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Abstract: Remote sensing techniques based on soil spectral characteristics are the key to future land management; 
however, they still require field measurement and an agrochemical laboratory for the calibration of the soil property 
model. Visible and near-infrared diffuse reflectance spectroscopy has proven to be a rapid and effective method. This 
study aimed to assess the suitability of multispectral data acquired with the agricultural digital camera in determining 
soil properties. This 3.2-Mpx camera captures images in three spectral bands – green, red and near-infrared. First, the 
reference data were collected, which consist of 151 samples that were later examined in the laboratory to specify the 
granulometric composition and to quantify some chemical elements. Second, additional soil properties such as cation 
exchange capacity, organic carbon and soil pH were measured. Finally, the agricultural digital camera photograph 
was taken for every soil sample. Reflectance values in three available spectra bands were used to calculate the spectra 
indices. The relationships between the collected data were calculated using the independent validation regression 
model such as Cubist and cross-validation model like partial least square in R Studio. Additionally, different types of 
data normalisation multiplicative scatter correction, standard normal variate, min–max normalisation, conversion into 
absorbance] were used. The results proved that the agricultural digital camera is suitable for soil property assessment 
of sand and silt, pH, K, Cu, Pb, Mn, F, cation exchange capacity and organic carbon content. Coefficient of determina-
tion varied from 0.563 (for K) to 0.986 (for soil organic carbon). Higher values were obtained with the Cubist regression 
model than with partial least squares.
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Introduction

Historically, our perception of soil and its 
characteristics has required comprehensive lab-
oratory analysis. Conventional measurement 
techniques aiming to assess the relationship be-
tween the physical and chemical properties of 

soil components often overlook their complex 
interaction. It is important to develop and im-
prove the existing methods of measuring soil 
parameters to describe the entire soil system 
as accurately as possible (Viscarra Rossel et al. 
2006). Spectroscopy makes it possible to devi-
ate from the traditional techniques of laboratory 
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measurement of soil parameters by determining 
the relationship between electromagnetic radi-
ation and an object in its natural environment. 
Spectroscopic measurements have shown enor-
mous potential for calibration, prediction and 
data modelling in soil science (Milton 1987). 
Historically, research has been conducted to de-
termine the possible method of testing soils in 
various ranges of electromagnetic radiation. One 
of the best-studied is where diffuse reflectance 
spectroscopy (DRS) has been used, inter alia, in 
the mid-visible and near-infrared (MVNIR) rang-
es. This method enables faster, more economical-
ly and non-chemically extracted soil measure-
ment procedures (Raupach 1991).

Visible and near-infrared (VNIR) spectros-
copy in soil research enables the simultaneous 
measurement of several parameters without 
prior laborious precise preparation of samples. 
In laboratory conditions, hyperspectral spectro-
photometers with very high spectral resolution 
in the VNIR range are used to measure soil sam-
ples. However, soil properties are also estimat-
ed with a lower spectral resolution using satel-
lite and airborne multispectral sensors. Imaging 
data from these sensors are recorded in only a 
few bands of the VNIR range and can be used 
to estimate the content of soil organic carbon 
(SOC) (Croft et al. 2012, de Paul Obade, Lal 2013) 
and clay (Nanni, Dematte 2006, Demattê, Fiorio 
2009). However, better results can be obtained 
by combining satellite data with hyperspectral 
measurements (Peng et al. 2015). Other studies 
show that attempts are being made to use air-
borne multispectral data to improve the quality 
of soil maps (Wetterlind et al. 2008). The Cubist 
model is often used to estimate SOC. In this case, 
it is also advisable to use spectral indices as var-
iables in addition to raw reflectance (Peng et 
al. 2015).

