Mesozoic mass extinctions and angiosperm radiation: does the molecular clock tell something new?
PDF

Keywords

angiosperms
radiation
mass extinction
molecular clock
Mesozoic

How to Cite

Ruban, D. (2012). Mesozoic mass extinctions and angiosperm radiation: does the molecular clock tell something new?. Geologos, 18(1), 37–42. https://doi.org/10.2478/v10118-012-0003-3

Abstract

Angiosperms evolved rapidly in the late Mesozoic. Data from the genetic-based approach called ‘molecular clock’ permit an evaluation of the radiation of flowering plants through geological time and of the possible influences of Mesozoic mass extinctions. A total of 261 divergence ages of angiosperm families are considered. The radiation of flowering plants peaked in the Albian, early Campanian, and Maastrichtian. From the three late Mesozoic mass extinctions (Jurassic/Cretaceous, Cenomanian/Turonian, and Cretaceous/Palaeogene), only the Cretaceous/Palaeogene event coincided with a significant, abrupt, and long-term decline in angiosperm radiation. If their link will be further proven, this means that global-scale environmental perturbation precluded from many innovations in the development of plants. This decline was, however, not unprecedented in the history of the angiosperms. The implication of data from the molecular clock for evolutionary reconstructions is limited, primarily because this approach deals with only extant lineages.

https://doi.org/10.2478/v10118-012-0003-3
PDF

References

Alvarez, W., 2008. T. rex and the Crater of Doom - the story that waited 65 million years to be told - how a giant impact killed the dinosaurs, and how the crater was discovered. Princeton University Press (Princeton), 185 pp.

Anderson, J. M., Anderson, H. M., Archangelsky, S., Bamford, M., Chandra, S., Dettemann, M., Hill, R., McLoughlin, S. & Rössler, O., 1999. Patterns of Gondwana plant colonisation and diversification. Journal of African Earth Sciences 28, 145-167.

Archangelsky, S., Barreda, V., Passalia, M. G., Gandolfo, M., Prámparo, M., Romeroa, E., Cúneo, R., Zamuner, A., Iglesias, A., Llorens, M., Puebla, G. G., Quattrocchio, M. & Volkheimer, W., 2009. Early angiosperm diversification: evidence from southern South America. Cretaceous Research 30, 1073-1082.

Courtillot, V., 2007. Evolutionary catastrophes - the science of mass extinction. Cambridge University Press (Cambridge), 173 pp.

Crane, P. R., 1987. Vegetational consequences of the angiosperm diversification. [In:] E. M. Friis, W. G. Chaloner & P. R. Crane (Eds): The origins of angiosperms and their biological consequences. Cambridge University Press (Cambridge), 181-201.

Crane P. R., Friis, E. M. & Pedersen, K. P., 1996. The origin and early diversification of angiosperms. Nature 374, 27-33.

Dilcher, D., 2010. Major innovations in angiosperm evolution. [In:] C. T. Gee (Ed.): Plants in Mesozoic time - morphological innovations, phylogeny, ecosystems. Indiana University Press (Bloomington), 97-116.

Eldredge, N. & Gould, S. J., 1972. Punctuated equilibria: an alternative to phyletic gradualism. [In:] T. J. M. Schoft (Ed.): Models in paleobiology. Freeman Cooper (San Francisco), 82-115.

Feild, T. S., Arens, N. C., Doyle, J. A., Dawson, T. E. & Donoghue, M. J., 2004. Dark and disturbed: a new image of early angiosperm ecology. Paleobiology 30, 82-107.

Friis, E. M., Doyle, J. A., Endress, P. K. & Leng, Q., 2003. Archaefructus: angiosperm precursor or specialized early angiosperm? Trends in Plant Science 8, 369-373.

Gould, S. J., 2002. The structure of evolutionary theory. Belknap Press (Cambridge), 1433 pp.

Gould, S. J., 2007. Punctuated equilibrium. Belknap Press (Cambridge), 396 pp.

Hallam, A., 1986. The Pliensbachian and Tithonian extinction events. Nature 319, 765-768.

Hallam, A. & Wignall, P. B., 1997. Mass extinctions and their aftermath. Oxford University Press (Oxford), 320 pp.

Harries, P. & Little, C. T. S., 1999. The early Toarcian (Early Jurassic) and the Cenomanian-Turonian (Late Cretaceous) mass extinctions: similarities and contrasts. Palaeogeography, Palaeoclimatology, Palaeoecology 154, 39-66.

Hedges, S. B. & Kumar, S. (Eds), 2009. The timetree of life. Oxford University Press (Oxford), 551 pp.

Heimhofer, U., Hochuli, P. A., Burla, S., Dinis, J. M. L. & Weissert, H., 2005. Timing of Early Cretaceous angiosperm diversification and possible links to major paleoenvironmental change. Geology 33, 141-144.

Heimhofer, U., Hochuli, P. A., Burla, S. & Weissert, H., 2007. New records of Early Cretaceous angiosperm pollen from Portuguese coastal deposits: Implications for the timing of the early angiosperm radiation. Review of Palaeobotany and Palynology 144, 39-76.

Hughes, N. F., 1994. The enigma of angiosperm origins. Cambridge Uiversity Press (Cambridge), 303 pp.

Ivany, L. C. & Schopf, K. M. (Eds), 1996. New perspectives on faunal stability in the fossil record. Palaeogeography, Palaeoclimatology, Palaeoecology 127, 1-359.

