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Abstract: The aim of the paper was to assess the robustness of four bias correction techniques: simple bias correction, 
distribution based bias correction,  delta change and distribution based delta change. Data from nine RCM simulations 
of CORDEX project and 41 Polish weather stations were used. The methods were calibrated in the period 1971–1985 
and evaluated in 1991–2005. The improvement in mean, 10th and 90th percentiles was shown, without significant differ-
ences among methods. For 1st and 99th percentiles the improvement was generally weaker and simple methods seem to 
be more robust than the distribution based ones. Strong differences between individual models were found, so the use 
of model ensemble is recommended.
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Introduction

It is well known that Regional Climate Mod-
els (RCM) temperature output are burdened with 
systematic biases (Samuelsson et al. 2011). These 
biases are partly due to coarse resolution and 
parameterizations. GCMs (Global Climate Mod-
els) and RCMs are not perfect. The other reason 
for biases is that models give us areal averages 
(sometimes the area is really wide), but in impact 
studies we need point values (Xu et al. 2005).  
This areal averaging results in tendency of mod-
els to underestimate the highest values and over-
estimate the lowest ones (Déqué 2007).  If realistic 
output have to be used to force impact models 
or adaptation processes in local scale it is neces-
sary to cope with these biases. The set of meth-
ods called Model Output Statistics (MOS) can be 

used for it. These methods try to find a statistical 
link between simulated and observed values and 
can be divided into two main groups.  The first is 
known as the bias correction (Déqué et al. 2007, 
Piani et al. 2010). The bias correction factors are 
calculated by comparison of observations with 
RCM simulations in the so called reference peri-
od, which should be relatively long because two 
climates are compared, and then these correction 
factors are applied for simulations in projection 
period to obtain realistic projections for future 
climate. Because the bias can be different in dif-
ferent parts of temperature distribution (i.e. the 
highest values are usually underestimated and 
the lowest ones are overestimated) in many cas-
es the bias-correction factors are calculated in-
dividually for different parts of distribution (so 
called distribution based bias correction, Déqué 
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2007, Yang et al. 2010, and Piani et al. 2010, van 
Roosmalen et al. 2011 and Jaczewski et al. 2014). 
The second group of MOS methods is referred 
to as the delta change (DC) method (Hay et al. 
2000, Lenderink et al. 2007, van Roosmalen et al. 
2011). Here the factors of change in simulated 
climate from reference to projection periods are 
calculated, and applied to present climate obser-
vations to obtain the projections for the future. 
As in the case of bias corrections, it can be one 
factor of change or a series of factors for different 
parts of distribution (Hay et al. 2000, Lenderink 
et al. 2007, van Roosmalen et al. 2011). Maraun et 
al. (2010) give the comprehensive review of MOS 
methods. 

The aim of this paper is to consider a range of 
bias corection techniques to assess their robust-
ness and determine which one is the most effec-
tive when correcting mean daily temperature in 
Poland simulated by one RCM driven by suite 
of different GCMs. Four different bias correction 
techniques were considered: simple bias correc-
tion (SB), distribution based bias correction (DB), 
simple delta change (DC) and distribution based 
delta change (DDC). These methods are calibrat-
ed in the reference period (1971–1985) and then 
evaluated in the period 1991–2005.

The paper is organized as follows. The first 
part describes the data used in this study. Then 

the bias correction methods together with the sta-
tistical methods used for the evaluation are out-
lined. This is followed by presentation of results 
of the evaluation. Main findings are discussed in 
the last part of the article.

Data 

Data used in this paper consists of series of 
mean daily temperature from 41 Polish stations 
from the period 1971–2005 obtained from the In-
stitute of Meteorology and Water Management. 
Figure 1 shows the location of these stations. The 
quality of data was tested by standard normal 
homogeneity Alexandersson test for single shifts 
(Alexandersson and Moberg 1997). The mean 
daily near surface temperatures from nine RCM 
simulations are also used. Their list is present-
ed in Table 1. All simulations were made within 
CORDEX (Coordinated Regional Climate Down-
scaling Experiment) project at Swedish Meteor-
ological-Hydrological Institute (SMHI) using 
the same regional model Rossby Centre regional 
atmospheric model, version 4 (RCA4) driven by 
nine different GCMs. The simulations were made 
within so called historical experiment spanning 
the time since 1st January 1951 to 31st December 
2005 in spatial domain EUR-44 with spatial res-

Fig. 1. Localization of analysed stations.
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olution of 0.44 degree (about 50 km). For each 
station the set of data from the closest grid point 
was extracted from all simulations. 

