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AsstracT: Cities are places with concentrations of people and the effects of their activities, which are particularly ex-
posed to the impacts of climate change. In this respect, one of the challenges for planners and decision-makers is urban
heat mitigation regarding the higher intensity of heat islands and heat waves. Shaping urban tissue is fundamental in
ensuring thermal comfort for city dwellers. Particular attention should be paid to children as they are more vulnerable
to thermal stress. Hence, the study aims to enhance climate-sensitive urban planning and policy by providing evidence
on the impact of green infrastructure (GI) and small-scale nature-based solutions (NBSs) such as preschool gardens
(PGs) in urban heat mitigation in Poznari, Poland. In addition to recognising the thermal conditions of PGs, we inves-
tigated their thermal impact on the surrounding areas. We also analysed preschoolers” exposure to urban heat during
their stay in PGs. The study employed Geographic Information System (GIS) and remote sensing data from Landsat
8 to generate the normalised difference vegetation index (NDVI) and surface temperature rasters. The results reveal
that the thermal impact of PGs depends on their size, NDVI and the tree canopy cover (TCC) of both PGs and their
surroundings. PGs are valuable areas that regulate thermal conditions in the city. We recommend optimising PGs into
more nature-oriented spaces (NDVI > 0.3) that might play the additional role of site-scale cooling shelters. The univer-
sal methodology developed and adopted in the study allows for scaling the research to other cities in the temperate
climate zone.
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Introduction island phenomenon (Roth et al. 1989, Lee 1993,

Majkowska et al. 2017, Saaroni et al. 2018).

Cities are increasingly exposed to the impacts
of climate change through temperature increases
(Norton et al. 2015) and frequent extreme events
such as heatwaves and tropical nights (Tomczyk,
Bednorz 2016, Solecki et al. 2018). Additionally,
dynamic urban development exacerbates tem-
perature conditions, contributing to the heat

§ sciendo

One of the solutions to tackle climate change
effects is green infrastructure (GI), which is a
strategically planned network of natural and
semi-natural areas with other environmental fea-
tures designed and managed to deliver a wide
range of ecosystem services (ESs) (EU 2013), which
has potential to moderate the above-identified
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climate change impacts in towns and cities (Gill et
al. 2007). GI that contributes through regulating
ESs to reducing risk factors resulting from urban
heat (Kabisch et al. 2017) can be developed and
understood as large-scale nature-based solutions
(NBSs) (EU 2015). It can be intentionally planned,
designed and managed to foster climate change
adaptation as “solutions that are inspired and
supported by nature, which are cost-effective,
simultaneously provide environmental, social
and economic benefits and help build resilience”
(EU 2015). In addition to these regulating ESs,
GI composed of diverse elements also provides
valuable cultural benefits, offering spaces for rest
and recreation to diverse social groups, whose
needs and perceptions of GI may vary (Jones et
al. 2022, Bakowska-Waldmann, Piniarski 2023).
To enhance such multiple benefits, interventions
may involve enlarging the GI surface through es-
tablishing new GI elements, physical changes of
existing GI elements that increase multifunction-
ality and/or quality and various uses of GI and
soft actions promoting GI (Zwierzchowska et al.
2019).

GI and generally vegetation play important
roles in mitigating thermal conditions in urban
areas (Gill et al. 2007, Bowler et al. 2010, Norton
et al. 2015, Saaroni et al. 2018). This crucial func-
tion results mainly from the evapotranspiration,
tree shading and modification of surface rough-
ness, impacting wind flow and heat exchange
(Qiu et al. 2013, Saaroni et al. 2018). Mature trees
with large, dense crowns have been found to be
the most effective for cooling (Gromke et al. 2015,
Zhou et al. 2021, Kim et al. 2024).

Many studies show the vital role of urban
parks and forests in mitigating urban heat (Cao
et al. 2010, Oliveira et al. 2011, Grilo et al. 2020,
Jang et al. 2024). While all green spaces, despite
their size, provide vital ESs (Gill et al. 2007), most
of the urban green areas investigated in climate
studies were relatively large-scale, and fewer
studies focus on the cooling potential of small-
scale green spaces (Lin et al. 2017).

Despite current evidence on the thermal ben-
efits of vegetation and water bodies, further re-
search is needed to investigate how cooling capac-
ities are influenced by different types, quantities
and spatial arrangements of GI (Bartesaghi-Koc
et al. 2019). Recognition of the cooling abilities
of small green spaces is especially important for

supporting the transition of a dense urban en-
vironment, where it is not possible to introduce
large parks or forests. In this regard, Bowler et
al. (2010) indicated that a cooling effect beyond
the boundary of the green area is particularly im-
portant for public health. Therefore, a key line of
future research on green space cooling effects is
to investigate the influences of distance and size
on the cooling effects of green areas, allowing
spatial arrangements of greening. In this context,
understanding the effect of land cover changes
on surface and air temperatures in urban mi-
cro-scale environments is crucial for supporting
sustainable planning and policy in densely built-
up areas (Kim et al. 2016).

