Abstract
Assessments of the infiltration recharge of groundwater are performed using various methods and on different scales. Infiltration is dependent of climatic factors, aspects of water circulation, as well as on quasi-stationary and variable environmental features of a specific area, which are frequently difficult to determine on the basis of direct measurements or observations. The objective of the present study was to identify factors conditioning recharge of shallow groundwater in selected catchment areas of the Poznań Upland using the WetSpass simulation water balance model with spatially distributed parameters. Our analysis has indicated favourable and unfavourable conditions for recharge of groundwater in the annual period and in both half-year periods, which are the result of mutual relationships between the physical qualities of these catchment areas and their climatic and hydrological characteristics. The results obtained also confirmed the impact of surface runoff and actual evapotranspiration on the spatial distribution of effective infiltration. With soil types and groundwater depth distributions being similar in the catchment areas, changes in relationships between components of water balance are caused by differences in the type of land usage. Application of the WetSpass model has made it possible to arrive at a more accurate assessment of groundwater recharge. The results obtained may be used for erification of recharge areas and values of effective infiltration, set as a boundary condition in groundwater flow models.
References
Band, L.E., Cadenasso, M., Grimmond, S., Grove, M. & Pickett, S.T., 2005. Heterogeneity in Urban Ecosystems: Pattern and Process. [In:] Lovett, G.M., Jones, C.G., M.G., Turner, & Weathers, K.C. (Eds): Ecosystem Function in Heterogeneous Landscapes. Springer-Verlag, New York, 257–278 pp.
Batelaan, O. & De Smedt, F., 2001. WetSpass: a flexible, GIS based, distributed recharge methodology for regional groundwater modelling. [In:] Gehrels, H., Peters, J., Hoehn, E., Jensen, K., Leibundgut, C., Griffioen, J., Webb, B. & Zaadnoordijk, W.J. (Eds): Impact of Human Activity on Groundwater Dynamics. IAHS Publ., 269, pp. 11–17.
Batelaan, O., 2006. Phreatology. Characterizing groundwater recharge and discharge using remote sensing, GIS, ecology, hydrochemistry and groundwater modeling. Department of Hydrology and Hydraulic Engineering Faculty of Engineering Vrije Universiteit, Brussels, 332 pp.
Batelaan, O. & Woldeamlak, S.T., 2007. Arcview interface for WetSpass. Version 13-06-2007.Vrije University, Brussels Department of Hydrology and Hydraulic Engineering, 75 pp.
Blöeschl, G., 2001. Scaling in hydrology. Hydrological Processes 15, 709–711.
Brun, S.E. & Band, L.E., 2000. Simulating runoff behavior in an urbanizing watershed. Computers, Environment and Urban Systems 24, 5–22.
Callahan, T.J., Vulava, V.M., Passarello, M.C. & Garrett, C.G., 2012. Estimating groundwater recharge in lowland watersheds. Hydrological Processes 26, 2845–2855.
Chełmicki, W., 1991. Reżim płytkich wód podziemnych w Polsce [A regime of shallow groundwater in Poland]. Rozprawy Habilitacyjne UJ, Kraków, 218, 136 pp.
Cherkauer, D.S. & Ansari, S.A, 2005. Estimating ground water recharge from topography, hydrogeology and land cover, Ground Water 43, 102–112.
Chiang, W.H. & Kinzelbach, W., 2001. 3DGroundwater Modeling with PMWIN. Springer-Verlag, Berlin, 346 pp.
Choromański, J. & Michałowski, R., 2011. Model hydrologiczny zlewni WetSpa-SGGW zintegrowany z modułem obliczeniowym w środowisku ArcGIS [Hydrological catchment model WetSpa-SGGW integrated with a calculation module in ArcGIS environment]. Przegląd Naukowy – Inżynieria i Kształtowanie Środowiska 53, 196–206.
Czyżyk, F. & Świerkot, Z., 2017. Recharging infiltration of precipitation water through the light soil, in the absence of surface runoff. Journal of Water and Land Development 32, 25–30.
Dąbrowski, S., 1990. Hydrogeologia i warunki ochrony wód podziemnych Wielkopolskiej Doliny Kopalnej [Hydrogeology and conditions for the protection of groundwater in the Wielkopolska Fossil Valley]. Wyd. SGGW-AR, Warszawa, 56 pp.
Dąbrowski, S., 1995. Odnawialność zbiorników wód podziemnych w rejonie Poznania [Renewability of groundwater reservoirs in the area of Poznań]. [In:] Kaniecki, A. & Rotnicka, J. (Eds): Wody powierzchniowe Poznania. Problemy wodne obszarów miejskich [Surface waters of Poznań. Water problems in urban areas]. Wydawnictwo Sorus, Poznań, 139–152.