Data were then divided into two subperiods, 
each lasting 15 years: the reference period 1971–
1985 and the evaluation period 1991–2005. Each 
of analysed projection procedures was calibrated 
in reference period and then used in the evalua-
tion period. Obtained projections were compared 
with station data and their quality was assessed. 
The analysis was performed separately for data 
from each calendar month. 

Methods

Simple bias (SB) correction 

When using the SB method, RCM tempera-
tures in the evaluation period Te are transformed 
into Tcorr such that:

Tcorr = Te + b 

using a bias b, b = Toref – Tsref, where Toref and Tsref 
are the longterm monthly mean temperatures ob-
served and RCM simulated in the reference peri-
od, respectively. Here, the bias is applied to each 
daily simulated temperature of particular month  
in the evaluation, giving the corrected daily time 
series. This method has an advantage of sim-
plicity and requires only monthly climatological 
averages for calculating the bias. However only 
mean monthly value is corrected and higher mo-
ments of distribution stay unchanged. 

Distribution based bias (DB) correction

In the DB method bias a correction factors bi, 
are calculated independently for each percentile 

on the base of quantile-quantile (Q-Q) plots. Cor-
rection factors are calculated for 99 percentiles.

Tcorr,i = Te,i + bi

For values between any two percentiles the 
linear interpolation is applied. This method de-
mands more data than the SB one, and allows for 
adjustments of higher moments of temperature 
distribution. 

Simple delta change (DC) method

DC method consists of perturbing a reference 
climate series (Toref) with an absolute factor de-
rived as a difference fDC of RCM simulation data 
for a projected climate (here temperature in eval-
uation period, Tseval) and RCM simulation data 
for a temperature in a reference period (Tsref). This 
difference is than added to observed climate se-
ries (Toref) in a reference period to obtain the cor-
rected series for future climate:

Tcorr = Toref + ƒDC

This method has an advantage of simplicity, 
but requires a data set of long daily time series of  
robust observations with high spatial resolution. 
The method assumes that the climate variability 
is unchanged in the scenario projection, because 
it is inherited from observed  variability, i.e. vari-
ability in the reference period.

Distribution based delta change (DDC) 
method

DDC method consists of perturbing a  refer-
ence climate series (Toref) with an absolute factor 
derived as a difference fDC,i of percentiles of RCM 
simulation data for a projected climate (here tem-

Table 1. List of simulations used in the analysis.
Domain Global model Regional model Institution
EUR-44 CCCma-CanESM2 RCA4 SMHI
EUR-44 CNRM-CERFACS-CNRM-CM5 RCA4 SMHI
EUR-44 ICHEC-EC-EARTH RCA4 SMHI
EUR-44 IPSL-IPSL-CM5A-MR RCA4 SMHI
EUR-44 MIROC-MIROC5 RCA4 SMHI
EUR-44 MOHC-HadGEM2-ES RCA4 SMHI
EUR-44 MPI-M-MPI-ESM-LR RCA4 SMHI
EUR-44 NCC-NorESM1-M RCA4 SMHI
EUR-44 NOAA-GFDL-GFDL-ESM2M RCA4 SMHI



154	 Joanna Wibig, Joanna Jędruszkiewicz

perature in evaluation period, Tseval,i) and appro-
priate percentiles of RCM simulation data for 
a temperature in a reference period (Tsref,i).

Tcorr = Toref,i + ƒDC,i

A projected time series are calculated by addi-
tion to temperatures in reference period correc-
tions for appropriate percentile. As in DB method 
linear interpolation is applied for values between 
full percentiles. 

Evaluation methodology

An assessment of the performance of each 
method is obtained by comparing observed, 
RCM simulated and corrected data sets in the 
evaluation period 1991–2005. For each of nine 
RCM simulations the absolute differences be-
tween simulated and observed data sets were 
compared with analogous differences between 
corrected and observed data sets. The results 
were divided into three categories: improve-
ment, no change and worsening, and the fre-
quencies of all these categories were calculated. 
The analysis was done separately for each cal-
endar month and for seven distribution param-
eters: mean, standard deviation, skewness, 1st, 
10th, 90th and 99th percentiles. 

Results

Frequency of error reduction in the ensemble

A quantitative assessment of the frequency 
with which each of analysed methods resulted in 
improvement in selected statistics of temperature 
predictions was made. Seven statistics were con-
sidered: mean, standard deviation, skewness, 1st, 
10th, 90th and 99th percentiles.  The correction pro-
cedures had been calibrated on data from the ref-
erence period 1971–1985. Then they were applied 
in the evaluation period 1991–2005. For each of 41 
stations and nine RCM simulations the absolute 
differences between these statistics in simulated 
and observed data sets were compared with anal-
ogous differences between corrected and observed 
data sets. An improvement was recognized when 
the difference was positive and higher than 0.5˚C. 
When the difference was negative and lower than 
–0.5˚C a  case was put in category of worsening. 
In the remaining cases, when difference falled in 
the interval  (–0.5, 0.5), a case fell into category no 
change. The percentages of each category were 
calculated for each calendar month separately and 
results are presented on figures 2–6. 