Magallón, S. & Castillo, A., 2009. Angiosperm diversification through time. American Journal of Botany 96, 349-365.

Martin, W., Gierl, A. & Saedler, H., 1989. Molecular evidence for Pre-Cretaceous angiosperm origins. Nature 339, 46-48.

McElwain, J. C. & Punyasena, S. W., 2007. Mass extinction events and the plant fossil record. Trends in Ecology & Evolution 22, 548-557.

Medlin, L. K., Sáez, A. G. & Young, J. R., 2008. A molecular clock for coccolithophores and implications for selectivity of phytoplankton extinctions across the K/T boundary. Marine Micropaleontology 67, 69-86.

Meredith, R. W., Janecka, J. E., Gatesy, J., Ryder, O. A., Fisher, C. A., Teeling, E. C., Goodbla, A., Eizirik, E., Simao, T. L. L., Stadler, T., Rabosky, D. L., Honeycutt, R. L., Flynn, J. J., Ingram, C. M., Steiner, C., Williams, T. L., Robinson, T. J., Burk-Herrick, A., Westerman, M., Ayoub, N. A., Springer, M. S. & Murphy, W. J., 2011. Impacts of the Cretaceous Terrestrial Revolution and KPg Extinction on Mammal Diversification. Science 334, 521-524.

Moldowan J. M., Dahl, J., Huizinga, B. J., Fago, F. J., Hickey, L. J., Peakman, T. M. & Taylor, D. W., 1984. The molecular fossil record of oleanane and its relation to Angiosperms. Science 265, 768-771.

Ogg, J. G., Ogg, G. & Gradstein, F. M., 2008. The concise geologic time scale. Cambridge University Press (Cambridge), 177 pp.

Philippe, M., Barale, G., Gomez, B., Guignard, G. & Thévenard, F., 1999. Paléodiversifications de flores terrestres phanérozoïques. GeoBios 32, 325-331.

Philippe, M., Gomeza, B., Girard, V., Coiffard, C., Daviero-Gomez, V., Thévenard, F., Billon-Bruyat, J.-P., Guiomard, M., Latil, J.-L., Le Loeuff, J., Neraudeau, D., Olivero, D. & Schlögl, J., 2008. Woody or not woody? Evidence for early angiosperm habit from the Early Cretaceous fossil wood record of Europe. Palaeoworld 17, 142-152.

Prothero, D. R., 1992. Punctuated equilibrium at twenty: a paleontological perspective. Skeptic 1, 38-47.

Quental, T. & Marshall, C. R., 2010. Diversity dynamics: molecular phylogenies need the fossil record. Trends in Ecology & Evolution 25, 434-441.

Raup, D. W. & Sepkoski, J. J., 1982. Mass extinctions in the marine fossil record. Science 215, 1501-1503.

Russell, D. A., 2009. Islands in the cosmos - the evolution of life on land. Indiana University Press (Bloomington), 453 pp.

Sepkoski, J. J., Jr., 1986. Phanerozoic overview of mass extinctions. [In:] D. M. Raup & D. Jablonski (Eds): Patterns and processes in the history of life. Springer (Berlin), 277-295.

Sepkoski, J. J., Jr. & Raup, D. M., 1986. Periodicity in marine extinction events. [In:] D. K. Elliott (Ed.): Dynamics of extinction. John Wiley (New York), 3-36.

Smith, A. B., 2001. Large-scale heterogeneity of the fossil record: implications for Phanerozoic biodiversity studies. Philosophical Transactions of the Royal Society of London B 356, 351-367.

Smith, A. B. & Peterson, K. J., 2002. Dating the time of origin of major clades: molecular clocks and the fossil record. Annual Review of Earth and Planetary Sciences 30, 65-88.

Smith, A. B., Gale, A. S. & Monks, N. E. A., 2001. Sea-level change and rock-record bias in the Cretaceous: a problem for extinction and biodiversity studies. Paleobiology 27, 241-253.

Soltis, D. E., Soltis, P. E., Endress, P. K. & Chase, M. W., 2005. Phylogeny and evolution of angiosperms. Sinauer Associates (Sunderland), 370 pp.

Taylor, D. W., Li, H., Dahl, J., Fago, F. J., Zinniker, D. & Moldowan, J. M., 2006. Biogeochemical evidence for the presence of the angiosperm molecular fossil oleanane Paleozoic and Mesozoic non-angiospermous fossils. Paleobiology 32, 179-190.

Tshudy, R. H. & Tshudy, B. D., 1986. Extinction and survival of plant life following the Cretaceous/Tertiary boundary event, Western Interior, North America. Geology 14, 667-670.

Vajda, V. & McLoughlin, S., 2007. Extinction and recovery patterns of the vegetation across the Cretaceous-Palaeogene boundary - a tool for unravelling the causes of the end-Permian mass-extinction. Review of Palaeobotany and Palynology 144, 99-112.

Vajda, V., Raine, J. I. & Hollis, C. J., 2001. Indication of global deforestation at the Cretaceous-Tertiary boundary by New Zealand fern spike. Science 294, 1700-1702.

Wilf, P. & Johnson, K. R., 2004. Land plant extinction at the end of the Cretaceous: a quantitative analysis of the North Dakota megafloral record. Paleobiology 30, 347-368.