Dąbrowski, S., Kapuściński, J., Nowicki, K., Przybyłek, J. & Szczepański, A., 2011. Metodyka modelowania matematycznego w badaniach i obliczeniach hydrogeologicznych. Poradnik metodyczny [Methodology of mathematical modeling in hydrogeological research and calculations. Methodical guide]. Bogucki Wyd. Naukowe, Poznań, 364 pp.
De Vries, J.J. & Simmers, I. 2002. Groundwater recharge: an overview of processes and challenges. Hydrogeology Journal 10, 5–17.
Dripps, W.R. & Bradbury, K.R., 2007. A simple daily soil-water balance model for estimating the spatial and temporal distribution of groundwater recharge in temperate humid areas. Hydrogeology Journal 15, 433–444.
Duda, R. & Paszkiewicz, M., 2009. Ocena zasilania wód podziemnych w wybranych zlewniach metodą infiltracyjną [The assessment of groundwater recharge by infiltration method in selected catchments]. Biuletyn Państwowego Instytutu Geologicznego 436, 103–108.
FAOPenman–Monteith (FAO-PM), 1998. Crop evapotranspiration – Guidelines for computing crop water requirements – FAO Irrigation and Drainage Paper, 56, Rome.
Farat, R., (Ed.), 2004. Atlas klimatu województwa wielkopolskiego [Climate Atlas of the Greater Poland Voivodeship]. IMGW, Poznań, 140 pp.
Graf, R., 1999. Warunki zasilania i sczerpywania wód podziemnych pierwszego poziomu w wybranych zlewniach Niziny Wielkopolskiej [Conditions of the feeding and drainage of groundwater of the first level in selected catchments of the Wielkopolska Lowland]. Prace Komisji Geograficzno-Geologicznej, PTPN Poznań, 24, 144 pp.
Graf, R., 2012. Struktura i funkcjoniwanie lokalnych systemów wód podziemnych na obszarze Wysoczyzny Poznańskiej [The structure and functioning of local groundwater circulation systems within the Poznań Plateau]. Bogucki Wydawnictwo Naukowe, Poznań, 403 pp.
Graf, R. & Kajewski, I., 2013. Kształtowanie się elementów bilansu wodnego w zlewni Mogilnicy na podstawie badań symulacyjnych [The forming of the water balance elements in the Mogilnica catchment basis of simulating investigations]. Nauka Przyroda Technologie 7, 1–11.
Graf, R. & Przybyłek, J., 2014. Estimation of shallow groundwater recharge using a GIS-based distributed water balance model. Quaestiones Geographicae 33, 27–37.
Green, W.H. & Ampt, G., 1911. Studies on soil physics, The flow of air and water through soils. Journal Agriulture Science 4, 1–24.
Gurwin, J., 2010. Ocena odnawialności struktur wodonośnych bloku przedsudeckiego. Integracja danych monitoringowych i GIS/RS z numerycznymi modelami filtracji [Evaluation of the renewal of the waterbearing structures of the Sudeten block. Integration of monitoring data and GIS / RS with numerical flow models]. Acta Universitatis Wratislaviensis 3258, 218 pp.
Healy, R.W., 2010. Estimating groundwater recharge. Cam-bridge University Press, 256 pp.
Herbich, P., Prażak, J. & Przytuła, E., 2009. Dynamika stanu retencji płytkich wód podziemnych w jednostkach bilansowych [Dynamics of the shallow groundwater retention in the hydrogeological units]. Biuletyn Państwowego Instytutu Geologicznego 436, 159–164.
Herbich, P., Kapuściński, J., Nowicki, K. & Rodzoch, A., 2013. Metodyka określania zasobów dyspozycyjnych wód podziemnych w obszarach bilansowych z uwzględnieniem potrzeb jednolitych bilansów wodnogospodarczych, Poradnik metodyczny [Methodology for determining groundwater disposable resources in the balance areas, taking into account the needs of uniform watereconomic balances, Methodological guide], HYDROEKO, Warszawa, 177 pp.
Horton, R.E., 1941. An approach toward a physical interpretation of infiltration-capacity. Soil Science Society of America Journal 5 (C), 399–417.
Jackson, T.J., 2002. Remote sensing of soil moisture: implications for groundwater recharge. Hydrogeology Journal 10, 40–51.