Unmanned aerial vehicle (UAV) – mounted 
multispectral VNIR sensors are very often used 
to observe agricultural crops in precision farm-
ing applications. However, there are also mul-
tispectral cameras that can be used for ground or 
laboratory imaging. An example of a multispec-
tral data acquisition device is the agricultural 
digital camera (ADC). This sensor is specifically 
designed to capture three spectral channels that 
are most sensitive to changes in plant biomass, 
i.e. green, red and near-infrared. This fact makes 

ADC suitable for estimating the size of biomass 
and yield (Swain et al. 2010), assessment of ni-
trogen content at various stages of plant devel-
opment (Saberioon et al. 2012), calculation of 
vegetation indices (Liu et al. 2012) and even for 
discrimination of crop cultivars (Avola et al. 
2019). ADC can also be used in field research as 
a part of UAV (Candiago et al. 2015, Vega et al. 
2015, Matese et al. 2017).

Another approach is given by multispectral 
satellite sensors. S ince 1972, L andsat satellites 
gather images that can be useful in environmen-
tal studies. For example, sensor thematic mapper 
(TM) on-board Landsat 5 was used to detect bare 
soil (Dematte et al. 2009). In 2015, the European 
Space Agency (ESA) begin to deliver free of 
cost, good spatial resolution (10 m) Earth imag-
es. Sensors on-board optical Sentinel-2 satellites 
are equipped with 12 spectral bands, which can 
be useful for clay content mapping (Gasmi et al. 
2022). There are other examples of clay content 
mapping using other multispectral sensors such 
as that on-board the ASTER satellite (Gasmi et al. 
2019). These studies have proved that multispec-
tral satellite sensors should be considered in soil 
research more often.

The usefulness of the acquired image data 
largely depends on the way it is processed and 
analysed. Many statistical methods are used to 
obtain reliable soil information from multispec-
tral images, such as multiple linear regression 
(MLR) analysis, principal component regression 
(PCR) and partial least squares (PLS) regression. 
Application of the latter method to hyperspectral 
data allows to determine several soil parameters 
with high values of correlation coefficient and 
low errors, including grain size composition, pH, 
cation exchange capacity (CEC) or some chemical 
elements (Mammadov et al. 2020, Vestergaard et 
al. 2021). Recently, machine learning algorithms 
based on random forests and Cubist development 
models have been used to study the relationship 
between spectral data and soil characteristics. 
The Cubist model is often used to estimate SOC; 
in such cases, it is also advisable to use spectral 
indices as variables in addition to raw reflectance 
(Peng et al. 2015).

A proposed new approach for estimating soil 
parameters is to use for this purpose multispec-
tral images obtained from ADC. The possibility 
of determining the condition of the soil substrate 



	 ASSESSMENT OF SOIL CHARACTERISTICS USING A THREE-BAND AGRICULTURAL DIGITAL CAMERA	 129

based on such data is not well researched or de-
scribed. This study aimed to determine whether 
it would be possible to estimate soil parameters 
using a sensor that guarantees measurements 
only in three spectral channels (green, red and 
near-infrared). More precisely, which soil pa-
rameters, with what method of data analysis and 
with what accuracy, can be estimated based on 
images taken with a multispectral camera in lab-
oratory conditions.

Materials and methods

Study area

The research was conducted within two ara-
ble fields located in Pokrzywno (Wielkopolskie 
Voivodeship, Poznań Poviat). This region has a 
temperate transitional climate characterised by a 
small number of frosty days and low rainfall. The 
average annual temperature is 8.5°C and the an-
nual rainfall is about 500–550 mm (WIOS 2013). 
It is an area with unfavourable water balance, 
exposed to periodic droughts. Soils classified as 
Luvisols and Phaeozems, according to the IUSS 
Working Group WRB (2015), dominate this study 
area (Fig. 1).