Currently, about 50% of the global popula-
tion lives in urban settings, and it is projected
that the number will grow by up to 70% by 2050
(UN 2019). Given this, the importance of urban
thermal conditions in shaping the quality of life
increases. Within urban populations exposed to
unfavourable thermal conditions, children are
recognised as particularly vulnerable to the ef-
fects of urban heat (WHO 2008). According to
a review conducted by Antoniadis et al. (2020),
their higher vulnerability results from physiolog-
ical factors such as: 1) higher surface area to body-
mass ratio, which causes higher heat absorption;
2) higher metabolic rate that leads to higher heat
production; 3) lower height of children, which ex-
poses them more to the thermal impacts of long-
wave heat fluxes of high surface temperatures;
4) undeveloped thermoregulation; 5) different
process of heat loss (dry convective); and 6) rapid
heat exchange. Since excessive heat can negative-
ly affect children’s health and wellbeing (Backlin
et al. 2021, Malmquist et al. 2021), they should
be given special protection, including measures,
such as providing shaded play areas and green
spaces (UNICEF 2024). Despite this fact, thermal
conditions are still rarely considered in planning
and designing spaces devoted to children (Vanos
2015). Urban schoolyards are often covered with
artificial materials with high heat capacities and/
or heat conductivities, insufficient shading and
location in densely built-up areas, which creates
unfavourable thermal conditions. Moogk-Soulis
(2002, 2010) showed that schoolyards can even be
a heat island due to their higher surface temper-
ature than their surroundings. Only recently the
issue of thermal conditions in spaces predestined
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for children such as playgrounds (Qi et al. 2022),
schoolyards or preschool outdoor space (Sun et
al. 2023, van den Bogerd et al. 2023, Wallenberg
et al. 2023, Zhao et al. 2024) is getting an increas-
ing interest. The studies cover a wide range of
aspects, from the conceptual framework high-
lighting the potential of green schoolyards (van
den Bogerd et al. 2023), through the development
of models showing the impact of shade on heat
stress in preschool yards (Wallenberg et al. 2023),
to simulation of selected built-up and atmospher-
ic parameters at the design stage, showing that
optimisation in this regards can reduce the over-
all thermal stress (Sun et al. 2023). In addition,
research tests the performance of grey technical
solutions for heat mitigation, such as sun sails

and mist-sprays systems (Zhao et al. 2024).
Considering that outdoor activities are rec-

ommended for children as they are beneficial for
their health and development (Rose et al. 2008,
Wu et al. 2013, Xiong et al. 2017, Wallenberg et
al. 2023), providing safe and comfortable thermal
conditions in schoolyards and preschool gar-
dens (PGs) becomes a new paradigm in the plan-
ning and design of multifunctional urban green
spaces.

Taking the above into consideration, the main
aim of this study is to enhance urban planning
and policy in times of changing climate through
providing evidence of the impact of GI and
small-scale NBSs in urban heat mitigation. The
objectives of this study are as follows:

1. to recognise the potential of small-scale NBSs
such as PGs to lower the temperature at the
site scale [identification of PG cooling effect
(PGCE)];

2. torecognise the thermal conditions of PGs;

3. to estimate preschoolers’ exposure to urban
heat during their stay in PGs.

This study in PGs provides baseline data on
the impact of such small-scale green spaces on
shaping thermal conditions for preschoolers and
the nearest neighbourhood. Such evidence is
fundamental to formulate recommendations for
an integrated approach for planning and design
that includes, among others, climate change ad-
aptation. The proposed research methodology
and the findings obtained may contribute to cli-
mate-sensitive planning and design initiatives in
other cities within the temperate climate zone.

Materials and methods
Study area

Poznan has a population of approximately
545,000 inhabitants and an area of 262 km?, and
is one of the largest cities in Poland (Statistics
Poland 2022). The city is located in the temper-
ate climate zone and is characterised by average
temperature over multiple years (1991-2020) of
9.4°C and average precipitation over multiple
years (1991-2020) of 538 mm. However, recent
data show an increase in the average annual tem-
perature coupled with a decline in annual precip-
itation levels (IMWM 2023).

As with many other cities, Poznan faces the
problem of climate change, which is expressed
through rising temperature, more frequent-
ly occurring heat waves and tropical nights
(Potrolniczak et al. 2018), among other factors,
and those phenomena are predicted to increase
by 2050 (UCAP 2019).

In Poznan, there are 263 preschools attended
by 20,297 children (Department of Education of
Poznan City Hall 2019), of which 87% (230) have
their own outdoor space that plays the role of a PG
(Fig. 1). However, they vary in terms of the share
and composition of green spaces. According to
the national regulations, preschools operate year-
round; however, during summer holidays, they
may operate on a limited basis. Still each child is
guaranteed care at their home preschool during
the summer duty period.

We analysed thermal conditions of all PGs
(N = 230) against the background of the city’s
land surface temperature (LST). To provide a lo-
cal-scale perspective, we further examined three
detailed case studies: preschools No. 42, No. 87
and No. 115, located in one of the most densely
built-up areas of Poznari.

Materials and methods

The first step was to identify and map pre-
schools with their own outdoor area - a PG
(Fig. 2). Next, maps of average LST (ALST), tree
canopy cover (TCC) and a distribution of the nor-
malised difference vegetation index (NDVI) were
prepared to recognise thermal conditions of PGs
and their relationship to the existing vegetation.
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Fig. 1. Location of PGs in Poznan based on data from the Department of Education of Poznan City Hall (2019)
and the orthophoto of Poznan (SISP 2021).
PGs - preschool gardens

Then, based on the ALST map, the air temper-
atures (T, ) were modelled, showing the thermal
condition of PGs for children. Finally, PGCE was
assessed, taking into account differences in ALST
between each PG and its closest neighbourhood
within a 45 m ring buffer, and the thermal profiles
were analysed. We calculated average building
heights in ring buffers of PGs using the BDOT10k
(2022) topographic database as a secondary fac-
tor for analysing PGCE. The methods applied
in the following steps are presented in the next
sections.

