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Spatial scientists frequently analyze data 
tagged to a  surface tessellation, whose dual 
graph is used to construct a binary 0–1 adjacen-
cy matrix C which, sometimes together with its 
eigenfunctions, is employed as a spatial weights 
matrix in geographical data analyses. This exer-
cise is becoming increasingly more common as 
geographic information systems (GISs) become 
more widely used. Accordingly, the matrix is 
n-by-n in size, where n denotes the number of 
nodes (i.e., areal units in a surface partition, or 
polygons in a  shapefile) and frequently its ele-
ments are defined such that cij = 1 if nodes i and 
j in a graph are connected, and cij = 0 otherwise; 
almost always, cii = 0 by definition. Adjacencies 
defined in terms of non-zero length common 
boundaries being shared by areal units parti-
tioning a  surface (i.e., contiguity; analogous 
to the rook’s move in chess) result in a  planar 
graph. Frequently matrix C is converted to its 

row-standardized version, say matrix W = D–1C, 
where D is the diagonal matrix whose di,i ele-
ment is the ith row sum of matrix C (this specifi-
cation relates to the Laplacian matrix discussed 
in Chung et al. 2003). Although the foundations 
of spectral graph theory were laid in the mid-20th 
century, and advances in computer technology 
continue to expand the numerical applications 
realm for this theory, calculating eigenvalues 
when the resulting adjacency matrix is construct-
ed for a very large to massively large number of 
nodes forming a connected graph1 (i.e., a graph 
1	 If a  tessellation comprises disjoint subtessellations, 

then the eigenvalues for each subtessellation can be 
calculated (matrices C and W become block diagonal), 
and then combined to construct the full set. This situa-
tion simplifies the eigenfunction problem by reducing 
the size of the matrices involved. It also characteriz-
es a  geographic landscape in which indirect effects 
of spatial dependency cannot percolate through the 
entire landscape. Most spatial scientists deal with 
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in which a  path can be traced from any given 
node to any other node in the graph) remains 
a  formidable to impossible task. The degree of 
difficulty associated with solving this eigenfunc-
tion problem in part has motivated scholars to 
study and derive properties of the distributions 
of spectra (e.g., Cao, Yuan 1993, 1995; Yong 1999; 
Liu, Bo 2000; Adler, van Moerbeke 2001; Grif-
fith 2000, 2004; Griffith, Luhanga 2011). Chung 
(1997: 6) describes this situation by noting that 
“half of the main problems of spectral theory lie 
in deriving bounds on the distributions of eigen-
values.” This paper adds to that literature, with 
special reference to matrix W, and emphasis on 
the rook’s definition of geographic adjacency.

The state of the problem solution

Determining matrix eigenfunctions continues 
to be an important and highly relevant area of 
numerical linear algebra research. Because the 
sparse matrices most frequently employed in ge-
ographical analyses are symmetric, their salient 
properties (e.g., orthogonal eigensystems, real 
eigenfunctions) simplify computation of the rel-
evant eigenvalues and eigenvectors. But lack of 
a pattering of the ones in many of these matrices 
(i.e., they are for irregular surface partitionings) 
or the conversion of matrix C to W complicates 
this computing. To this end, Golub and van 
der Vorst (2000: 59) optimistically contend that 
the eigenfunction problem is solved: “for small 
[n-by-n] matrices [where] n ≤ 25 we have the QR 
method, one of the most elegant numerical tech-
niques produced in the field of numerical anal-
ysis; for larger matrices (but smaller than a few 
thousand), we have a combination of divide and 
conquer with QR techniques. For the largest 
matrices, there is the Lanczos method.” But as 
Hams and de Raedt (2000) point out, large ma-
trices mean those that do not exceed roughly n 
= 10,000. Consequently, the Lanczos method was 
of little use for their n = 32,768 or n = 16,777,216 
cases. Furthermore, even for a  massively large 
regular lattice with random linkages, Khorunzhy 
et al. (2004: 1649) note that “the spectral theory of 
random graphs (…) is still poorly explored.” In 

geographic landscapes whose graph theoretical rep-
resentation is a connected graph.

some ways, their work is reminiscent of that by 
Barry and Pace (1999) for geographical analyses. 
One noteworthy difference between findings re-
ported in these latter two papers and results most 
often needed by spatial scientists is that these 
studies deal with random graphs or strictly with 
regular lattices.

