Predictive diagenetic clay-mineral distribution in siliciclastic rocks as a tool for identifying sequence boundaries in non-marine successions: the Coalspur Formation, west-central Alberta
PDF

Keywords

sequence stratigraphy
non-marine deposits
siliciclastics
diagenesis
clay minerals

How to Cite

Khidir, A., & Catuneanu, O. (2009). Predictive diagenetic clay-mineral distribution in siliciclastic rocks as a tool for identifying sequence boundaries in non-marine successions: the Coalspur Formation, west-central Alberta. Geologos, 15(3-4), 169–180. https://doi.org/10.2478/v10118-009-0001-2

Abstract

The study of upper Cretaceous-lower Tertiary fluvial deposits of the Coalspur Formation in the Foothills region of west-central Alberta reveals that the distribution of early authigenic kaolinite has a well-defined relation to the sequence stratigraphic framework. In this context, it has been observed that the kaolin mineral content increases in sandstones lying below subaerial unconformities, which mark the most significant stratigraphic hiatuses and hence the sequence boundaries in fully fluvial successions. The increased abundance of authigenic kaolinite immediately below sequence boundaries may have been caused by the infiltration of meteoric water during times of subaerial erosion, resulting in the dissolution of unstable minerals (e.g., micas and feldspar) and the formation of kaolinite and secondary porosity. It is therefore suggested that the change in clay mineral assemblages in the stratigraphic section depends in part on the position of the analyzed sandstone samples relative to the sequence boundaries. In a larger context, the method of using authigenic clays to delineate depositional sequences in non-marine successions needs to be evaluated on a case-by-case basis, as the diagnostic early diagenetic minerals underlying the sequence boundary may change as a function of palaeoclimate and also as a function of late diagenetic processes.

https://doi.org/10.2478/v10118-009-0001-2
PDF

References

Aitken, J. F. & Flint, S. S., 1995. The application of high-resolution sequence stratigraphy to fluvial systems: a case study from the Upper Cretaceous Breathitt Group, eastern Kentucky, USA. Sedimentology 42, 3-30. DOI: https://doi.org/10.1111/j.1365-3091.1995.tb01268.x

Bjorlykke, K., 1984. Formation of secondary porosity: how important is it? [In:] D. A. McDonald & R. C. Surdam (Eds): Clastic Diagenesis. American Association of Petroleum Geologists, Memoir 37, 277-286. DOI: https://doi.org/10.1306/M37435C16

Catuneanu, O., 2006. Principles of Sequence Stratigraphy. Elsevier, Amsterdam, 375 pp.

Catuneanu, O., Sweet, A. R., & Miall, A. D., 2000. Reciprocal stratigraphy of the Campanian-Paleocene Western Interior of North America. Sedimentary Geology 134, 235-255. DOI: https://doi.org/10.1016/S0037-0738(00)00045-2

Catuneanu, O. & Sweet, A. R., 1999. Maastrichtian-Paleocene foreland basin stratigraphies, Western Canada: A reciprocal sequence architecture. Canadian Journal of Earth Sciences 36, 685-703. DOI: https://doi.org/10.1139/e98-018

Csoma, A. E., Goldstein, R. H., Mindszenty, A. & Simone, L., 2004. Diagenetic salinity cycles and sea level along a major unconformity, Monte Camposauro, Italy. Journal of Sedimentary Research 6, 889-903. DOI: https://doi.org/10.1306/051304740889

Dawson, F. M., Kalkreuth, W. D. & Sweet, A. R., 1994. Stratigraphy and coal resource potential of the Upper Cretaceous to Tertiary strata of northwestern Alberta. Geological Survey of Canada Bulletin 466, 60 pp. DOI: https://doi.org/10.4095/194029

Dutta, P., 1992. Climatic influence on diagenesis fluvial sandstones. [In:] K. Wolf & G. Chillingrain (Eds): Diagenesis III. Developments in Sedimentology 47, 674 pp. DOI: https://doi.org/10.1016/S0070-4571(08)70566-1

Ehrenberg, S. N., Aagaard, P., Wilson, M. J., Fraser, A. R., & Duthie, D. M. L., 1993. Depth-dependent transformation of kaolinite to dickite in sandstones of the Norwegian continental shelf. Clay Minerals 28, 325-352. DOI: https://doi.org/10.1180/claymin.1993.028.3.01

Emery, D., Myers, K. J., & Young, R., 1990. Ancient subaerial exposure and freshwater leaching in sandstones. Geology 18, 1178-1181. DOI: https://tinyurl.com/yck7snf8

Garcia, A. J. V., 2000. Pre-Aptian unconformity in the Sergipe-Alagoas Basin (northeastern Brazil); an important control on the pre-rift reservoir sandstone porosity evolution. Brazil 31st International Geological Congress; Abstracts volume.