Land surface temperature (LST), vegetation
index and tree canopy cover (TCC)

The thermal conditions of PGs were recog-
nised by analysing the distribution of LST ob-
tained from satellite imaging, which is a com-
mon approach in urban climate studies (Voogt,
Oke 2003, Tomlinson et al. 2011, Zhan et al. 2013,
Zhou et al. 2019), as well as in studies assessing

the thermal impact of green spaces (Cao et al.
2010, Estoque et al. 2017, Jang et al. 2024).

We utilised the Landsat Surface Temperature
product and selected bands of Landsat 8 Ope-
rational Land Imager (OLI)/Thermal Infrared
Sensor (TIRS) scenes from Collection 2 Level 2
Science Products (EROS 2024). The data were
processed according to Cook et al. (2014) and
the thematic guide (LSDS 2020). Using Earth
Explorer, we searched for images that captured
the city’s warmest weather conditions, ensur-
ing that cloud cover was < 3%. Our selection fo-
cused solely on images free of cloud interference
within the study area, allowing for accurate and
clear observations. As a result, we included the
thermal infrared bands ST _B10 from five mul-
tispectral satellite images that met the mentioned
criteria. They were captured on the following
dates: 7 June 2018, 3 June 2019, 26 June 2019, 23
September 2019 and 8 August 2020. The images
were acquired during clear weather conditions,
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Main steps

-

Identifying preschools with their
own outdoor area (gardens)

Creating ALST and NDVI
maps for Poznan

N

Calculating area-weighted
ALST, T,,, mean NDVI, and

TCC of PGs, their buffers,
and LULC classes

AN

Calculating thermal profiles
intersecting selected PGs
and their surrounding area

Estimating thermal conditions
in PGs (ALST and T;)

-

Recognising cooling effect
of preschools’ gardens (PGCE)

%

characterised by a cloud-free sky and full sun ex-

GIS
(digitisation based on
orthophoto)

GIS
(satellite images
processing)

GIS and statistics
(zonal and descriptive
statistics)

GIS
(stack profiles)

Statistics
(descriptive statistics)

GIS and statistics
(ring buffer, zonal
statistics, stack profiles)

Fig. 2. Study framework.
ALST - average land surface temperature; NDVI - normalised difference vegetation index; TIRS - thermal infrared
sensor; Tair - air temperature; TCC - tree canopy cover; PG - preschool garden; LULC - land use and land cover;
SIP - spatial information system; PGCE - preschool garden cooling effect; GIS - geographic information system

posure over the entire city, at the time of 9:44-

9:51 GMT (11:44-11:51 CET). These images depict

sunny weather typical of late spring, summer and

early autumn - referred to as the warm season -
when high temperatures may negatively impact
the thermal comfort of Poznan residents.

To calculate LST, raw values of each pixel of
the surface temperature bands were first multi-
plied using a scale factor and then enlarged by
including additive scale factor (ASF) [Eq. (1),
see LSDS (2020)]. In the next step we converted
the LST values from Kelvins to Celsius degrees

[Eq. 2)].
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%

LST, = (DN x MSF) + ASF

LST_. = LST, - 273.15

(1)
2)

LST, - LST in Kelvins (K),
DN - digital number (value of each pixel of
surface temperature band),
MSF - multiplicative scale factor equal to

ASF - additive scale factor equal to 149,
LST. - LST in Celsius degrees (°C).
As proposed by Majkowska et al. (2017), we

created a raster map of the ALST . from five imag-
es using the raster calculator in ArcMap [Eq. (3)].
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o LST
ALST = # @)

where:

- ALST - average LST (°C),

- LST. - LST in Celsius degrees (°C) for a given
pixel,

- n - number of scenes (pixels).

In this study, we included the greenness lev-
el by employing the NDVI, which is commonly
used in studies related to surface temperature
(Walawender 2009). With NDVI, we were able to
group PGs according to the greenness levels of
vegetation (Lo, Quattrochi 2003, Feyisa et al. 2014).
We calculated NDVI as proposed by Lillesand et
al. (2004) based on Landsat bands 4 [red band
(RED)] and 5 [near infrared band (NIR)] [see Eq.
(4)]. For each of the PGs, the mean NDVI was cal-
culated using the zonal statistics tool [Eq. (5)].

_ (NIR - RED)
NDVI=NIR + RED) ()
Ny 2 ZNDVI .

NDVI = £2— 5)

where:

- NDVI - normalised difference vegetation in-
dex,

— NIR - near infrared band, Landsat 8 band 5,

- RED - red band, Landsat 8 band 4,

- ANDVI - average NDVI of a given polygon,

- n - number of NDVI pixel values intersected
by a given polygon.

For PGs and their buffers, we calculated TCC
as the percentage share of canopy cover (%). It
was based on the tree canopy layer (SISP 2018),
which provides information on the canopy cov-
erage at a 0.5 m spatial resolution in the year
2018. We also analysed how building height in
PG buffers (measured by the number of floors)
affects thermal conditions in PGs. We identified
a number of floors using the vector Topographic
Objects Database (BDOT10k 2022).

The relationships between selected variables
and ALST and PGCE were assessed using the
Pearson correlation coefficient.