Chung et al. (2003) note that the eigenvalues 
of connected random graphs – which currently 
are of particular interest because of what these 
quantities reveal about the internet (see Faloutsos 
et al. 1999) and other forms of spatial connectiv-
ity (see Fefferman, Phong 1980) – follow a pow-
er-law distribution. But this is only part of the de-
scription. Consider the W matrix representation 
of the surface partitioning of Amazon Brazil into 
its 323 districts (see Fig. 1). This specific example 
is selected because its eigenvalue distribution is 
challenging to describe (specifically, a  sizeable 
gap exists between λn–1 and λn = λmin, the second 

Fig. 1. Results for Amazon Brazil
Top (a): the surface partitioning by municipalities. Bottom (b): 

eigenvalues (vertical axis: observed; horizontal axis: predicted) for 
the adjacency graph representation of Amazonian Brazil’s surface 

partitioning; o denotes the observed eigenvalues, * denotes predict-
ed values from equation (1), and • denotes predicted values from 

equation (11).
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smallest and smallest eigenvalues). Estimating 
a sophisticated power-law equation of the form

	 λ̂ =  + β /(ri
γ + δ)Κ, 	 (1)

where the estimate of exponent K often appears 
to go to 0 (implying a logarithmic transformation 
denoted by the natural logarithm, LN), λi (i = 1, 
2, …, n) are the descending rank-ordered eigen-
values of a graph, λ̂ i are their predicted counter-
parts, ri is the rank (in descending order) of the 
ith eigenvalue, and , β, γ and δ are parameters 
of a four-parameter power law (i.e., K = 1). The 
scatterplot of equation (1) results for Amazon 
Brazil (denoted in Fig. 1 by asterisks, *) show 
that they align reasonably well with the actual 
eigenvalues, except for the end of the lower tail. 
However, although the mean and variance of the 
distribution are matched reasonably well, espe-
cially the minimum extreme value fails to be well 
matched. Often these extreme values play a dom-
inant role in data analyses, and can be estimated 
exogenously (see Griffith 2000, 2004). 

Latent structure in the eigenvalues for 
connected irregular planar graphs: an 
exploratory analysis

A convenience sample was assembled com-
prising 184 readily available (i.e., found in the 
literature) empirical surface partitionings consti-
tuting connected irregular planar graphs (i.e., the 
rook’s definition of adjacency), ranging in size 
from 5 to 7,249. Some of these graphs are for reg-
ular square tessellations, and some are for Thies-

sen polygon partitioned surfaces, which verge on 
hexagonal tessellations, whereas the remaining 
ones are for surface partitionings by administra-
tive geographic units. Statistical descriptions of 
the eigenvalues for these graphs are useful be-
cause the set of eigenvalues for a single graph can 
be viewed as a  population, and hence statistics 
about them are descriptive rather than inferen-
tial. In contrast, all connected planar graphs of 
a given size n can be viewed as a population of 
interest, with a single graph furnishing a sample 
from that population. As such, statistics about 
a graph’s eigenvalues also may be treated in an 
inferential context.