Jaworska-Szulc, B., 2015. Ocena zasilania wód podziemnych na Pojezierzu Kaszubskim z zastosowaniem różnych metod i różnej skali opracowania [Groundwater recharge estimation in Kashubian Lake District different scales studies, comparison of methods]. Przegląd Geologiczny 63, 762–768.
Jokiel, P., 1994. Zasoby, odnawialność i odpływ wód podziemnych strefy aktywnej wymiany w Polsce [Groundwater resources, renewability and runoff in the zone of active exchange in Poland]. Acta Geographica Lodziensia, 66–67, 1–236.
Kajewska-Szkudlarek, J., Kubicz, J., Kajewski, I. & Dąbek, P., 2017. Ocena zasobów odnawialnych wód podziemnych Pomorza Zachodniego na podstawie modelu symulacyjnego WetSpass [Assessment of renewable groundwater resources in Western Pomerania based on the WetSpass simulation model]. Przegląd Geologiczny 65, 1080–1084.
Kajewski, I., 2004. Ocena bilansu wodnego zlewni przy zastosowaniu modelu WetSpass (An assessment of water balance of catchments with the use of the WetS-pass model) Modelowanie przepływu wód podziemnych Acta Universitatis Wratislaviensis 2729, Hydrogeologia, 69–80.
Kaniecki, A., 1982. Pojemność retencyjna i zmienność zasobów wodnych małej zlewni nizinnej [Retention capacity and variability of water resources in a small lowland catchment]. Wyd. UAM, Geografia 26, 141 pp.
Kille, K., 1970. Das Verfahren MoMNQ, ein Beitrag zur Berechnung der mittleren langjährigen Grundwasserneubildung mit Hilfe der monatlichen Niedrigwasserabflũsse. Zeitschrift der Deutschen Geologischen Gesellschaft Band Sonderba, 89–95.
Kondracki, J., 1998. Geografia regionalna Polski [Regional geography of Poland]. Wyd. Nauk. PWN, Warszawa, 441 pp.
Kostiakov, A.N., 1932. On the dynamics of the coefficient of waterpercolation in soils and on the necessity for studying it from a dynamic point of view for purposes of amelioration. Transactions of the 6th Communication of the International Society of Soil Sciences, Part A, 17–21.
Kulma, R. & Zdechlik, R., 2009. Modelowanie procesów filtracji [Modeling of flow processes]. Wyd. AGH, Kraków, 149 pp.
Lee, J.G. & Heaney, J.P., 2003, Estimation of urban imperviousness and its impacts on storm water systems. Journal of Water Resources Planning and Management 129, 419−426.
Lerner, D.N., Issar, A.S. & Simmers, I., 1990. Groundwater recharge, a guide to understanding and estimating natural recharge. Vol. 8 of International Contributions to Hydrogeology. International Association of Hydrogeologists, Verlag Heinz Heise, Hannover, 345 pp.
Macioszczyk, A. (Ed.), 2006. Podstawy hydrogeologii stosowanej [Basics of appropriate hydrogeology]. PWN, Warszawa, 570 pp.
Neitsch, S.L., Arnold, J.G., Kiniry, J.R. & Williams, J.R., 2005. Soil and Water Assessment Tool Theoretical Documentation. USDA-ARS Grassland Soil and Water Research Laboratory, and Texas A & M University, Blackland Research and Extension Center.
Neitsch, S.L., Arnold, J.G., Kiniry, J.R., Srinivasan, R. & Williams, J.R., 2004. Soil and Water Assessment Tool Input / Output File Documentation. USDA-ARS Grassland Soil and Water Research Laboratory.
Nestor, L.S.Y., 2006. Modelling the infiltration process with a multi-layer perceptron artificial neural network, Hydrological Sciences Journal/Journal des Sciences Hydrologiques 51, 3–20.
Nolan, B.T., Green, C.T., Juckem, P.F., Liao, L. & Reddy, J.E., 2018. Data Release for Metamodeling and Mapping of Nitrate Flux in the Unsaturated Zone and Groundwater U.S. Geological Survey Data Release, Wisconsin, USA, 10.5066/F7ZC81VR.
Okoński, B., 2006. Modelowanie odpływu bezpośredniego w zależności od stanów pokrycia zlewni leśnej [Modeling of direct outflow depending on forest cover conditions]. Rozprawy Naukowe 374, Wyd. AR, Poznań, 88 pp.
Ozga-Zielińska, M. & Brzeziński, J., 1997. Hydrologia stosowana [Applied hydrology]. PWN Warszawa, 323 pp.
Paczyński, B. & Sadurski, A. (Ed.), 2007. Hydrogeologia regionalna Polski [Regional hydrogeology of Poland]. Państwowy Instytut Geologiczny, Warszawa, 542 pp.