While analysing the thermal conditions in
PGs, we also considered the air temperature
distribution, estimated using the LST data and
the non-linear regression model developed for

Poznan by Majkowska et al. (2017) [see Eq. (6)].
The authors of the model used thermal data from
TM Landsat 5 satellite images, along with mete-
orological data that represent air temperature at
2 m above the ground in various areas of the city
of Poznan, obtained from in situ measurements
with HOBO sensors. The model is notable for its
high coefficient of determination (r? = 0.84).

T . =Db,* (ALST )" 6)

where:
- T, - estimated air temperature at a height of

2 m above ground level (°C),

bO, b, - model coefficients: b0 = 0.633 and

b, = 1.035,

- ALST_ - average LST (°C).

We compared the estimated air temperature
values in PGs to the number of preschoolers from
the city register, taking into account thresholds
from the Atlas of Poland Climate (Tomczyk,
Bednorz 2022), in which warm days (25.1-30.0°C)
and hot days (> 30.0°C) are distinguished.

Preschool garden cooling effect (PGCE)

The PGCE was defined as the mean LST dif-
ference between the PG and its buffer as pro-
posed by Cao et al. (2010) and Chibuike et al.
(2018), who measured a park’s cooling island
intensity. A similar approach is commonly used
in studies on the intensity of surface urban heat
islands measured as LST differences between ur-
ban and surrounding reference areas (Zhou et al.
2019). We calculated PGCE using Eq. (7) based
on Chibuike et al. (2018). Negative values of
PGCE indicate a cooling effect (ALST,,, < ALST))
and positive ones a warming effect of given PGs
(ALST,, > ALST,).

PGCE = ALST,, - ALST, @)

where:

- ALST, - average LST (°C) calculated for a giv-
en buffer of PG,

- ALST,, - average LST (°C) calculated for a
given PG.

We analysed PGCE within a 45 m distance,
which results from the spatial resolution and ge-
ometric parameters of Landsat 8 TIRS that collects
data with a 100 m spatial resolution resampled to
30 m (USGS 2019). Storey et al. (2014) have shown
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that the geometric accuracy varies from 7.4 m
in the case of TIRS Band-to-Band Registration
Accuracy (requirement value <18 m) to 32.7 min
the case of TIRS Absolute Geodetic Accuracy (re-
quirement value < 76 m). Taking the above into
account, we applied buffers, the size of which
exceeded the spatial resolution (pixel size) and
geometric performance values of the input data
(Zhan et al. 2013). A similar justification was pre-
sented by Chibuike et al. (2018).

However, it is necessary to stress that there is
no standard approach in delimitation buffer zones
thus far. Other studies that quantified greenspace
cooling effects applied various buffer parametri-
sations, e.g., from 30 m intervals from the edges
of parks to a maximum distance of 420 m (Feyisa
et al. 2014), 100 m intervals to a maximum dis-
tance of 200 m (Lowicki, Kuklifiska 2025) and 100
m around each case study greenspace (Shih 2017).

For the three selected case study preschools,
we investigated the PGCE using the thermal
profiles (stack profiles) showing the temper-
ature change within a distance interval (e.g.
Walawender 2009, Majkowska et al. 2017). We
used an ALST raster and a sampling interval of
30 m according to the map resolution.

Results

Thermal conditions of preschool gardens

Average land surface temperature (ALST)

We identified 230 preschools with PGs (87%
of all preschools in the city). The mean surface
area of gardens was 1585 m?, with a minimum
of 26 m? and a maximum of 6893 m” As much
as 59% (135 objects) had surface areas lower than
the mean value. This study has found no signifi-
cant correlation between surface area and ALST,,
(r=-0.0287, p = 0.665).

The distribution of NDVI was also quite di-
verse and ranged from nearly 0.1 to 0.4, with
an area-weighted mean of 0.24 being equal to
the median. Hence, half of the mapped PGs
had NDVI values > 0.24, and the second half
had lower values. The average NDVI (ANDVI)
of PGs proved to be significantly negatively
correlated with ALST_, (r = —0.4608, p = 0.000),
same as ANDVI of garden buffers with ALST .
(r=-0.7547, p = 0.000).

PGs had a wide range of TCC, from 0% to
97.5%, with an area-weighted mean of 41.3%.
In the case of 132 PGs, TCC was lower than
the mean. TCC of PGs was found to be signifi-
cantly negatively correlated with the ALSTPg
(r = —0.1481, p = 0.025). Similar relationship was
found also for the ALSTpg and the TCC of their
buffers (r = -0.5805, p = 0.000).

The ALST values of PGs ranged between a
maximum of > 42°C, a minimum of > 29°C and a
mean near 37°C. The mean value was > 2°C high-
er than the mean ALST calculated for the whole
city. Land use/land cover (LU/LC) patterns in
Poznani could partially explain this condition
since 88% of PGs are located in land use classes
of the highest mean ALST levels, and this could
have a warming impact on the thermal condi-
tions in the gardens. The analysis of preschool
distribution has shown that 64% of gardens are
located (have their centroids) in densely built-
up areas (continuous and discontinuous dense
urban fabric), 24% in industrial and commercial
units, near 5% in the discontinuous medium-den-
sity urban fabric, about 3% in green urban areas
and > 4% in other LU/LC classes.

The mean ALST,,, was lower in the groups of
gardens with a higher mean NDVI value (Fig. 3).
In the case of Poznan, the difference in ALST
between extreme groups of PGs (grouped by
NDVI) was > 1.8°C, which emphasises the role of
greenery in mitigating urban heat.