Serial structure in connected irregular planar 
graphs

The eigenvalues of the adjacency matrix for 
a connected planar graph may be ordered from 
smallest to largest, λn ≤ λn–1 ≤ ... ≤ λ2 < λ1 , im-
posing a  serial structure on them. Time series 
analysis techniques furnish powerful tools for 
examining latent structure in such linear se-
ries of values. Applying autoregressive-inte-
grated-moving-average (ARIMA) techniques 
to a  set of eigenvalues reveals several proper-
ties. Foremost, a first difference needs to be ap-
plied to these numerical values, confirming the 
well-known problem of studying the spacing 
of eigenvalues. Fig. 2 portrays a  typical case, 
selected on the basis of experience examining 
geographic weights matrix eigenvalues. The 
raw eigenvalues (Fig. 2a) suggest a very strong 
autoregressive structure that all but disappears 
with first-differencing (Fig. 2b). 

Fig. 2. Correlograms for the eigenvalues of matrix W for the 1990 Syracuse, NY, census block surface partitioning
Left (a): the raw eigenvalues. Right (b): 1st-differenced eigenvalues. 
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Conventional wisdom argues that meaning-
fully applying time series analysis techniques re-
quires a minimum of 50 sequential values (Box, 
Jenkins 1976; Tse 1997), with this minimum sam-
ple size requirement increasing with the number 
of parameters to be estimated (e.g., Hyndman, 
Kostenko 2007). Accordingly, the sample of 184 
sets of eigenvalues was reduced to the 115 having 
at least 50 sequential values. Fig. 3a is the histo-
gram of the R2 values from a bivariate regression 
of the eigenvalue spacings regressed on their 
affiliated lagged values. Eigenvalues for regu-
lar square tessellations – even those forming an 
incomplete rectangular region (e.g., Huffer, Wu 
1998) – have an R2 of 0. Roughly 43 percent of 
the eigenvalue sets have an R2 that does not ex-
ceed 0.1, indicating that they contain negligible 
serial correlation in their spacings. One surface 
partitioning achieves an R2 of roughly 0.63 (Fig. 
3b); it is for an administrative county tessellation. 
Collectively, these results confirm that eigenval-
ue spacings tend to display little simple serial 
structure.

Inspection of a  linear landscape helps illus-
trate why a tendency exists for little simple serial 
structure in eigenvalue spacings. The matrix W 
eigenvalues for this landscape are (Griffith 2000):

	 {COS [π(k–1)/(n–1)]}, k = 1, 2, …, n	 (2)

The first difference of these consecutive val-
ues is

{COS [π(k–1)/(n–1)] – COS [πk/(n–1)]} = 
2 SIN {[π/[2(n–1)]}SIN{π(2k–1)/[2(n–1)]}, 

	 k = 1, 2, …, n–1	 (3)

Fig. 4 furnishes plots of equations (2) and (3) 
for n = 50. The spacing is both nonrandom and 
balanced; it is not simple serial structure. The 
best that time series analysis tools can do with 
such data is suggest that analysis should focus on 
spacings (Fig. 4b), as it almost always does, rath-
er than on raw values (Fig. 4a). One important re-
search question garnering considerable attention 
addresses the spacing (i.e., gap) between the first 
and second largest eigenvalues (see Brouwer, 
Haemers 2012, Chapter 4).

In conclusion, although powerful time series 
analysis techniques, such as ARIMA models, fail 
to furnish any insights into the latent serial struc-
ture in a  sequence of eigenvalues, they do cor-
roborate the focus in the literature on eigenvalue 
spacings.

Finite mixture descriptions of connected 
irregular planar graphs2

Statistical descriptions of eigenvalues can 
take many forms. For matrix W, the mean and 

2	 Earlier work (Martin, Griffith 1998) suggests that the 
eigenvalue frequency distribution for a  connected 
planar graph can be described as some type of gam-
ma (e.g. truncated) random variable. During research 
seminars convened at the University of Texas at Dal-
las in 2006–2008, Dr Michael Tiefelsdorf presented fi-
nite beta-mixture descriptions of eigenvalue frequen-

