, W.M., 2008. The significance and establishment of discriminant function with grain size of stable lacustrine sediment and eolian loess. Acta Sedimentologica Sinica 26, 501–507.

Zhang, X., Li, Z., Li, P., Cheng, S., Zhang, Y., Tang, S. & Wang, T., 2015. A model to study the grain size components of the sediment deposited in aeolian – fluvial interplay erosion watershed. Sedimentary Geology 330, 132–140.

Zhang, Z. & Dong, Z., 2015. Grain size characteristics in the Hexi Corridor Desert. Aeolian Research 18, 55–67.

Zieliński, P., Sokołowski, R.J., Woronko, B., Fedorowicz, S., Jankowski, M. & Standzikowski, K., 2016. Sandy deposition in a small dry valley in the periglacial zone of the Last Glacial Maxiumum: A case study from the Józefów site, SE Poland. Quaternary International 399, 58–71.

Zieliński, P., Sokołowski, R.J., Woronko, B., Jankowski, M., Fedorowicz, S., Zaleski, I., Molodkov, A. & Weckwerth, P., 2015. The depositional conditions of the fluvio-aeolian succession during the last climate minimum based on the examples from Poland and NW Ukraine. Quaternary International 386, 30–41.