However, the effect of NDVI does not al-
ways explain the temperature difference. For
this reason, we have incorporated additional
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Fig. 3. Differences in preschool garden ALST
depending on NDVI levels based on Landsat 8 data
(EROS 2024).

ALST - average LST; LST - land surface temperature;
NDVI - normalised difference vegetation index; PGs -
preschool gardens
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parameters, such as TCC (%), and building
height (the mean number of floors) into our anal-
ysis. Table 1 shows that four groups of PGs can
be distinguished.

The relationship between NDVI and ALST
was visible for 160 PGs. However, there were 29
PGs where despite their relatively high vegeta-
tion cover (ANDVI > 0.25, mean TCC = 38.4%),
the ALST was above average. There were also 41
PGs where, despite relatively low ANDVI and
TCC, ALST was below average. In the cases of
groups 2 and 4, the impact of the intensity of de-
velopment in the vicinity of PGs could have been
significant. In group 2 of PGs, the mean height of
buildings within PG buffers was the highest, sug-
gesting a higher warming influence from build-
ings. In group 4, the mean height of buildings
was the lowest (Table 1), indicating less warming

influence. It is consistent with the correlation
found in this study between the height of build-
ings in PG buffers and the ALST,, (r = 0.1508,
p = 0.022, N = 230) - as the mean height of build-
ings in PG buffers increases, the ALSTpg also
increases.

Average air temperature

Air temperature in PGs at about noon in the
summertime and during radiation weather con-
ditions estimated based on ALST ranged from
almost 21°C to > 30°C. This indicates that most
preschoolers (94.5%) spend time in gardens char-
acterised by estimated air temperatures rang-
ing from > 25°C to nearly 30°C (warm days).
Additionally, 0.2% of preschoolers who spend
time in PGs might be exposed to air temperatures
> 30°C that characterise hot days (Fig. 4).

Table 1. Greenness and building characteristics of PGs and their buffers based on Landsat 8 data (EROS 2024)
and TCC (SISP 2018).

Group 1 Group 2 Group 3 Group 4
PGs with high ANDVI | PGs with high ANDVI | PGs with low ANDVI PGs with low ANDVI
Statistics (20.25) and below (20.25) and above (<0.25) and above (<0.25) and below
average ALST average ALST average ALST average ALST
(<36.83; N = 76) (>36.83; N = 29) (>36.83; N = 84) (<36.83; N = 41)
TCC (%) in PGs
Mean 42.74 38.38 32.41 30.31
Median 42.73 37.84 32.38 32.96
Min 0.00 4.91 0.00 0.00
Max 97.50 68.90 81.80 85.79
TCC (%) in PG buffers
Mean 30.71 2242 17.44 23.17
Median 31.15 21.76 16.44 22.86
Min 4.01 7.54 3.54 7.61
Max 90.06 40.34 39.20 38.85
Greenness level (ANDVI) of PGs
Mean 0.28 0.28 0.20 0.20
Median 0.28 0.27 0.20 0.21
Min 0.25 0.25 0.08 0.12
Max 0.40 0.33 0.24 0.24
Greenness level (ANDVI) of PG buffers
Mean 0.26 0.22 0.18 0.22
Median 0.25 0.22 0.18 0.21
Min 0.17 0.16 0.08 0.15
Max 0.40 0.27 0.25 0.27
Number of floors in buildings located within buffer zones of preschools
Mean 2.31 2.80 2.47 2.15
Median 2.00 2.00 2.00 2.00
Min 0 0 0 1
Max 18 18 18 12

ALST - average LST; ANDVI - average NDVI; LST - land surface temperature; NDVI - normalised difference vege-
tation index; PGs - preschool gardens; TCC - tree canopy cover
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Fig. 4. Preschoolers and thermal conditions in PGs
based on Landsat 8 data (EROS 2024) and the Poznan
City Hall register.

PGs - preschool gardens

Preschool garden cooling effect on
neighbourhoods

Results of buffer analysis

Based on the buffer analysis, we identified
137 PGs that cool down the nearest surround-
ings within a distance of 45 m. Notably, 29 re-
sults were excluded due to their level of uncer-
tainty. Thus, we confirmed the cooling impact of
117 PGs and the warming effect of 84 gardens.
The mean cooling effect was about —0.16°C
with a minimum of —0.03°C and a maximum of
—0.51°C. In contrast, the mean warming impact
was about 0.18°C with a minimum of 0.03°C and
a maximum of 0.62°C.

PGs varied based on area, NDVI and ALST,
among other parameters as presented in Table 2.
The cooling PGs are characterised by nearly 0.5°C

lower temperature on average than the ones with
warming effect (area-weighted mean ALST in
Table 2).

Those generating a cooling effect were usual-
ly more extensive. Their mean surface area was
approximately 19% larger than that of gardens
with a warming impact. However, there was no
significant correlation between surface area and
PGCE size in PGs (r = -0.0292, p = 0.660, N = 201).

Values of the vegetation index were also
slightly higher for cooling gardens. This is well
observed in groups of gardens according to the
NDVI levels. The mean cooling effect (PGCE)
increased from -0.11°C with NDVI < 0.2 to
—0.20°C with NDVI 20.3 (Fig. 5). We have found
a significant negative correlation between PGCE
and ANDVI in both PGs (r = -0.2805, p = 0.000,
N = 230) and their buffers (r = —0.2315, p = 0.000,
N =201).
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Fig. 5. The intensity of PGCE according to the NDVI
levels based on Landsat 8 data (EROS 2024) and the
Poznan City Hall register.