Fig. 3. Latent structure in sequences of matrix W eigenvalue spacings
Left (a): histogram of R2 values from bivariate regressions predicting eigenvalue spacings from 1st-order lagged eigenvalues. Right (b): scat-

terplot of the Alabama county tessellation (n = 67) results for which R2 = 0.63.
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variance (i.e., the first and second moments) are 
known to be, respectively, 0 and 1TD–1CD–11, 
where 1 is an n-by-1 vector of ones, and T is the 
matrix transpose operator (Griffith 2000: 102). For 
symmetric frequency distributions, such as those 
for a regular square tessellation, all odd moments 
are known to be 0. Furthermore, for a  regular 
square tessellation forming a  complete P-by-Q 
rectangular region, 1TD–1CD–11 = (18PQ + 11P + 
11Q + 12)/72. Besides moments, a description of 
the frequency distribution of a set of eigenvalues 
can be helpful in any effort to approximate them.

Many eigenvalue distributions are positive-
ly skewed. Beta, exponential, gamma, inverse 
Gaussian (i.e., Wald), lognormal, and Weibull 
are the most popular positively skewed contin-
uous statistical distributions used by applied 
scientists. Each of these distributions has either 
a non-negative or a positive support. The beta is 
perhaps the most flexible of these distributions, 
and has the added property of having an upper 
limit; i.e., its support is [0, 1]. The other distribu-
tions need to be truncated to obtain this property. 

cy distributions. This section is an extension of those 
works.

For example, earlier work attempting to describe 
the frequency distribution of a  set of eigenval-
ues of connected planar graphs considered the 
following truncated gamma distribution for ran-
dom variable Y as a potential descriptor (Martin, 
Griffith 1998):

	 	

(4)

where f is a probability density function, ymax is 
an upper bound, Γ is the gamma function, and k 
and θ are parameters of the gamma distribution. 
Equation (4) is in keeping with the conceptual-
ization underlying equation (1), succeeding in 
furnishing an adequate description of the hump 
but failing to furnish an adequate description of 
the heavy tail characterizing skewed eigenvalue 
frequency distributions. This feature of statistical 
distributions with unbounded support favors 
use of the beta distribution to describe eigenval-
ue frequency distributions, which also was con-
sidered (Griffith 2003: 49–51). 

Because the trace of matrix W is 0, the sum of 
the eigenvalues is 0, and, hence, λ1 for a connected 

Fig. 4. Serial correlation descriptions of the eigenvalues of 
a linear geographic landscape, n = 50

Left (a): the correlogram of the raw eigenvalues. Right (b): the cor-
relogram of the eigenvalue spacings. Bottom (c): the time series plot 

of the eigenvalue spacings.
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planar graph is positive (by the Perron-Frobenius 
theorem), implying that at least one eigenvalue 
must be negative. This property of a set of eigen-
values conflicts with properties of the beta dis-
tribution. Fortunately, the extreme eigenvalues 
of matrix W either are known (i.e., λ1 = 1) or can 
be calculated with numerical techniques (Griffith 
2004). Accordingly, the transformed eigenvalues 
of interest become

	  	
(5)

This transformation maps the set of eigenval-
ues onto the closed interval [0, 1], and has a very 
simple accompanying back-transformation. Be-
cause the points 0 and 1 react in a  degenerate 
manner in most software packages, the two mod-
ified eigenvalues taking on these specific values 
can be very slightly perturbed into the interval. 
Consequently, equation (5) can be treated as if it 
were a beta random variable.

Using a  single beta distribution to describe 
a  skewed eigenvalue frequency distribution 

basically is no more successful than using the 
aforementioned truncated gamma distribution; 
it fails to furnish an adequate description of the 
existing heavy tail. This outcome suggests the 
use of a finite mixture of two or more beta distri-
butions. Just like conventional wisdom suggests 
a  minimum sample size of 50 or more for time 
series analyses (see the preceding section), it also 
suggests a minimum sample size of roughly 500 
for meaningful finite mixture model results (e.g., 
Henson et al. 2007). Inspection of such eigenval-
ue model fitting results (Fig. 5) for sets in the con-
venience sample under study here having n < 535 
corroborates this contention. This restriction fur-
ther reduces the number of samples available for 
study to the 35 having at least 500 eigenvalues.