Paczyński, B., Macioszczyk, T., Kazimierski, B. & Mitręga, J., 1996. Ustalanie dyspozycyjnych zasobów wód podziemnych – poradnik metodyczny [Determination of available groundwater resources – methodological guide]. Wyd. MŚZNiL, Warszawa, 87 pp.
Pazdro, Z. & Kozerski, B., 1990. Hydrogeologia ogólna [General hydrogeology], IV ed.. Wyd. Geol. Warszawa, 623 pp.
Philips, J.R., 1957. The theory of infiltration: the infiltration equation and its solution. Soil Science 83, 345–358.
Piniewski, M. & Okruszko, T., 2011. Multi-site calibration and validation of the hydrological component of SWAT in a large lowland catchement. [In:] Modeling of Hydrological Processes in the Narew Catchement. Geoplanet: Earth and Planetary Sciences. Springer, Berlin, pp. 15–41.
Pleczyński, J. & Przybyłek, J., 1974. Problematyka dokumentowana zasobów wód podziemnych w dolinach rzecznych (studium metodyczne) [Issues documented by groundwater resources in river valleys (methodical study)]. Wyd. Geol., Warszawa, 196 pp.
Pleczyński, J., 1981. Odnawialność zasobów wód podziemnych [Renewability of groundwater resources]. Wyd. Geol., Warszawa, 252 pp.
Pokojska, P., 2004. Aplication and verification of water balance model with distributed parameters (on the example of Rega River Basin). Miscellanea Geographica 11, 139–149.
Porretta-Brandyk, L., Chormański, J., Ignar, S., Okruszko, T., Brandyk, A., Szymczak, T. & Krężałek, K., 2010. Evaluation and verification of the WetSpa model based on selected rural catchments in Poland. Journal of Water and Land Development 14, 115–133.
Przybyłek, J. & Nowak, B., 2011.Wpływ niżówek hydrogeologicznych i odwodnień górniczych na systemy wodonośne Pojezierza Gnieźnieńskiego [Impact of hydrogeological low flows and groundwater drainage by lignite open cast mine on aquifer systems on Gniezno Lakeland]. Biuletyn PIG 445, Hydrogeologia 12, 513–527.
Rahmati, M., 2017. Reliable and accurate point-based prediction of cumulative infiltration using soil readily available characteristics: a comparison between GMDH, ANN, and MLR. Hydrology Journal 551, 81–91.
Scanlon, B.R. & Cook, P.G., 2002. Theme issue on groundwater recharge. Hydrogeology Journal 10, 3–4.
Scanlon, B.R., Healy, R.W. & Cook, P.G., 2002. Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeology Journal 10, 18–39.
Sihag, P., Tiwari, N.K & Ranjan, S., 2017a. Estimation and intercomparison of infiltration models. Water Science 31, 34–43.
Sihag, P., Tiwari, N.K. & Ranjan, S., 2017b. Modelling of infiltration of sandy soil using Gaussian process regression. Model Earth Systems and Environment 3, 1091–1100.
Sihag, P., Tiwari, N.K. & Ranjan S., 2018. Support vector regression-based modeling of cumulative infiltration of sandy soil. ISH Journal of Hydraulic Engineering 1–7. doi:10.1080/09715010.2018.1439776.
Singh, V.P. & Frevert, D.K., 2002. Mathematical Models of Large Watershed Hydrology. Water Resources Publications, Highlands Ranch, 891 pp.
Singh, V.P. & Frevert, D.K., 2006. Watershed Models, CRC Press, 678 pp.
Sitek, S. & Ulańczyk, R., 2016. Ocena zasilania wód podziemnych w zlewni rzeki Drama na podstawie modelu SWAT i metody infiltracyjnej [Assessment of groundwater recharge in the Drama River basin on the basis of the SWAT model and infiltration method], [In:] Witczak, S. & Żurek, A. (Eds): Praktyczne Metody Modelowania Przepływu Wód Podziemnych, 231–238 pp.
Śmietański, L., 2012. Zastosowanie przekształcenia stałoobjętościowego do oceny odnawialności zasobów wód podziemnych wschodniej części Pojezierza Pomorskiego [Application of the constant volume transformation to the assessment of the groundwater resources renewability in the eastern part of the Pomeranian lake district]. Biuletyn Państwowego Instytutu Geologicznego 451, 227–234.
Soczyńska, U. (Ed.), 1997. Hydrologia dynamiczna [Dynamic hydrology]. PWN, Warszawa, 410 pp.