NDVI - normalised difference vegetation index; PGCE -
PG cooling effect; PG - preschool garden

Table 2. Characteristics of PGs in Poznan due to the PGCE status based on the orthophoto of Poznan (SISP
2021) and Landsat 8 data (EROS 2024).

Characteristics | ALST (°C) | Area(m? | NDVI | TCC (%) |Average building height (No. of floors)
Preschools with cooling effect, N = 117
Minimum 29.35 48 0.09 0.00 1.07
Maximum 40.09 5300 0.40 97.50 9.25
Area-weighted mean 36.66 1767 0.26 44.97 3.02
Mean 36.47 1767 0.25 40.79 2.93
Standard deviation 1.55 1425 0.05 21.20 1.54
Preschools with warming effect, N = 84
Minimum 34.18 26 0.08 0.00 1.00
Maximum 42.39 6893 0.33 85.79 7.33
Area-weighted mean 37.14 1481 0.24 34.05 2.46
Mean 37.28 1481 0.22 31.20 2.43
Standard deviation 1.46 1435 0.05 21.61 1.25

ALST - average LST; LST - land surface temperature; NDVI - normalised difference vegetation index; PGCE -
PG cooling effect; PGs - preschool gardens; TCC - tree canopy cover
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The impact of TCC is also evident in PGs. The
gardens with cooling potential had a TCC ar-
ea-weighted mean > 10 percentage points higher
than the ones with warming potential. The TCC
in PGs (r = —0.2095, p = 0.001, N = 201) as well as
in their buffers (r = -0.2265, p = 0.001, N = 230)
and PGCE proved to be significantly negatively
correlated.

Both groups of PGs differ in terms of the level
of development in their surroundings, which is
measured by the average height of the buildings
nearby. The data presented in Table 2 shows that
PGs with a cooling effect are surrounded by high-
er buildings. This suggests that these gardens are
situated in a potentially warmer environment, as
taller buildings tend to generate more heat due to
their larger heat exchange surface. Hence, the dif-
ference in surface temperature between PGs and
their buffers (PGCE) may be greater. This study
has found a significant negative correlation be-
tween PGCE and average building height in buff-
ers (r =-0.1813, p = 0.006, N = 201).

PGs are located in various LU/LC settings.
The cooling gardens were situated mainly in the
discontinuous dense urban fabric (50%) and con-
tinuous urban fabric (21%). PGs with a warming
effect were predominantly located in the classes
mentioned above (53%) and in industrial, com-
mercial, public, military and private units (32%).
PGs that cool down their vicinity are more often
located in residential areas (75%) than those with
warming impacts (59%). Hence, their positive
cooling effect in the summer may benefit a larger
group of inhabitants.

Thermal profiles of selected case studies
We investigated the cooling effects of three
case study gardens, for preschools No. 42, No.

87 and No. 115 (Table 3), by analysing thermal
profiles to evaluate their impact on local thermal
conditions.

The thermal profile of the garden in Preschool
No. 42 and its vicinity (Fig. 6) showed a 2.45°C
(PGCE) difference in ALST between a local hot-
spot (40.40°C), situated in the surrounding dense
built-up area and the coolest part of the garden
(37.95°C). This was observed at a distance of 100
m if we measure it from the local hotspot to the
garden’s border. The profile also indicates the
change of thermal conditions within the garden.
The difference of ALST between two spots on the
garden’s edges intersecting the profile was about
1°C. The first one was located within a high tree
stand (in the coolest part of the garden), and the
second was near the tall buildings characterised
by higher ALST. The share of grey infrastructure
in the garden’s 100 m buffer zone was almost
75%.

The second profile (B) describes the thermal
condition of the garden in Preschool No. 87 and
its vicinity (Fig. 6). The analysed garden is small-
er than the previous one and is surrounded by
tight buildings. The share of Gl in its 100 m buffer
zone is > 87%. The PGCE was about 1°C if we
consider the difference between the local hotspot
(40.72°C) and the coldest site inside the garden
(39.73°C). The estimated temperature difference
was lower than in the first case study, as more
buildings isolate this green space. However, the
distance of the thermal impact is similar.

Different thermal conditions relate to the case
of the garden in Preschool No. 115 (Fig. 6, profile
C). The share of grey infrastructure in its 100 m
buffer zone was about 65%, the lowest in the ana-
lysed cases. The cooling effect of the garden could
not be extracted from the overlapping impact

Table 3. Characteristics of selected case studies based on Landsat 8 data (EROS 2024) and the Urban Atlas (EEA

2020).
Preschool No. 42 Preschool No. 87 Preschool No. 115
Parameter
PG Buffer (45 m) PG Buffer (45 m) PG Buffer (45 m)

Area (m?) 3446 18,616 2853 17,432 1029 12,595
NDVI 0.27 0.16 0.24 0.15 0.22 0.20
ALST (°C) 38.26 38.55 39.80 39.96 37.74 37.59
TCC (%) 57.09 17.97 60.47 17.13 36.63 15.23
Mean number of building floors| 0 3.43 0 3.67 0 4.00
LU/LC Continuous urban fabric | Continuous urban fabric | Industrial, commercial, pub-

(S.L.:>80%) (S.L.:>80%) lic, military and private units

ALST - average LST; LST - land surface temperature; LU/LC - land use/land cover; NDVI - normalised difference
vegetation index; PG - preschool garden; TCC - tree canopy cover
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of larger green areas in the vicinity (Drweskich
Urban Park). In addition, the local cold spot was
not inside the PG, suggesting more significant
factors affecting the thermal conditions. The cu-
mulative cooling intensity of all green spaces was
about 3°C.