Grim, R. E., 1953. Clay mineralogy. McGraw-Hill Series in Geology, 377 pp. DOI: https://doi.org/10.1097/00010694-195310000-00009

Jerzykiewicz, T., 1997. Stratigraphic framework of the upper Cretaceous to Paleocene strata of the Alberta Basin. Geological Survey of Canada Bulletin 510, 121. DOI: https://doi.org/10.4095/208902

Jerzykiewicz, T. & Langenberg, W., 1983. Structure, stratigraphy and sedimentology facies of the Paleocene and Lower Cretaceous coal-bearing strata in the Coalspur and Grande Cache areas, Alberta. Canadian Society of Petroleum Geologists Conference (The Mesozoic of Middle North America), Field Trip Guidebook, No. 9, 63.

Jerzykiewicz, T. & Mclean, J. R., 1980. Lithostratigraphical and sedimentological framework of coal-bearing Upper Cretaceous and Lower Tertiary strata, Coal Valley area, central Alberta Foothills. Geological Survey of Canada, Paper 79-12, 47. DOI: https://doi.org/10.4095/102161

Jerzykiewicz, T. & Sweet, A. R., 1986. The Cretaceous-Tertiary boundary in the central Alberta Foothills. In; Stratigraphy. Canadian Journal of Earth Science 23, 1356-1374. DOI: https://doi.org/10.1139/e86-130

Jerzykiewicz, T. & Sweet, A. R., 1988. Sedimentological and palynological evidence of regional climatic changes in the Campanian to Paleocene sediments of the Rocky Mountain Foothills, Canada. Sedimentary Geology 59, 29-76. DOI: https://doi.org/10.1016/0037-0738(88)90099-1

Jerzykiewicz, T., Lerbekmo, J. F. & Sweet, A. R., 1984. The Cretaceous-Tertiary boundary, central Alberta Foothills. 1984 Canadian Paleontology and Biostratigraphy Seminar, Programme with Abstracts, 4.

Ketzer, J. M., Morad, S., Evans, S., Al-Aasm, I. S., 2002. Distribution of diagenetic alterations in fluvial, deltaic, and shallow marine sandstones within a sequence stratigraphic framework: evidence from the Mullaghmore Formation Formation (Carboniferous), NW Ireland. Journal of Sedimentary Research 72, 760-774. DOI: https://doi.org/10.1306/042202720760

Ketzer, J. M., Holz, M., Morad, S., Al-Aasm, I. S., 2003a. Sequence stratigraphic distribution of diagenetic alterations in coalbearing, paralic sandstones: evidence from the Rio Bonito Formation (early Permian), southern Brazil. Sedimentology 50, 855-877. DOI: https://doi.org/10.1046/j.1365-3091.2003.00586.x

Ketzer, J. M., Morad, S. & Amorosi, A., 2003b. Predictive diagenetic clay-mineral distribution in siliciclastic rocks within a sequence stratigraphic framework. [In:] R. H. Worden & S. Morad (Eds): Clay Mineral Cements in Sandstones. International Association of Sedimentologists Special Publication 34, Blackwell Publication, Oxford, 43-61. DOI: https://doi.org/10.1002/9781444304336.ch2

Lerbekmo, J. F. & Sweet, A. R., 2008. Magnetobiostratigraphy of the continental Paleocence upper Coalspur and Paskapoo formations near Hinton, Alberta. Bulletin of Canadian Petroleum Geology 56, 118-146. DOI: https://doi.org/10.2113/gscpgbull.56.2.118

Longiaru, S., 1987. Visual comparators for estimating the degree of sorting from plane and thin sections. Journal of Sedimentary Petrology 57, 791-794. DOI: https://doi.org/10.1306/212F8C60-2B24-11D7-8648000102C1865D

Luebking, G., Longman, M. & Carlisle, J., 2001. Unconformity related chert/dolomite production in the Pennsylvanian Amsden Formation, and the utilization of the drillstem test in finding hydrocarbons. American Association of Petroleum Geologists Annual Meeting, Expanded Abstracts, 121.