In the case of mean (Fig. 2) percentages of im-
provements vary from 38 per cent in September to 
70 per cent in May, being almost the same for all 
methods. Percentages of deterioration vary from 
1 to 38 per cent. They fall to 1 in June and reach 
38 percent in February for all methods. The dif-
ferences between all methods are extremely low. 

Fig. 2. Frequencies of improvements (grey), no change (white) and worsening (black) after corrections made by different 
methods for a mean. Bias correction methods in the upper raw and delta change methods in the lower raw, simple variants 

in the left column and distribution based variants in the right column.
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In the SB method all values are corrected by 
addition of the same factor, so it does not change 
central moments of the order higher than one (Fig. 
3). The other methods also exert relatively low im-
pact on the standard deviation. In the case of DB 
method percentages of improvement vary from 
almost 0 in February and September to about 50 
in January, percentages of deterioration are small-
er and vary from 0 in July and October to 42 in 
February. The strongest improvements are when 
DC method is applied and vary from 3–4 percent 
in April and September to almost 60 in January. 
The increase of bias is the highest in April when it 
equals 20 percent, but generally the percentage of 
improvement exceed the frequency of deteriora-

tion. Similar changes appear when DDC method 
is applied. Analysed methods do not affect skew-
ness too much. The improvement frequency ex-
ceeds 10 percent from January  to March and in 
August and November, and is the highest when 
DC method is applied (Fig. 4). The worsening is 
the strongest for the distribution based methods, 
exceeding 10 percent only in March.  

In the case of moderate extremes: 10th and 90th 
percentiles (Fig. 5–6) in all methods the signifi-
cant improvement is observed. In the case of 10th 
percentile the improvement is the strongest in 
cold part of the year exceeding 50 percent from 
October to April for simple methods and in De-
cember, January, April and May for distribution 

Fig. 3. Frequencies of improvements (grey), no change (white) and worsening (black) after corrections made by different 
methods for a standard deviation. Bias correction methods in the upper raw and delta change methods in the lower raw, 

simple variants in the left column and distribution based variants in the right column.

Fig. 4. Frequencies of improvements (grey), no change (white) and worsening (black) after corrections made by different 
methods for a skewness. Bias correction methods in the upper raw and delta change methods in the lower raw, simple vari-

ants in the left column and distribution based variants in the right column.
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based methods. Surprisingly, the application of 
distribution based methods do not improve the 
situation. The number of deterioration vary from 
a few to more than 50 percent in February for dis-
tribution based methods, generally being higher 
in cold season. In the case of 90th percentile the 
improvement frequency has evident annual cy-
cle being the highest in warm part of the year, 
and exceeding 80 percent in May and 50 percent 
from June to August in all methods. The frequen-
cy of deterioration is generally much lower, but 
in February and April exceeds the frequency of 
improvements. The highest frequency of worsen-
ing (about 60 percent) appears in February when 
distribution based methods are applied. The dif-

ferences between efficiency of analysed methods 
are relatively low. 

In the case of extreme extremes, 1st and 99th 
percentiles (not shown) the annual cycle of fre-
quencies of improvrements is similar to those 
of moderate extremes. In the case of 1st percen-
tile higher number of improvements is observed 
in cold part of the year but for 99th percentile in 
warm part of the year. The opposite is true for 
frequencies of deterioration. However the pro-
portions between improvement and deteriora-
tion frequencies are more uniform. Surpisingly, 
the distribution based methods seem to work 
worse then simple ones both in the case of bias 
correction and delta change methods.  

Fig. 6. Frequencies of improvements (grey), no change (white) and worsening (black) after corrections made by different 
methods for 90th percentile. Bias correction methods in the upper raw and delta change methods in the lower raw, simple 

variants in the left column and distribution based variants in the right column.

Fig. 5. Frequencies of improvements (grey), no change (white) and worsening (black) after corrections made by different 
methods for 10th percentile. Bias correction methods in the upper raw and delta change methods in the lower raw, simple 

variants in the left column and distribution based variants in the right column.
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Fig. 7. Frequencies of improvements (grey), no change 
(white) and worsening (black) after corrections of mean 

made by the DDC method for individual models (numbers 
the same as in Table 1).