The results show that the greenery of pre-
schools has a cooling effect on the environment,
which is clearly visible when using the thermal
profile method.

Discussion

Importance of thermal conditions of
preschool gardens for children and
neighbourhood

Climate change results in the increased num-
ber of hot days and heatwaves, making it harder
to maintain comfort in cities. This affects also pre-
schools, where young children (ages 3-6 years)
play outside in warm season. Yet, climate policies
or space design often overlook children’s needs
(Pegram, Colon 2020).

This study has shown that PGs located in a di-
verse urban context vary in terms of size, NDVI
and TCC, which translates into different thermal
conditions illustrated by ALSTs ranging from
~33°C to > 39°C.

The air temperature estimated based on ALST
shows that 94.5% (18,073) of preschoolers can
experience temperatures > 25°C to 30°C, while
0.2% (44) might be exposed to air temperatures
> 30°C that characterise hot days. According to
Pétrolniczak et al. (2018), hot days occurred in
Poznan on average 18 times per year (within the
period of 1966-2015), with a maximum of 37 days
in 2006. The frequency of this phenomenon is in-
creasing (Wibig 2021).

The need to deal with high temperatures af-
fects preschools and school yards in various ge-
ographical contexts. The review conducted by
Antoniadis et al. (2020) revealed three factors
contributing to heat issues, namely land cover
materials with high heat capacities and/or heat
conductivities, like asphalt or concrete, a lack of
shade and proximity to other hot areas.

Bécklin et al. (2021) have revealed that an im-
portant factor that shapes local climate conditions
is shade provided mainly by trees. Their results

indicate that PGs with fewer trees are more ex-
posed to heat stress than those with many trees.
Zhang et al. (2017) have also shown that planting
trees is the most effective solution for improving
school outdoor thermal comfort. Shading recre-
ational areas for children can also lower the risk
of heat stress during hot weather (Vanos et al.
2017) and reduce the risk of sunburn and skin
cancer through reducing ultraviolet radiation ex-
posure (Gage et al. 2019). Lanza et al. (2021) have
confirmed that more children interact with trees
during periods of high heat index than during
periods of moderate heat index, which highlights
the crucial role of trees in cooling the play space
during the hottest periods.

The green spaces in PGs can provide not only
a better thermal environment for pupils using
those spaces but also thermal impacts beyond the
preschool’s borders that can contribute to living
conditions of local communities. However, ame-
liorating the impact of climate heat on children’s
health is not common practice in designing play
spaces in an urban context (Vanos 2015). Not
surprisingly, schoolyards are often ‘heat islands’
with higher temperatures than the surrounding
streets (Moogk-Soulis 2002, 2010).

The results of this study have shown that PGs
could be cooler or warmer than the surroundings.
Similarly, there was strong variation in thermal
conditions of PGs (Backlin et al. 2021). Although
the average cooling potential of PGs in the neigh-
bourhood was rather low, the thermal profiles of
the selected case studies illustrated that such an
impact can be much higher, up to 2.5°C. When
placed within the broader range of 1-7°C report-
ed for urban green spaces, this demonstrates
a meaningful cooling potential (Soltanifard,
Amani-Beni 2025).

The potential of GI for cooling the neighbour-
hood is related to vegetation type. As our results
have shown, the PGs with higher TCC were char-
acterised by cooler thermal conditions. A more
specific study conducted by Lehnert et al. (2021)
showed that the cooling impact of trees on the
heat stress index was detected up to 10.5°C in
Universal Thermal Climate Index (UTCI), while
low vegetation was able to reduce the UTCI by
not more than 2.3°C.

The thermal conditions of preschools are also
impacted by the surrounding urban context. As
simulations conducted by Zhang et al. (2017)
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indicated, the temperature of the playground
area might increase by approximately 2.0°C at 2
p-m. under a high-rise neighbourhood scenario.

The ability to regulate local climate conditions
by small-scale solutions such as PGs in densely
built-up areas can contribute to (thermal) comfort
within PGs and in neighbouring public spaces.
However, the strength of thermal regulation is
highly related to local complex conditions and
land-use management. The results of this study
are consistent with a review showing that cooling
intensity is shaped by vegetation type, spatial con-
figuration and urban morphology (Soltanifard,
Amani-Beni 2025).

Implications for climate-sensitive urban
planning and policy

Shaping comfortable thermal conditions in ur-
ban settings is among the various challenges that
face Poznan and many other cities where climate
change effects along with urban development can
lead to unfavourable heat (UCAP 2019).

This study provides evidence of usefulness
in identifying thermal ‘hotspots’ as the priority
areas for interventions towards better thermal
conditions. The hotspot areas are characterised
by a high density of built-up structures and a
high share of artificial surfaces. Such spaces have
limited opportunities for implementing new
large-scale green elements. Still, there is room for
greening existing open spaces and introducing
new small-scale NBSs. As Oke et al. (2017) em-
phasised, increasing vegetation cover and incor-
porating natural landscape features into already
built-up areas are the best means of managing
urban climate effects at all scales. This approach
has recently been applied in the context of educa-
tional facilities, where transformation initiatives
are being implemented (coolschools.eu).