The 1990 Syracuse, NY, census block surface 
partitioning furnishes the largest of the sets of 
eigenvalues in the convenience sample, with 
n = 7,249. Fitting a  3-beta distributions finite 
mixture model to it results in one resembling 
a bell-shaped curve (Fig. 6a) that is not statisti-
cally significant. In contrast, both components of 
a 2-beta distributions finite mixture model (Fig. 

Fig. 5. Finite beta mixture descriptions of eigenvalues: two 
components

Left (a): n = 50. Right (b): n = 204. Bottom (c): n = 363.
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Fig. 6. Histograms for the 1990 Syracuse, NY, census block 
surface partitioning eigenvalues

Left (a): 3-beta distributions fit. Right (b): 2-beta distributions fit. 
Bottom (c): a single simulated realization of the estimated 2-beta 

distributions finite mixture model.

Fig. 7. Specimen cases for a regular square tessellation
Left (a): n = 900. Right (b): n = 1,600. Bottom (c): n = 3,888.
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6b) are significant. Unfortunately, simulating 
the eigenvalues with this model fails to produce 
the desired distribution (Fig. 6c). Nevertheless, 
their forms suggest that the power law descrip-
tion furnished by equation (1), which links to the 
largest eigenvalue, needs to be supplemented by 
a  second power law component linking to the 
smallest eigenvalue. 

Table 1 summarizes estimation results for 
the 2-beta distributions finite mixture models 
describing the 30 sets of eigenvalues calculated 
for adjacency matrices representing non-regular 
square tessellations. The first component (Beta1) 
captures the hump with an approximately bell-
shaped beta random variable, and relates to the 
largest eigenvalue, λ1. The second component 
(Beta2) captures the heavy tail (i.e., skewness) 

and relates to the smallest eigenvalue, λn.The 
mixture weights (p1 and p2) tend to be approxi-
mately equal. The first component is significant 
for all, and the second component is significant 
for all but four of the eigenvalue distributions. 
Histograms for these various sets of eigenvalues 
resemble Fig. 6b.

The set of eigenvalues for a regular square tes-
sellation are symmetric, and their lack of skew-
ness results in a  single mode and only a  single 
beta distribution component. None of the five 
specimen cases in the convenience sample have 
a statistically significant second component (see 
Fig. 7). Each is better characterized by a  bell-
shaped (i.e., normal) distribution (Fig. 8b). A beta 
distribution approximation for each of these sets 
of eigenvalues yields equal shape and scale pa-

Table 1. Two-beta mixture estimates for describing eigenvalue frequency distributions for irregular surface 
partitionings

Dataset n p1 p2

Beta1 Beta2

shape scale shape scale
144 535 0.45109 0.54891 10.5307 33.5618 3.7152 2.7359
82 560 0.38087 0.61913 3.0993 17.3221 2.1084 2.3500
90 584 0.45378 0.54622 15.6297 40.3125 4.4743 3.0444

169 595 0.49913 0.50087 4.3486 16.0993 2.6615 2.2744
4 708 0.50905 0.49095 5.0758 11.1860 3.3501 2.4406
6 731 0.43514 0.56486 5.6709 13.8180 2.6629 2.2355

99 839 0.65643 0.34357 4.4341 6.2253 3.0502 2.0219
94 930 0.46182 0.53818 8.6824 20.9011 3.8749 2.6253

164 1108 0.46276 0.53724 3.4241 14.4060 2.1561 2.1113
153 1122 0.47674 0.52326 3.9052 16.3644 2.4594 2.2667
168 1347 0.52499 0.47501 4.6150 16.3677 3.0422 2.5619
161 1588 0.50370 0.49630 3.9536 15.2695 2.7940 2.4493
21 1754 0.44384 0.55616 6.6828 13.4171 3.3386 2.5488
22 1818 0.46138 0.53862 10.5731 32.7050 4.3801 3.1835