Fig. 8. Frequencies of improvements (grey), no change 
(white) and worsening (black) after corrections of the 10th 

percentile made by the DDC method for individual models 
(numbers the same as in Table 1).
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Differences between frequency of error 
reduction in particular models

Bias calculated in this paper was only esti-
mated on the basis of finite time series, which 
represent examples of possible climate realisa-
tions. 

On the average in all models in the case of 
mean the frequencies of improvement are high-
er then the frequencies of deterioration in each 
month, however there are exceptions from this 
rule significantly varying from one model to an-
other (Fig. 7). There is no singular model with the 
efective estimation of bias giving high frequency 
of improvement in all months of the year. It is 
also impossible to show the worst model giving 
high frequency of deterioration throughout the 
whole year. That is why, the multi-model ensem-
ble usage is recommended. As can be seen from 
Figure 7, the frequency of improvements in many 
cases exceeds 80 percent, but for almost each 
model it also happens at least in one month that 
the frequency of deterioration is also close to 80 
percent. The bias of the mean is calculated from 
the sample of about 450 elements (15 years × 30 
days/month). Slightly different situation is in the 
case of extremes. For the moderate extremes (10th 
and 90th percentiles), their values are calculated 
from the much shorter sample of about 45 ele-
ments (450 × 0.1), so the error of bias estimation is 
much larger. It is one reason, why the frequency 
of improvements is generally lower for 10th and 
90th percentiles than for the mean. Fig. 8 shows 
that these values for particular models can differ 
significantly from the averages.  In the case of ex-
treme extremes (1st and 99th percentiles) the share 
of improvements is lower, and deteriorations 
larger than in the case of moderate extremes, but 
in this case the biases are assessed on the basis of 
7–8 the most extreme elements, so errors of their 
assessment are relatively high. 

Discussion and conclusions

In the paper four MOS techniques have been 
compared to determine which is the most effec-
tive and robust to correct temperature simula-
tions made by RCMs to obtain point values able 
for use in impact models. Two of these techniques 
were bias corrections with constant and distribu-

tion based correction factor, two others were delta 
change methods also with constant and distribu-
tion based delta change factors. Both groups of 
methods have some advantages and disadvan-
tages. The main advantage of the bias corection is 
that this method is less demanding in the respect 
of data, because it uses climatological statistics in-
stead of daily values. Its main disadvantage is that 
it is based on the assumption of bias stationarity 
i.e. that it is assumed that statistical relationship 
between RCM simulation and observations iden-
tified in the reference period will be the same in 
the future, which may not be true as was shown 
by Christensen et al. (2007) and Boberg and Chris-
tensen (2012). The delta change methods are more 
data demanding, but assume that the climate var-
iability does not change considerably from refer-
ence to scenario period (Déqué 2007).  

Comparison of the results of all methods indi-
cate that the differences between their effectivity 
and robustness are relatively low. In case of the 
mean the differences are negligible small. The SB 
method shifts the whole temperature distribu-
tion and does not affect higher moments of distri-
bution, so both standard deviation and skewness 
remain exactly the same. All other methods also 
do not change the quality of standard deviation 
and skewness predictions. Similar result was ob-
tained also by Lafon et al. (2013) for correction 
of precipitation using a  suite of bias correction 
methods. 

Comparison of effects of correction of mod-
erate extremes (10th and 90th percentiles) indi-
cates that the effectiveness of presented methods 
is slightly lower than for the mean, but much 
higher than for standard deviation and skew-
ness. However the differences between analysed 
method are insignificant and it is not possible to 
designate the best one. In the case of extreme ex-
tremes (1st and 99th percentiles) all methods work 
worse than in the case of the moderate ones. At 
the same time it seems that distribution based 
methods (DB and DDC) fail more often than sim-
ple ones (SB and DC), but there is no significant 
difference between the last two. Such situation is 
probably because biases are estimated from finite 
time series and the less numerous samples cause 
the higher uncertainty. Maraun (2012) called this 
uncertainty of bias estimation as variability re-
lated apparent bias changes. It means that results 
of application of these methods for correction 
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of extreme extremes may not be robust. As was 
shown by Deser et al. (2012) that natural climate 
variability constitute the additional source of un-
certainty of climate projections for future along-
side uncertainty related to emission scenario and 
model-response. They show that in regions of 
high natural variability this factor can introduce 
strong uncertainty. 

Figures 7 and 8 present some examples of the 
span of internal climate variability range and its 
effect on bias reduction.  The same method can 
decrease bias for some models and increase for 
the others. It is caused be small length of time se-
ries used in comparison with high natural climate 
variability. It is also the reason why it is generally 
recommended to prepare climate projections on 
the base of ensemble of RCM simulations, than 
on the singular ones. 
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