Sampling and laboratory analyses

A total of 151 samples were collected from 
both research fields. They were tested in the 
soil science laboratory of the Adam Mickiewicz 
University in Poznań. All samples were prepared 
for testing by drying, grinding in a ceramic mor-
tar and sieving through a 2-mm mesh sieve. The 
soil texture was determined by the hydrometer 
method according to the standard PN-R-04032 
(Polish Committee for Standardisation PKN 
1998). SOC was determined using oxidation by 
K2Cr2O7 with H2SO4 for 30 min on the digestion 
block at 150°C and titration of oxidant residues 
by FeSO4 (Nelson, Sommers 1996). Total nitro-
gen was modified using the Kjeldahl method 
(International Standard ISO 12261 1995). The soil 
pH was measured in 1:1 soil solution ratio in wa-
ter and 1M KCL (PN-ISO 10390 1997). The form of 
nutrients available to plants (K, Mg, Ca, Zn, Cu, 
Pb, Cd, Mn and Fe) was determined by the mod-
ified Mehlich 3 method (Mehlich 1984). CEC was 
determined by successive barium and magnesi-
um chloride solution extraction and flame atomic 
absorption spectroscopy (International Standard 
ISO 11260 1994). Calcium carbonate content 
was determined twice using Scheibler volumet-
ric (International Standard ISO 10693 2002) and 

Fig. 1. Map of the study area.
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titration methods (FAO 2021). As a result of the 
analyses, the soil particle size composition was 
determined, and the amount of organic carbon, 
nitrogen, the ratio of carbon content to nitrogen 
content, soil reaction, percentage of calcium car-
bonate, total CEC and the content of the elements 
potassium, magnesium, calcium, zinc, copper, 
lead, cadmium, manganese, iron and phospho-
rus was also determined.

Multispectral data

Multispectral data of soil samples were taken 
in the laboratory environment using the ADC by 
Tetracam. The specific design with optical Bayer 
filter mask in the complementary metal–oxide–
semiconductor (CMOS) sensor allows to obtain 
three images at a resolution of 2048 × 1536 px (3.2 
Mpx) (Swain et al. 2010). The images correspond 
to three Landsat Thematic Mapper 2, 3 and 4 
spectral bands: green (520–600  nm), red (630–
690 nm) and near-infrared (760–920 nm) (Lan et 
al. 2010) and the estimated ground pixel resolu-
tion is 0.000707 m px−1 (Swain et al. 2010).

For the purposes of this study, photographs 
of 151 soil samples were taken under laboratory 
conditions. The ADC was placed on a tripod at a 
height of 70 cm above the test object and at an an-
gle of 90°. In addition, a 400-W halogen lamp was 
used to illuminate the surface of the soil, which 
was set at a distance of 80  cm and at an angle 
of 45°. Then the images were processed into tiff 

format in the Pixel Wrench 2 program dedicated 
by the manufacturer. The next step was to trans-
form the original digital numbers to reflectance 
using the TNT Mips software.

Spectral indices

The evolution of remote sensing techniques 
caused the development of methods of evaluat-
ing remote measurements, processing and ex-
tracting as much information as possible from 
the collected data. Attempts to interpret the re-
flectance data from different available ranges of 
electromagnetic radiation have led to the devel-
opment of a large number of indicators and their 
derivatives. A large group of spectral indices re-
late to the vegetation and soil substrate, which 
are calculated as the ratio of reflectance in two 
or more spectral channels of the selected device, 
sometimes with additional parameters (Bannari 
et al. 1995).

In this study, vegetation indices such as nor-
malized difference vegetation index (NDVI), ra-
dar vegetation index (RVI, Bannari et al. 1995, 
Martínez M. 2017) and infrared percentage vege-
tation index (IPVI, Gunathilaka 2021) were used. 
All of them presented ratios between reflected 
radiation in red and infrared ranges. In addi-
tion, the indexes with green spectra such as IPVI 
(GNDVI, Candiago et al. 2015), green-red veg-
etation index (GRVI, Motohka et al. 2010) and 
modified G NDVI  normal (Crippen 1990) were 

Table 1. Summary of spectral indices used in the study.
Spectral index Abbreviation Formula

