Suspended sediment in lowland rivers – towards identifying the ratios of mineral and organic components and their variation during the year
PDF

Keywords

suspended sediment concentration
mineral suspension
organic suspension
seasonal variability

How to Cite

Skolasińska, K. (2021). Suspended sediment in lowland rivers – towards identifying the ratios of mineral and organic components and their variation during the year. Geologos, 27(3), 173–180. https://doi.org/10.2478/logos-2021-0019

Abstract

Concentrations of suspended sediment transported by rivers are influenced by interactions between multiple drivers that act on a range of spatial and temporal scales. Such levels vary over the year, as well as across multi-year periods. Most conventional approaches to determining suspended load are based upon analyses of total suspended sediment concentration (SSC), i.e., the sum of mineral and organic matter. This approach makes it difficult, if not impossible, to determine the impact of multiple environmental factors on changes in suspension concentration precisely. The present paper focuses on the mineral and organic components of suspended sediment with the aim of determining how our knowledge of the share of each individual component can improve interpretations of SSC fluctuations during a hydro-logical year. The analysis conducted (personal and other researchers’ results) has shown that mineral and organic suspensions demonstrate mutually incompatible opposite trends under influence of environmental factors. This analysis of organic components identifies clear seasonal trends, which indicates that organic suspensions of autogenous origin have a strong influence on the dynamics of changes in suspension concentration; such analyses are rarely included in assessments of SSC dynamics.
https://doi.org/10.2478/logos-2021-0019
PDF

References

Bettess, R., 1994. Sediment transport and channel stability. [In:] Calow, P. & Petts, G.E. (Eds): The Rivers Handbook. Blackwell Scientific Publications, pp. 227-253.

Bezak, N., Šraj, M. & Mikoš, M., 2016. Analyses of suspended sediment loads in Slovenian rivers. Hydrological Sciences Journal 61, 1094–1108.

Biedenharn, D.S., Thorne, C.R. & Watson, C.C., 2006. Wash load / bed material load concept in regional sediment management. Proceedings of the Eighth Federal Inter-agency Sedimentation Conference, Reno, USA, 483-490.

Brański, J., 1967. Dokładność punktowego pomiaru zmącenia wody. [Accuracy of the point measurements of the water turbidity]. Wiadomości Służby Hydrologicznej i Meteorologicznej 3, 19–30 (in Polish, with English summary).

Brański, J., 1968. Oznaczenie ilości unosin metodą wagową bezpośrednio przy użyciu sączków. [Determination of suspended load by direct weight method using filters]. Prace Państwowego Instytutu Hydrologiczno-Meteorologicznego 94, 13–21 (in Polish, with English summary).

Cisty, M., Soldanova, V., Cyprich, F., Holubova, K. & Simor, V., 2021. Suspended sediment modelling with hydrological and climate input data. Journal of Hydroinformatics 23, 192-210.

Desertova, B. & Puncochar, P., 2011. Variability of phytoplankton biomass in a lowland river: Response to climate conditions. Limnologica 41, 160–166.

Einstein, H.A., Anderson, A.G. & Johnson, J.W., 1940. A distinction between bed-load and suspended load in natural streams. Transactions of American Geophysical Union 21, 628-633.

Hillebrand, G., Hardenbicker, P., Fisher, H., Otto, W. & Vollmer, S., 2018. Dynamics of total suspended matter and phytoplankton loads in the river Elbe. Journal of Soils and Sediments 18, 3104-3113.

Hilton, J., O’Hare, M., Bowes, M.J. & Jones, J.I., 2006. How green is my river? A new paradigm of eutrophication in rivers. Science of the Total Environment 365, 66-83.

Jarocki, W., 1957. Ruch rumowiska w ciekach; badanie oraz obliczanie ilości materiału wleczonego i unoszonego. [The movement of sediments in streams; studying and calculating the amount of bed-load and suspended-load]. Wydawnictwo Morskie, Gdynia, 356 pp. (in Polish).

Jokiel, P., 2004. Zasoby wodne środkowej Polski na progu XXI wieku. [Central Poland’s water resources at the threshold of the 21st century]. Wydawnictwo Uniwersytetu Łódzkiego, 114 pp. (in Polish, with English summary).

Kaniecki, A., 2004. Poznań. Dzieje miasta wodą pisane. [The History of the City Written with Water]. Wydawnictwo PTPN, Poznań, 724 pp. (in Polish, with English summary).

Khullar, N.K., 2007. Transport of fines / wash load through channels – a review. Hydrology Journal 30, 43-63.

Khullar, N.K., Kothyari, U.C., Ranga Raju, K.G., 2010. Suspended Wash Load Transport of Nonuniform Sediments. Journal of Hydraulic Engineering 136, 8, 534-543.