This study has shown that NDVI can be an
accessible measure for monitoring green areas
and a supporting measure for indicating places
for interventions towards better thermal con-
ditions. NDVI of 20.3 showed lower ALST and
can be used as a threshold for planning for bet-
ter thermal conditions and delimiting the areas
that have the potential to mitigate urban heat.
The given NDVI threshold has been used in other
studies to identify GI and its effect on tempera-
ture (Arellano, Roca 2022). In Barcelona, Spain

and its metropolitan area, NDVI > 0.4 and a mini-
mum size threshold of 0.5 ha (Barcelona Regional
2019) have been used for delimiting green are-
as that play the role of outdoor climate shelters
(‘refugis climatics”) (Bar6 et al. 2021). According
to Barcelona Regional (2019), a climate shelter is
considered an indoor or outdoor accessible space
that during extreme weather episodes provides
the population with thermal comfort, rest and
safety. With this definition in mind, Polish cities
can enhance their adaptation strategies by adopt-
ing the successful practices applied in Barcelona.
This can be achieved as part of urban climate ad-
aptation plans by identifying potential climate
shelters, particularly through an assessment of
institutional greenery based on our research
findings.

This study has shown that PGs that are pres-
ent in various city locations, including dense ur-
ban areas, are valuable reservoirs of open spaces.
However, PGs, similar to schoolyards, are often
designed in a traditional way with large asphalt
surfaces and limited green spaces (Danks 2010).
Planning, designing and retrofitting PGs and/or
schoolyards can transform their space into local
cooling spots. Such an approach was applied in
Barcelona, where selected schoolyards are used
as climate shelters (Bar¢ et al. 2021). By intro-
ducing blue, green and grey technical solutions,
schoolyards support the city’s adaptation to cli-
mate change and ameliorate the exposure of the
school population to urban heat. The transformed
schoolyards play the role of climate shelters for
pupils and local residents as they stay publicly
open (Cartalis 2020). Similarly, the project OASIS
developed in Paris (Bar¢ et al. 2021) focuses on
transforming pilot school playgrounds into cool
islands using NBSs and a co-design approach
(Sitzoglou 2020).

Incorporating bioclimatic urban design princi-
ples into reshaping public spaces could contrib-
ute to more comfortable environments for urban
communities; in particular, increasing focus on
bioclimatic design can be translated across urban
spaces (Cortesdo et al. 2016).

Limitations
The use of NDVI and LST enabled the as-

sessment of vegetation and thermal conditions
across 230 PGs in Poznan without the need
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for labour-intensive in situ measurements.
Increasingly accurate satellite imagery, such as
Landsat 8/9, provides standardised, spatially
explicit and fully open data that are useful for
urban climate research. Despite some criticisms
regarding its coarse resolution, NDVI remains
a widely applied green space metric (Huang et
al. 2021), including also in studies involving chil-
dren (Kabisch et al. 2017). However, the spatial
resolution of the Landsat bands utilised (30 m)
can be a limitation, particularly for smaller re-
search areas. In this study, the larger size of PGs
relative to pixel size helped mitigate uncertainty.
While direct field-based measurements (i.e. using
microclimate sensors) and remote sensing based
on unmanned aerial vehicles (UAVs) offer high-
er precision for site-scale studies, they are costly
and face challenges related to spatial range (e.g.
as using a UAV to conduct measurements simul-
taneously across many distant locations is limit-
ed). Bridging the gap between fine-scale assess-
ments and broadly available data remains crucial
for effective climate-sensitive urban planning.

Conclusion

Thermal conditions in cities are becoming
globally an increasingly important feature of
healthy living. At the same time, compact de-
velopment limits the space for new large-scale
green interventions, emphasising the need for
using existing spaces for re-greening or imple-
menting small-scale NBSs. This study revealed
the potential of small-scale PG impact on ther-
mal conditions within PG boundaries and in the
neighbourhood against the background of ther-
mal conditions at the city scale.

The mean ALST differences of > 1.8°C were
detected between PGs with higher NDVI (=0.3)
and those with lower NDVI (< 0.2). Assessment
of thermal conditions using NDVI at the site
scale is helpful, especially when more detailed
data or site scale measurements are not availa-
ble. Similarly, the information about the share
of TCC shows the role of vegetation in cooling
PGs and supports the identification of PGs where
greening interventions could be applied to im-
prove thermal conditions. As we show, during
warm season the estimated air temperature in

PGs ranges from 21°C to > 30°C, when providing
thermal comfort during outdoor activities is im-
portant for human well-being and health.

The measurements of PG impacts on thermal
conditions in the neighbourhood show twofold
results. The average impact of PGs on thermal
conditions within 45 m was detected at a low lev-
el (-0.16°C, +0.18°C). However, thermal profiles
of selected case-studied PGs were more useful to
capture PGCE from about -1°C to —2.45°C, illus-
trating a site-specific context.

The study’s findings emphasise the critical
importance of climate-sensitive urban planning,
advocating for transforming PGs into NBSs in
Poznan and other cities, not only in Poland. The
proposed strategy enhances urban resilience to
the thermal effects of climate change, in condi-
tions of escalating competition for urban land.
Our approach shows PGs that were previously
perceived only or predominantly as attractive
places for children are also tools for shaping
thermal conditions in the city (especially cooling
ones, which can be considered climate shelters/
refuges). It emphasises the multifunctional role
of green spaces in the city and their conscious
design and management towards adaptation to
climate change.

We add to the discussion that could support
climate-sensitive planning and decision-making
in cities. Further work should focus on providing
ready-to-apply indicators that can serve to meas-
ure the baseline state as well as monitor changes
in green spaces and their impact on urban ther-
mal conditions.
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