Normalized Difference Vegetation Index NDVI NIR − RED
NIR + RED

Green Normalized Fifference Vegetation Index GNDVI NIR − GREEN
NIR + GREEN

Green Normalized Fifference Vegetation Index normal GNDVInormal NIR − GREEN
NIR + GREEN

2

+ 1

Infrared Percentage Vegetation Index IPVI NIR
NIR + RED

Soil-adjusted Vegetation Index SAVI* NIR − RED
NIR + RED + L

× (1 + L)

Radar Vegetation Index RVI NIR
RED

Green-Red Vegetation Index GRVI NIR
GREEN

*SAVI25 – L=0.25, SAVI50 – L=0.50, SAVI75 – L=0.75.
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added to the dataset. Finally, three variants of 
the soil-adjusted vegetation index (SAVI, Bannari 
et al. 1995) were calculated, considering the soil 
parameter in three values of 0.25, 0.5 and 0.75. 
Summarises the spectral indices used in the spec-
tral data processing (Table 1).

Data normalisation

Raw spectra are subject to fluctuations and 
noise disturbance. For this reason, methods of 
standardising spectra data are often used. They 
consist in reducing the undesirable effects in the 
set of spectral measurements (Gholizadeh et al. 
2015). In this study, we used methods of mul-
tiplicative scatter correction (MSC), standard 
normal variate (SNV), conversion of reflectance 
data into absorbance and scaling with minimum 
and maximum values. One of the most popular 
methods of data standardisation is MSC (Rinnan 
et al. 2009). This method relies on adjusting to 
each spectral measurement an ideal reference 
spectrum estimated based on additive and mul-
tiplicative correction factors (Rinnan et al. 2009). 
Another frequently used method is the SNV, 
which consists of common centring and scaling 
by subtracting the mean values and normalis-
ing with the standard deviation for each reflec-
tion spectrum (Vestergaard et al. 2021). MSC 
and SNV were introduced by the Prospectr 0.2.4 
package implemented in the R-4.1.3 software for 
Windows. When working with various types of 
data, it can be noticed that occasionally, some 
measured results may significantly differ from 
others and thus disturb the work of the compu-
tational model (Gholizadeh et al. 2015). To elimi-
nate this effect, the min–max scaling can be used 
(available in the R software in the Caret package). 
This type of data normalisation is based on scal-
ing all data so that they fall in the range from 
zero to one. This reduces the value of the stand-
ard deviation and also the effect of outliers in the 
dataset.

Additionally, the spectral data were convert-
ed to the form of absorbance according to the fol-
lowing formula (Wenjun et al. 2014):

	 ABS = −logR,

where R is the reflectance in a given spectral 
channel.

Regression modelling

Regression models are used to establish the 
relationship between variables y (dependent, ex-
plained variable) and x (independent, explana-
tory variable). Such analysis makes it possible to 
explain how the value of the explained variable 
developed under the influence of the explanato-
ry variable. In the case of a greater number of 
variables, it is useful to use statistical programs 
that calculate relationships between the varia-
bles by selecting the best variables to determine 
the relationship within the given parameter. 
Regression models are often used to estimate 
the content of soil components. Among them are 
Cubist (Peng et al. 2015) and PLS (Vestergaard 
et al. 2021). Cubist, which is modelled on the 
M5 Quinlana model (Quinlan Basser 1992), is a 
tool that allows to create a decision tree based 
on a given number of rules. Each rule represents 
a linear regression model to which the given 
variables are fitted. I f the value of the variable 
matches the rule, its predicted value is calculated 
(Minasny, McBratney 2008). The final regression 
model is simplified to reduce the absolute error 
value (Yi Peng et al. 2015). Partial least squares 
(PLS), which was created by H.Wold in 1966, is 
a linear regression method recommended in the 
case of a large number of explanatory variables 
and when there is a high probability that they 
can be correlated with each other. The reduced 
set of x variables is used to create the regression 
model (Wold et al. 2001).