Kundzewicz, Z.W., Piniewski, M., Mezghani, A., Okruszko, T., Pińskwar, I., Kardel, I., Hov, Ø., Szcześniak, M., Szwed, M., Benestad, R.E., Marcinkowski, P., Graczyk, D., Dobler, A., Førland, E. I., O’Keefe, J., Choryński, A., Parding, K.M. & Haugen, J.E., 2018. Assessment of climate change and associated impact on selected sectors in Poland. Acta Geophysica 66, 1509–1523.

Olive, L.J. & Rieger, W.A., 1992. Stream suspended sediment transport monitoring – why, how and what is being measured? IAHS Publications 210, 245-254.

Pagano, S.G., Sollitto, D., Colucci, M., Prato, D., Milillo, F., Ricci, G.F. & Gentile, F., 2020. Setting up of an experimental site for the continuous monitoring of water discharge, suspended sediment transport and groundwater levels in a Mediterranean Basin. Results of one year of activity. Water 12, 3130; doi:10.3390/w12113130.

Pasławski, Z., 1973. Metody hydrometrii rzecznej. [River hydrometry methods]. Wydawnictwa Komunikacji i Łączności, Warszawa, 338 pp. (in Polish).

Peng, T., Tian, H., Singh, V.P., Chen, M., Liu, J., Ma, H. & Wang, J., 2020. Quantitative assessment of drivers of sediment load reduction in the Yangtze River basin, China. Journal of Hydrology 580; doi:10.1016/j.hydrol.2019.124242.

Ptak, M., Sojka, M., Kałuża, T., Choiński, A. & Nowak, B., 2019. Long-term water temperature trends of the Warta River in the years 1960–2009. Ecohydrology and Hydrobiology 19, 441-451.

Shah-Fairbank, S. & Julien, P.Y., 2015. Sediment load calculations from point measurements in sand-bed rivers. International Journal of Sediment Research 30, 1-12.

Siakeu, J., Oguchib, T., Aokic, T., Esakid, Y. & Jarviee, H.P., 2004. Change in riverine suspended sediment concentration in central Japan in response to late 20th century human activities. Catena 55, 231-254.

Skolasińska, K. & Nowak, B., 2018. What factors affect suspended sediment concentrations in rivers?: A study of the upper Warta River (Central Poland). River Research and Applications 34, 112-123.

Skolasińska, K., Nowak, B. & Bradtke, K., 2020. A two-decade record of variations in suspended sediment in the Warta River, a lowland river in western Poland. Geological Quarterly 64, 1048–1060.

Van Vliet, M.T.H. & Zwolsman, J.J.G., 2008. Impact of summer droughts on the water quality of the Meuse River. Journal of Hydrology 353, 1–17.

Vercruysse, K., Grabowski, R.C. & Rickson, R.J., 2017. Suspended sediment transport dynamics in rivers: Multi-scale drivers of temporal variation. Earth Science Reviews 166, 38-52.

Vercruysse, K., Grabowski, R.C., Hess, T. & Lexartza-Artza, I., 2020. Linking temporal scales of suspended sediment transport in rivers: towards improving transferability of prediction. Journal of Solis and Sediments, Advances in sediment science and management Available online 29 May 2020.

Walling, D.E., 2008. The changing sediment loads of the world’s rivers. Annals of Warsaw University of Life Sciences – SGGW, Land Reclamation 39, 3-20.

Walling, D.E. & Fang, D., 2003. Recent trend in the suspended sediment loads of the world’s river. Global and Planetary Change 39, 111-126.

Warrick, J.A. & Rubin, D.M., 2007. Suspended-sediment rating curve response to urbanization and wildfire, Santa Ana River, California. Journal of Geophysical Research 112, p.15, DOI: 10.1029/2006JF000662.

Williams, G.P., 1989. Sediment concentration versus water discharge during single hydrological events in rivers. Journal of Hydrology, 111, 89-106.

Woo, H.S., Julien, P.Y. & Richardson E.R., 1986. Wash load and fine sediment load. Journal of Hydraulic Engineering 112, 541-45.

Yang, C.T. & Simões, F.J.M., 2005. Wash Load and Bed-Material Load Transport in the Yellow River. Journal of Hydraulic Engineering 131, 5, 413-418.

Yuill, B.T. & Gasparini, N.M., 2011. Hydrologic controls on wash load sediment concentrations within a low-ordered, ephemeral watershed. Journal of Hydrology 410, 73–83.

Zwolsman, J.J.G. & Van Bokhoven, A.J., 2007. Impact of summer drought on water quality of the Rhine River – a preview of climate change? Water Science and Technology 56, 45–55.