107 2025 0.52389 0.47611 5.2535 8.7615 4.1161 2.6586
142 2246 0.42034 0.57966 2.9406 16.9327 2.5585 2.6743
38 2379 0.43036 0.56964 4.5862 18.5062 3.2821 3.0867

159 2385 0.50491 0.49509 3.8045 15.8300 2.9742 2.5327
96 2489 0.45343 0.54657 3.3624 12.6727 2.8632 2.7542

166 2670 0.51434 0.48566 7.4305 22.9311 4.2678 3.0603
155 2937 0.52692 0.47308 4.4648 16.3087 3.5164 2.7423
156 2966 0.52389 0.47611 4.7289 17.2968 3.2563 2.6262
128 3033 0.45495 0.54505 6.5358 24.0334 3.8493 3.0457

3 3111 0.46062 0.53938 12.7674 32.5233 4.9236 3.3003
141 3324 0.46650 0.53350 19.8799 49.4936 6.2076 3.8820
165 3688 0.54393 0.45607 8.3898 23.4731 4.8717 3.2597
158 4439 0.52535 0.47465 8.0843 24.2288 4.7498 3.2839
160 5164 0.52994 0.47006 5.3690 19.0017 3.9446 2.9731
154 5449 0.54472 0.45528 10.4372 27.1481 5.6887 3.5743
14 7249 0.55297 0.44703 5.9278 10.3392 5.5623 3.2311

NOTE: Beta1 is the component capturing the hump and relating to λ1.
NOTE: Beta2 is the component capturing the heavy tail and relating to λn.
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rameter estimates (due to symmetry), with these 
estimates ranging from 1.18250 to 1.27612.

In conclusion, although theoretical statistical 
distribution descriptions yield over-smoothed 
simulated predicted eigenvalue frequency dis-
tributions whose values tend to shrink toward 
the mean, they do emphasize the need to specify 
a  double power law, one linking to each of the 
extreme eigenvalues, to describe skewed eigen-
value frequency distributions.

The special case of a regular square 
tessellation forming a complete P-by-Q 
rectangular region

Many remotely sensed images constitute reg-
ular square tessellations forming a  P-by-Q rec-
tangular region. Fortunately, Griffith (2000, 2004) 
reports properties for the matrix W eigenvalues 
associated with these surface partitionings that 
allow them to be approximated with great pre-
cision. As mentioned previously, all of the odd 
moments of these eigenvalues are known to be 
0. In addition, the second moment can be calcu-
lated from the observed W matrix, and also is 
known (see the preceding discussion). Parallel-
ing the aforementioned variance term for a regu-
lar square tessellation forming a complete P-by-Q 
rectangular region, the fourth moment (relating 
to kurtosis) is given by:

	 	

(6)

Equation (6) furnishes a precision check tool 
for the approximated eigenvalues. 

The eigenvalue approximation algorithm for 
this case consists of the following steps:

Step 1: record the sign of each eigenvalue in 
the variable Isign according to its theoretical ap-
proximation [based upon Sylvester’s (1852) law 
of inertia]

 	
(7)

Step 2: calibrate γ such that 

where |x| denotes absolute value of x – this is 
akin to the method of moments estimation tech-
nique;

Step 3: compute 

Step 4: calculate 

Fig. 8. Approximations to the frequency distribution of the eigenvalues for a regular square tessellation; n = 3,888
Left (a): beta approximation (Kolmogorov-Smirnov = 0.04662). Right (b): normal approximation (Kolmogorov-Smirnov = 0.02931).
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the relative error for kurtosis, as a validity check.
One advantage of this approximation is that 

it preserves both 0 and any duplicate eigenval-
ues. A simulation experiment implies that γ̂  ≈ 1 
– 0.14568 [1/(P – 0.02) + 1/(Q – 0.02)] – 0.75917/
[(P – 0.37)(Q – 0.37)] .