Variable importance

Variable importance in the projection (VIP) is 
useful for determining which predictor variables 
are best explained by explanatory variables. VIP 
determines the variables and the extent to which 
they contribute to the construction of a given re-
gression model (Chong, Jun 2005, Xu et al. 2021).

VIP values can be obtained through dedicated 
software.

Accuracy assessment

There are many ways to determine how well 
an outcome estimate is guaranteed by a given re-
gression model. One of them is to calculate the 
coefficient of determination R2. This measure 
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shows how well the variance of the predicted 
spectral values coincides with the values meas-
ured in the laboratory. R2 is calculated according 
to the following formula (Ng et al. 2022):

	
R2 = 1 −

∑n
i(xi − yi)2

∑n
i(xi − xi)2  

,

where xi i yi are the values observed and predict-
ed under i, and is the mean value of the observed 
(Ng et al. 2022).

Another factor is the root mean squared er-
ror (RMSE), which informs about the difference 
between the values estimated in the model. 
RMSE takes values equal to or greater than zero, 
with zero being a statistically perfect match of 
estimated values to those observed (Peng et al. 
2015):

	 RMSE =
∑n 2(x  − y )i i i

n√ ,

where xi i yi are the values observed and predict-
ed under i, and n is the number of samples(Yi 
Peng et al. 2015). Rel-RMSE – the derivative of 
RMSE is the relative mean square error calculat-
ed as the ratio of the RMSE value to the mean val-
ue of a given variable (Yiping Peng et al. 2019). 
Regression point displacement (RPD) is another 
value that is used to evaluate the quality of the 
model. It is the ratio between the standard devi-
ation of the variable and the RMSE (Vestergaard 
et al. 2021). At present, the RPIQ measure is 
considered more frequently when assessing the 
model estimation. It considers only the inter-
quartile range of the results. It is calculated as 
the quotient of the values measured in the inter-
quartile space and the RMSE (Vestergaard et al. 
2021).

Saeys et al. (2005) proposed to establish the 
criteria for the classification of the model accord-
ing to the following values of R2 and RPD: if R2 is 
<0.5 or RPD is <1.5, this indicates a poor model 
estimation and means that the calculated values 
cannot be used. If R2 is in the range of 0.5–0.65 
and RPD is between 1.5 and 2, then it is possi-
ble to distinguish between high and low values. 
R2 from 0.66 to 0.81 or RPD from 2 to 2.5 shows 
that the model enables approximate quantitative 
predictions. When the value of the coefficient of 
determination is in the range of 0.82–0.9 or RPD 
is between 2.5 and ≥3, then the model can be 

assumed to be good. Finally, if R2 is >0.91 com-
bined with value RPD >3, the model is perfect. 
As a rule, a good prediction model should have 
the highest R2 i RPD (or RPIQ) values and as lit-
tle RMSE as possible (or rel-RMSE) (Wenjun et 
al. 2014).

Results and discussion

Laboratory analyses

The results of laboratory analyses are present-
ed in Table 2. The summary includes statistics on 
mean values, median, maximum and minimum 
values, and standard deviation. As shown in 
Table 2, mean values for all data are in the range 
of 0.12–1504.29 mg ∙ kg−1. Calcium has the most 
varied values. The standard deviation for this el-
ement is 2014.76 mg ∙ kg−1. Other variables with 
high standard deviation are phosphorus, iron, 
magnesium, potassium and manganese. All oth-
er parameters have second derivative (SD) values 
<10.00; cadmium has the lowest standard devia-
tion value of 0.12 mg ∙ kg−1.

Soil spectra

Table 3 shows a summary of reflectance data 
obtained by ADC and the results of all used 
data normalisation methods. The mean reflec-
tance values for each spectral band are 0.47 for 
green, 0.41 for red and 0.81 for near-infrared. 
After MSC data normalisation, the mean red and 
green band values were slightly changed, while 
the NIR value was the same in both. The SNV 
method changed spectral data completely with 
mean red and green values changed to negative. 
Application of min–max normalisation effected 
in NIR spectra became smaller than the red band 
value. The same was observed for the absorbance 
values. The standard deviation varied from 0.32 
in SNV green band to 0.02 in the NIR MSC band. 
The MSC method had lower standard deviation 
values for each band.