McCarthy, P. J. & Plint, A. G., 1998. Recognition of interfluve sequence boundaries: integrating paleopedology and sequence stratigraphy. Geology 26, 387-390. DOI: https://doi.org/10.1130/0091-7613(1998)026<0387:ROISBI>2.3.CO;2

Miall, A. D., 1997. The geology of stratigraphic sequences. Springer-Veralg, Berlin, 433 pp. DOI: https://doi.org/10.1007/978-3-662-03380-7

Morad, S., Ketzer, J. M., De Ros, L. F., 2000. Spatial and temporal distribution of diagenetic alterations in siliciclastic rocks: implications for mass transfer in sedimentary basins. Sedimentology 47, 95-120. DOI: https://doi.org/10.1046/j.1365-3091.2000.00007.x

Nurkowski, J. R., 1984. Coal quality, coal rank variation and its relation to reconstructed overburden, Upper Cretaceous and Tertiary plains coals, Alberta, Canada. American Association of Petroleum Geologists Bulletin 68, 285-295. DOI: https://doi.org/10.1306/AD460A12-16F7-11D7-8645000102C1865D

Pettijohn, F. J., Potter, P. E. & Siever, R., 1987. Sand and sandstone. 2nd ed. Springer-Verlag, New York, 553 pp. DOI: https://doi.org/10.1007/978-1-4612-1066-5

Posamentier, H. W., Jervey, M. T. & Vail P. R., 1988. Eustatic controls on clastic deposition I: Conceptual framework. [In:] C. K. Wilgus, B. S. Hastings, C. G. St.C. Kendall, H. W. Posamentier, C. A. Ross. & J. C. Van Wagoner (Eds): Sea level change: an integrated approach. SEPM Special Publication 42, 109-124. DOI: https://doi.org/10.2110/pec.88.01.0109

Posamentier, H. W. & Vail P. R., 1988. Eustatic controls on clastic deposition II: Sequence and systems tract models. [In:] C. K. Wilgus, B. S. Hastings, C. G. St.C. Kendall, H. W. Posamentier, C. A. Ross. & J. C. Van Wagoner (Eds): Sea level change: an integrated approach. SEPM Special Publication 42, 125-154. DOI: https://doi.org/10.2110/pec.88.01.0125

Robert, C. & Chamley, H., 1991. Development of early Eocene warm climates, as inferred from clay mineral variations in oceanic sediments. Palaeogeography, Palaeoclimatology, Palaeoecology 89, 315-31. DOI: https://doi.org/10.1016/0031-0182(91)90169-R

Shanley, K. W. & McCabe, P. J., 1994. Perspectives on the sequence stratigraphy of continental strata. American Association of Petroleum Geologists Bulletin 78, 544-568. DOI: https://doi.org/10.1306/BDFF9258-1718-11D7-8645000102C1865D

Shanmugam, G., 1990. Porosity prediction in sandstones using erosional unconformities. [In:], I. D. Meshri & P. J. Ortoleva (Eds): Prediction of reservoir quality through chemical modeling. American Association of Petroleum Geologists, Memoir 49, 1-23. DOI: https://doi.org/10.1306/M49520C1

Shanmugam, G. & Higgins, J. B., 1988. Porosity enhancement from chert dissolution beneath Neocomian unconformity, Ivishuk Formation, North Slope, Alaska. American Association of Petroleum Geologists Bulletin, 72, 523-535. DOI: https://doi.org/10.1306/703C8EC0-1707-11D7-8645000102C1865D

Shutov, V. D., Aleksandrova, A. V., & Losievskaya, S. A., 1970. Genetic interpretation of the polymorphism of the kaolinite group in sedimentary rocks. Sedimentology 15, 69-82. DOI: https://doi.org/10.1111/j.1365-3091.1970.tb00206.x

Suttner, J. & Dutta, K., 1986. Alluvial sandstone composition and paleoclimate. II. Authigenic mineralogy. Journal of Sedimentary Petrology 56, 346-358. DOI: https://doi.org/10.1306/212F890E-2B24-11D7-8648000102C1865D

Tardy, Y., 1971. Characterization of the principal weathering types by the geochemistry of waters from some European and African crystalline massifs. Chemical Geology 7, 253271. DOI: https://doi.org/10.1016/0009-2541(71)90011-8

Velde, B., 1985. Clay minerals, a physico-chemical explanation of their occurrence. Developments in Sedimentology 4, Elsevier, New York, 427 pp.

Weaver, C. E., 1989. Clays, muds, and shales. Developments in Sedimentology 44, Elsevier, Amsterdam, 819 pp.

Wilson, M. D. & Pittman, E. D., 1977. Authigenic clays in sandstones: recognition and influence on reservoir properties and paleoenvironmental analysis. Journal of Sedimentary Petrology 47, 3-31. DOI: https://doi.org/10.1306/212F70E5-2B24-11D7-8648000102C1865D

Wu, Y., Shouan, Z. & Ai, H., 1998. Unconformity types and their relationship to oil/gasreservoirs in the Tarim Basin, Xinjiang, China. Xinjiang Petroleum Geology 19, 101-105.