For a 3,000-by-5,000 region, γ̂   ≈ 0.99992, the 
first and third moments are 0 to eight deci-
mal places, the relative error for the variance is 
0.00761% (this is the minimization result), and 
the relative error for the validity check (i.e., the 
fourth moment) is 0.17744%. These results sug-
gest a conjecture in terms of equation (7).

Conjecture 1. Let matrix W denote an n-by-n 
irreducible row-standardized adjacency matrix 
associated with an undirected connected planar 
graph G based upon a regular square tessellation 
forming a  complete P-by-Q rectangular region 
and having a symmetric spectrum. Accordingly, 
its extreme eigenvalues are ±1, with the n–2 or-
dered intermediate eigenvalues, λk, contained in 
this interval. Then, 

	 	
(8)

where λ̂  k denotes the estimate of λk and Isign de-
notes the sign of the sum within the absolute val-
ue signs, for a  suitable value of parameter γ. If 
P → ∞ and Q → ∞, then γ → 1.

The approximations yielded by the algo-
rithm and Conjecture 1 can be improved upon 
slightly when P = Q by replacing the estimates 

for the (p, q) pairs for which  and 

 with their exact results given by 

This conjecture and the preceding algorithm 
do not apply to cases where a region is not both 

rectangular and complete. In this case, if the as-
sociated graph is connected, then neither dupli-
cate nor naturally occurring 0 eigenvalues [i.e., 
the two cosine terms in equation (7) cancel] ex-
ist. Because the variance term is still 1TD–1CD–11, 
it can be calculated from known information. 
Unfortunately, an analytical expression for the 
fourth moment is no longer available. Consider-
ing a  ranking of the eigenvalues in descending 
order, now the approximation equation is 

	 Isign |2(n – i)/(n – 1) – 1|γ, i = 1, 2, …, n,	 (9)

where Isign is the sign of the quantity 2(n – i)/(n – 
1) – 1. Cressie (1993: 47) furnishes an incomplete 
square-lattice Pennsylvania coal ash dataset; it 
involves only 208 of the 368 locations contained 
in a 16-by-23 regular square tessellation forming 
a complete rectangular region. Its variance term 
is 1TD–1CD–11 = 59.63894. Because

the exponent is a variance deflator, and hence is 
greater than 1. The minimization solution is γ̂  = 
1.26516. As a  check, the approximate and exact 
4th moments are calculable, and differ by rough-
ly 3.4%. In other words, the approximation is re-
spectable, and n is only moderate in size.

Equation (6) also enables asymptotic distri-
bution properties of the eigenvalues to be estab-
lished. The variance of these eigenvalues is given 
by:

	 (18PQ + 11P + 11Q + 12)/(72PQ) ,	 (10)

resulting in the following asymptotic result:

Consequently, although regular square tessel-
lation histograms (e.g., Figs. 7 and 8) suggest the 
possibility of normality, and the third moment 
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(i.e., used to measure skewness) is 0, the kurtosis 
does not converge upon 3. Therefore, the asymp-
totic distribution of the eigenvalues of matrix 
W for an infinite rectangular tessellation is not 
normal.

Approximating eigenvalues for 
irregular surface partitioning: current 
practice

To remedy the lack of an eigenvalue approxi-
mation equation for connected irregular graphs, 
and based upon implications from the preceding 
analyses, Conjecture 1 posits a specification (Grif-
fith 2003: 48) utilizing information provided by 
the extreme values, λ1 = λmax and λn = λmin (i.e., 
the maximum and minimum eigenvalues, re-
spectively), the ranking of eigenvalues, and the 
number of eigenvalues. Converting the ranking 
of eigenvalues to a  relative ranking – such that 
ri = (n-i)/(n–1), i = 1, 2, …, n – the rank ri index-
es a spectrum away from its largest eigenvalue, 
whereas the rank 1-ri indexes a  spectrum away 
from its smallest eigenvalue, in keeping with 
a mixture of two power-law distributions.