Figure 2 presents the relationship between 
analysed soil characteristics and ADC spectral 
data in addition to the calculated spectral indi-
ces. Correlation values differ from −1.0 (marked 
as blue on the graph) to 1.0 (red). Most of the soil 
parameters have a strong negative correlation 
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Table 2. Summary of soil laboratory analyses.
Parameter Unit Min Mean Median Max SD

Sand % 61.00 78.10 79.00 85.00 4.12
Silt % 12.00 16.87 16.00 33.00 3.63
Clay % 1.00 4.97 5.00 8.00 1.69
SOC % 0.57 1.56 1.00 5.79 1.32
N % 0.01 0.14 0.08 0.82 0.15
C/N – 6.40 14.34 11.80 63.00 9.10
pHH2O – 4.00 5.67 5.15 7.67 1.13
pHKCL – 3.48 5.18 4.65 7.25 1.24
CaCO3 vol % 0.00 0.87 0.00 12.00 2.03
CaCO3 titr % 0.00 1.15 0.00 13.10 2.44
CEC cmol kg−1 5.46 9.98 7.99 27.28 5.16
K mg kg−1 29.30 147.88 147.60 409.50 41.51
Mg mg kg−1 16.30 70.59 47.70 314.80 61.70
Ca mg kg−1 32.60 1504.29 322.70 7424.60 2014.76
Zn mg kg−1 4.40 9.06 8.50 27.40 3.70
Cu mg kg−1 1.00 1.75 1.60 3.50 0.56
Pb mg kg−1 0.50 5.36 5.00 13.90 1.90
Cd mg kg−1 0.00 0.12 0.09 0.55 0.12
Mn mg kg−1 19.40 73.22 76.60 101.30 17.93
F mg kg−1 83.10 233.97 248.60 385.10 60.25
P mg kg−1 23.30 176.88 153.60 275.60 63.21

Fig. 2. Correlation between soil parameters and spectral indices.



134	 Agnieszka Glinko, Cezary Kaźmierowski, Jan Piekarczyk, Sławomir Królewicz

Fig. 3. Summary of graphs for soil parameters that achieved the desired values of R2 and rel-RMSE.

Table 3. Summary of soil spectra.
RAW MSC SNV max-min NORM ABS 

MEAN SD MEAN SD MEAN SD MEAN SD MEAN SD
GREEN 0.47 0.12 0.50 0.11 −0.34 0.32 0.44 0.19 0.35 0.13
RED 0.41 0.15 0.38 0.09 −0.74 0.17 0.52 0.23 0.43 0.21
NIR 0.81 0.29 0.81 0.02 −1.08 0.17 0.33 0.15 0.13 0.20
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with spectral data. Only the percentage of sand 
and some chemical elements, such as Mn, Fe 
and P, have positive correlation values. Almost 
every soil parameter is correlated with some of 
the spectral bands or indices, with the exception 
of clay and zinc.

Comparison of model prediction

Both regression models were calculated for 21 
variables describing soil parameters and 12 vari-
ables corresponding to the average reflectance in 
three bands of the ADC device and the spectral 

Fig. 3. cont.

Table 4. Measures of goodness-of-fit for soil characteristic estimations.
Parameter Unit MEAN SD Model pre-processing R2 RMSE Rel RMSE RPD RPIQ

