Identification of transport parameters of chlorides in different soils on the basis of column studies
PDF

Keywords

pore-water velocity
dispersion coefficient
dispersivity constant
CXTFIT
STANMOD

How to Cite

Pietrzak, D., Kania, J., Kmiecik, E., & Wątor, K. (2019). Identification of transport parameters of chlorides in different soils on the basis of column studies. Geologos, 25(3), 225–229. https://doi.org/10.2478/logos-2019-0024

Abstract

Knowledge of transport patterns of chemicals in groundwater is essential for environmental assessment of their potential impact. In the present study, the mobility of a chloride tracer injected into three different soils was investigated, using column experiments. The column tests were performed under steady-state conditions to determine parameters of chloride migration through soils. Based on breakthrough curves, pore-water velocity, dispersion coefficient and dispersivity constant were calculated for each soil sample using CXTFIT/STANMOD software. Pore-water velocity was in the range of 0.31 cm/min for fine sand, to 0.35 cm/min for silty sand and to 0.40 cm/min for vari-grained sand. The highest values of dispersion coefficient and dispersivity constant were observed for silty sand (0.55 cm2/min and 1.55 cm, respectively), while the lowest value was found for fine sand (0.059 cm2/min and 0.19 cm, respectively). Column experiments for chlorides (conservative tracer) are a preliminary stage for further research which will be undertaken to investigate migration parameters of selected neonicotinoids (reactive tracers) through different soils.

https://doi.org/10.2478/logos-2019-0024
PDF

References

Fernández-Bayo, J.D., Nogales, R. & Romero, E., 2015. Winery vermicomposts to control the leaching of diuron, imidacloprid and their metabolites: Role of dissolved organic carbon content. Journal of Environmental Science and Health – Part B Pesticides, Food Contaminants, and Agricultural Wastes 50, 190–200.

Fox, P.J., Lee, J. & Lenhart, J.J., 2010. Coupled consolidation and contaminant transport in compressible porous media. International Journal of Geomechanics 11, 113–123.

Kania, J. & Witczak, S., 2011. Modele migracji zanieczyszczeń [Contaminants transport models]. [In:] S. Dąbrowski, J. Kapuściński, K. Nowicki, J. Przybyłek & A. Szczepański (Eds): Metodyka modelowania matematycznego w badaniach i obliczeniach hydrogeologicznych – poradnik metodyczny [Mathematical modelling in hydrogeological studies and calculations: a methodological handbook]. Bogucki Wydawnictwo Naukowe, Poznań, 313–332.

Kmiecik, E., Wątor, K., Pietrzak, D., Kania, J. & Witczak, S., 2017. Pesticides in waters in Poland – problems, assignment and challenges. IWA 10th Micropol & Ecohazard Conference, Vienna, Austria.

Kret, E., Kiecak, A., Malina, G., Nijenhuis, I. & Postawa, A., 2015. Identification of TCE and PCE sorption and biodegradation parameters in a sandy aquifer for fate and transport modelling: batch and column studies. Environmental Science and Pollution Research 22, 9877–9888.

Marciniak, M., Okońska, M., Kaczmarek, M. & Kazimierska-Drobny, K., 2013. Analiza parametryczna krzywej przejścia znacznika przez kolumnę filtracyjną [The sensitivity test for a breakthrough curve recorded during tracer migration in a filtration column]. Biuletyn Państwowego Instytutu Geologicznego 456, 385–390.

Marquardt, D.W., 1963. An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics 11, 431–441.

Okońska, M., Marciniak, M. & Kaczmarek, M., 2019a. The pulse descriptors in sensitivity studies of no-sorption and single-sorption column transport models. Journal of Porous Media 22, 563–582.

Okońska, M., Kaczmarek, M. & Marciniak, M., 2019b. The pulse descriptors in sensitivity studies of hybrid sorption column transport models. Journal of Porous Media 22, 647–662.

Okońska, M., Marciniak, M., Kaczmarek, M. & Kazimierska-Drobny, K., 2009. Identification of filtration and migration parameters in the MATLAB calculation environment using numerical simulation of breakthrough curve and optimization methods. Water Resources Management V 125, 471–482.

Parker, J.C. & Genuchten, M.T., 1992. Determining transport parameters from laboratory and field tracer experiments. Virginia Agricultural Experiment Station 84, 1–97.

Patil, S.B. & Chore, H.S., 2014. Contaminant transport through porous media: An overview of experimental and numerical studies. Advances in Environmental Research 3, 45–69.

Patil, S.B. & Chore, H.S., 2015. Transport of chloride through saturated soil column: An experimental study. Advances in Environmental Research 4, 105–117.

Pietrzak, D., Kania, J., Malina, G., Kmiecik, E. & Wątor, K., 2019a. Pesticides from the EU first and second Watch Lists in the water environment. Clean – Soil, Air, Water 47, 1–13.

Pietrzak, D., Wątor, K., Pękała, D., Wójcik, J., Chochorek, A., Kmiecik, E. & Kania, J., 2019b. LC-MS/MS method validation for determination of selected neonicotinoids in groundwater for the purpose of a column experiment. Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants, and Agricultural Wastes 54, 424–431.

Rolle, M., Hochstetler, D., Chiogna, G., Kitanidis, P.K. & Grathwohl, P., 2012. Experimental investigation and pore-scale modeling interpretation of compound-specific transverse dispersion in porous media. Transport in Porous Media 93, 347–362.

Sharma, P.K., Sawant, V.A., Shukla, S.K. & Khan, Z., 2014. Experimental and numerical simulation of contaminant transport through layered soil. International Journal of Geotechnical Engineering 8, 345–351.

Simunek, J., van Genuchten, M.T., Sejna, M., Toride, N. & Leij, F.J., 1999. The STANMOD computer software for evaluating solute transport in porous media using analytical solutions of convection-dispersion equation. Version 1.0 and 2.0. IGWMC-TPS 71, International Ground Water Modeling Center, Colorado School Of Mines, Golden, 32 pp.

Swami, D., Sharma, P.K. & Ojha, C.S.P., 2013. Experimental investigation of solute transport in stratified porous media. ISH Journal of Hydraulic Engineering 19, 145–153.

Toride, N., Leij, F.J. & van Genuchten, M.Th., 1995. The CXTFIT code for estimating transport parameters from laboratory and field tracer experiments. Version 2.0. Research Report No. 137, U.S. Salinity Laboratory, Riverside, 121 pp.

Witczak, S., Kania, J. & Kmiecik, E., 2013. Katalog wybranych fizycznych i chemicznych wskaźników zanieczyszczeń wód podziemnych i metod ich oznaczania [Guidebook on selected physical and chemical indicators of groundwater contamination and methods of their determination]. Biblioteka Monitoringu Środowiska, Warszawa, 717 pp.