Sophocleous, M.A., 1992. Groundwater recharge estimation and regionalization: the Great Bend Prairie of central Kansas and its recharge statistics. Hydrology Journal 137, 113–140.
Sophocleous, M.A., 2002. Interactions between groundwater and surface water: the state of the science. Hydrogeology Journal 10, 52–67.
Sophocleous, M.A., 2005. Groundwater recharge and sustainability in the High Plains aquifer in Kansas, USA. Hydrogeology Journal 13, 351–365.
Sophocleous, M.A. & Perkins, S.P., 2000. Methodology and application of combined watershed and ground-water models in Kansas, Hydrology Journal 236, 185–201.
Sorooshian, S. & Hsu, K.L., 2008. Hydrological Modelling and the Water Cycle, Springer-Verlag, 302 pp.
Staśko, S., 2017. Zasilanie wód podziemnych na obszarze Polski – przegląd metod badań i wybranych wyników [Groundwater recharge in Poland – an overview of test methods and selected results]. Hydrogeologia 1, 68–77.
Staśko, S., Tarka, R. & Olichwer, T., 2013. Groundwater recharge evaluation based on the infiltration method. [In:] Groundwater quality sustainability. IAH Selected papers on hydrogeology, Taylor & Francis, London, 17, 189–198.
Szymanko, J., 1980. Koncepcje systemu wodonośnego i metod jego modelowania [Concepts of the waterbearing system and methods of its modeling]. Wyd. Geol., Warszawa, 263 pp.
Tarka, R., 2001. Discrepancy in groundwater resources estimation and permeability of the surface zone. Współczesne Problemy Hydrogeologii 10, 279–287.
Tarka, R., Olichwer, T. & Staśko, S., 2017. Evaluation of groundwater recharge in Poland using the infiltration coefficient method. Geological Quarterly 61, 384–395.
Thangarajan, M. (Ed.), 2007. Groundwater Resource Evaluation, Augmentation, Contamination, Restoration, Modeling and Management. Capital Publishing Company, 10, 362 pp.
Tiwari, N.K., Sihag, P., Kumar, S. & Ranjan, S., 2017. Modeling of infiltration of soil using adaptive neuro-fuzzy inference system (ANFIS). Journal of Engineering and Technology Education 11, 1–13.
Van de Giesen, N.C., Stomph, T.J. & de Ridder N., 2000. Scale effects of Hortonian overland flow and rain fall-runoff dynamics in a West African catena landscape. Hydrological Processes 14, 165–175.
Von Asmuth, J.R. & Maas, C., 2001. The method of impulse response moments: a new method integrating time series, groundwater and eco-hydrological modeling. [In:] Gehrels, H., Hoehn, E., Jensen, K., Leibundgut, Ch., Griffioen, J., Webb, B. & Zaadnoordijk, W.J. (Eds): Impact of human activity on groundwater dynamics. IAHS Publication, Wallingford, 51–58.
Wainwright, J. & Parsons A.J., 2002. The effect of temporal variations in rainfall on scale dependency in runoff coefficients. Water Resources Research 38, 12, 1271 10.1029/2000WR000188.
Walton, W.C., 1970. Groundwater Resource Evaluation. McGraw-Hill, New York, 664 pp.
Woś, A., 2010. Klimat Polski w drugiej połowie XX wieku. [The climate of Poland in the second half of the 20th century]. UAM, Poznań, 489 pp.
Wundt, W., 1953. Gewasserkunde. Berlin, 320 pp.
Yair, A. & Kossovsky, A. 2002. Climate and surface properties: hydrological response of small and semi-arid watersheds. Geomorphology 42, 43–57.
Załuski, M., 1973. Odnawialność wód podziemnych w świetle wybranych elementów i obliczeń bilansowych [Renewable groundwater in the light of selected elements and balance calculations]. Biuletyn Instytutu Geologicznego 3, 107–125.
Zolfaghari, A.A., Mirzaee, S. & Gorji, M., 2012. Comparison of different models for estimating cumulative infiltration. International Journal Soil Science 7, 108–115.
Zuber, A. (Ed.), 2007. Metody znacznikowe w badaniach hydrogeologicznych, Poradnik metodyczny [Marker methods in hydrogeological research, Methodological guide]. Wyd. Politechniki Wrocławskiej, Wrocław, 402 pp.
Żurawski, M., 1966. Próba wydzielenia typów infiltracyjnych Niziny Wielkopolskiej [An attempt to isolate the infiltration types of the Wielkopolska Lowland]. PTPN, Prace Komisji Geograficzno-Geologicznej, Poznań, 53 pp.
License
Copyright (c) 2018 Renata Graf, Jan Przybyłek
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.