Sand % 78.10 4.12 Cubist MSC 0.793 3 211 0.04 1.28 1.22
Silt % 16.87 3.63 Cubist MSC 0.886 1 704 0.10 2.13 1.35
Clay % 4.97 1.69 PLS ABS 0.043 1 634 0.33 1.03 1.22
SOC % 1.56 1.32 Cubist SNV 0.986 0.284 0.18 4.64 1.74
N % 0.14 0.15 Cubist RAW 0.980 0.031 0.21 4.92 1.12
C/N – 14.34 9.01 PLS SNV 0.018 9 100 0.63 1 0.54
pHH2O – 5.67 1.13 Cubist ABS 0.937 0.403 0.07 2.82 5.06
pHKCL – 5.18 1.24 Cubist ABS 0.934 0.438 0.08 2.82 5.28
CaCO3 vol % 0.87 2.03 Cubist min-max Norm 0.780 0.673 0.77 3.01 0.48
CaCO3 titr % 1.15 2.44 Cubist min-max Norm 0.871 0.694 0.61 3.52 0.84
CEC cmol kg−1 9.98 5.16 Cubist ABS 0.928 1 278 0.24 2.23 2.36
K mg kg−1 147.88 41.51 Cubist RAW 0.563 27 770 0.19 1.49 0.97
Mg mg kg−1 70.59 61.70 Cubist SNV 0.951 23 463 0.33 2.63 1.78
Ca mg kg−1 1504.29 2014.76 Cubist min-max Norm 0.924 735 515 0.49 2.74 3.86
Zn mg kg−1 9.06 3.07 PLS SNV 0.068 3 548 0.39 1.04 1.15
Cu mg kg−1 1.75 0.56 Cubist ABS 0.853 0.284 0.16 1.97 2.85
Pb mg kg−1 5.36 1.09 Cubist ABS 0.848 1 638 0.31 1.16 1.77
Cd mg kg−1 0.12 0.12 Cubist min-max Norm 0.836 0.052 0.42 2.26 3.13
Mn mg kg−1 73.22 17.93 Cubist min-max Norm 0.867 8 419 0.11 2.13 1.68
F mg kg−1 233.97 60.25 Cubist RAW 0.832 38 073 0.16 1.58 1.91
P mg kg−1 176.88 63.21 Cubist ABS 0.463 67 680 0.38 0.93 2.12
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indices calculated on their basis. Additionally, 
the model was calculated each time for each var-
iant of standardised spectral variables. The data 
for the Cubist model were divided randomly 

into a training set of 80% of all data, and a test 
set which received the remaining 20% of the data. 
For the PLS model, cross validation type was 
used which divides the data into segments. The 

Fig. 4. Summary of graphs showing the most important variables used to estimate soil properties.
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number of segments was set to 10. Regression 
models, Cubist and PLS, were downloaded in 
the R software by dedicated packages Cubist, 
PLS. For the Cubist model, the chosen parame-
ters were the number of committees set to 1 and 
the number of rules set to 3. The obtained values 
of the predicted soil parameters were compared 
with those obtained by laboratory measurements 
based on the values of the correlation coefficient, 
root mean square of errors, relative root mean 
square of errors, RPD and the ratio of yield to in-
terquartile distance (RPIQ) (Table 4).

Yi Peng et al. (2015) used the Cubist model on 
328 soil samples to improve SOC modelling at the 
regional scale. The reference data were a combi-
nation of two satellite images and laboratory Vis-
NIR measurements. The obtained results were R2 
= 0.69, RMSE = 2.8, RPD = 1.6 and RPIQ = 0.8. 
Ng et al. (2022) conducted research that aimed to 
estimate the available nutrition of many soils us-
ing memory-based learning (MBL) algorithm and 
Cubist regression model. The validation statistics 
for the prediction of Mehlich III extractable ele-
ments using mid-infrared (MIR) spectroscopy are 
for Ca at R2 = 0.91 and RPIQ = 2.11; for Mg R2 = 
0.82 and RPIQ = 2.39; for K R2 = 0.56 and RPIQ 

= 2.59; for Mn R2 = 0.65 and RPIQ = 2.07; for P 
R2 = 0.5 and RPIQ = 1.47; and for Zn R2 = 0.59 
and RPIQ = 1.59. The result of all elements, ex-
cept zinc, is similar to or lower than the values 
obtained in our study. Other studies focused on 
different methods for soil features estimation. For 
example, Gholizadeh et al. (2015) focused on us-
ing support vector machine regression to establish 
a relationship between reflectance spectra in the 
visible near-infrared region and concentrations of 
Mn, Cu, Cd, Zn and Pb in soil. They used the first 
and second derivatives (FD and SD), SNV, MSC 
and continuum removal (CR) to normalise the 
data. The accuracy was defined by R2 and RMSE. 
FD turned out to be the best normalisation meth-
od giving the highest R2. For Cu it was 0.78, for 
Mn 0.6, for Cd 0.8, for Pb 0.68 and for Zn 0.77.

The next step was to answer the question of 
which soil parameters can be estimated based on 
multispectral data obtained with ADC and with 
what accuracy? For that purpose, the threshold 
values were established for R2 ≥0.5 and rel-RM-
SE ≤0.31. These criteria were met by 12 results 
(marked in bold in Table 4), which were the 
contents of sand, silt, SOC, nitrogen, potassium, 
copper, zinc, lead, manganese and iron, soil pH 

Fig. 4. cont.
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(pHH2O, pHKCL) and CEC. All were obtained using 
Cubist regression. In Table 4, apart from the re-
gression model, it was also specified which data 
normalisation method for each parameter guar-
anteed the highest possible R2 value and the low-
est possible rel-RMSE value. Normalisation by 
converting data to absorbance (ABS) most often 
gave the best results. The MSC method was se-
lected only twice.

According to the model evaluation criteria 
(Saeys et al. 2005), models for sand, clay, C/N, 
Pb, Zn and P were considered as not suitable for 
prediction. The distinction between high and low 
values was guaranteed by models for K and F. 
Models for the percentage content of silt, CEC, 
Cu, Mn, Cd and the first variant of calculating the 
calcium carbonate content allow for approximate 
quantitative predictions. According to the given 
criteria, we can consider pHH2O, pHKCL, Mg, Ca and 
the second method of determining the percentage 
of calcium carbonate as a good model. Finally, 
SOC and N were considered as perfect models.

The results, shown in the form of graphs (Fig. 
3), present the ratio of the obtained values to the 
predicted values. The x-axis shows the observed 
values, i.e. those measured in the laboratory, and 
the y-axis values are estimated by the regression 
model.

Variable importance

For the 12 best-estimated parameters, addi-
tional graphs (Fig. 4) were created to illustrate 
which variables were considered as the most im-
portant for building the regression model for each 
of them. The y-axis contains a list of variables in 
the order from the one that had the greatest im-
portance for building a given model. The x-ax-
is shows the range of values from 0% to 100%, 
describing the weight of the variable. Cubist re-
gression model is designed to select only certain 
parameters for prediction. For this reason, hav-
ing access to information about VIP can help in-
terpret and understand the given results (Fig. 4).

Conclusions

Based on the conducted research, it can be 
concluded that multispectral data are sufficient 
to determine the condition of the soil substrate. 

Although only the reflection values in the green, 
red and near-infrared bands were used in the 
study, it is possible to estimate 12 out of the 21 
described soil parameters with the use of appro-
priate data normalisation and regression model.

Although ADC was not dedicated to soil 
research, it can partially replace the classic 
spectroscope.

Based on the VIP charts, it can be concluded 
that the use of spectral indices as additional ex-
planatory variables is the correct assumption. 
Indicators played a large role in creating regres-
sion models for many soil parameters. Spectral 
indices such as GNDVI and NDVI were the most 
frequently used. The least frequently used indi-
ces were IPVI, SAVI25 and GNDVI normal.

The ease of use and portability of ADC makes 
it ideal for data acquisition in the field. For this 
reason, it is worth considering conducting simi-
lar studies based on images taken directly in the 
field. It is important to determine in what light-
ing conditions, at what angle of camera setting 
and for what types of soil it would be possible to 
best estimate the soil parameters.
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