Conjecture 2. Let matrix M denote an n-by-n 
irreducible adjacency matrix (either matrix C 
or W) associated with an undirected connected 
planar graph G. Let λmax denote the largest eigen-
value, λmin the smallest eigenvalue, and λi the ith 
eigenvalue of matrix M. Then 

	

(11)

where λ̂   i denotes the estimate of the ith eigenval-
ue, λi, for suitable values of parameters 1, 2, β1, 
β2, γ1, and γ2.

When ri = 1 (i.e., i = 1), equation (11) reduces 
to λmax, and when ri = 0 (i.e., i = n), equation (11) 
reduces to λmin. When equation (11) is estimated 
with rook case square tessellation eigenvalues, 
symmetry yields 1 = 2, β1 = β2, and γ1 = γ2.

Results reported in Table 2 reveal that the two 
extreme values of the distribution are matched 
with equation (11) but not equation (1), and that 

the variance of the equation (11) approximations 
is much closer to the original than is the variance 
of the single power law approximations. Table 
2 also reports results for the queen’s adjacency 
definition for a square tessellation [rook adjacen-
cies are supplemented with ones also defined in 
terms of zero length (i.e., point) common bound-
aries (analogous to the queen’s move in chess)]. 
This popular spatial weights definition (e.g., it is 
the default in GeoBUGS) is a near-planar graph 
[i.e., the number of links exceeds that for a pla-
nar graph, namely 6(n–2), by no more than one-
third3, resulting in matrix W still being sparse4). 

As an aside, the 72-by-79 regular square tes-
sellation with a  rook’s adjacency definition re-
ferred to in Table 2 has ̂ 1 = ̂ 2 = 0.8025, β̂ 1 = β̂  2 
=–2.0682, and γ̂  1 = γ̂  2 = –1.2731. But these esti-
mates are calculated with a nonlinear regression 
whose response variable is the set of eigenvalues. 
In practice, for extremely large to massively large 
datasets, these eigenvalues are unknown. The 
method of moments furnishes one technique for 
estimating these parameters. But resorting to the 
method of moments for this estimation can pro-
duce unstable results. 

Eigenvalue approximations: lessons 
from the method of moments

Linear algebra theory states that the sum of 
the integer powers of the eigenvalues of a  ma-
trix equals the trace of that matrix raised to the 
same integer power. Because the eigenvalues dis-
cussed here sum to zero by construction, the sum 
of these powers divided by n is equivalent to sta-
tistical moments of the eigenvalue distributions.

3	 The Brazilian example has 804 links based on non-ze-
ro length shared boundaries, whereas a planar graph 
of its size has no more than 963.

4	 The number of queen adjacency links in a P-by-Q reg-
ular square tessellation forming a complete rectangu-
lar region is 8PQ – 6P – 6Q +4. The ratio of the dif-
ference between this count and the maximum count 
for a planar graph, to that of the maximum count for 
a planar graph is (PQ – 3P – 3Q +8)/(3PQ – 6). The 
limit of this ratio is 1/3.
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Moments for a hexagonal lattice forming 
a circular region

For the regular square and regular hexagonal 
tessellations forming complete rectangular re-
gions, Griffith (2003: 42–44) reports the first six 
moments for both matrix C and matrix W. Re-
sults reported in Table 3, which are for a regular 
hexagonal tessellation that expands in concentric 
rings from a  central hexagon, can be added to 
this set now. This situation is similar to the regu-
lar square tessellation that forms a square region, 

but is more similar to irregular tessellations in 
structure – most irregular planar tessellations can 
be viewed as being between a square and a hex-
agonal tessellation in structure.

Provision of Table 3 is for completeness as 
well as to illuminate skewed eigenvalue distri-
bution features. The limiting eigenvalue distri-
bution here has a  skewness statistic of√2/3  ≠  0 
and a kurtosis statistic of 5/2≠3; in other words, 
it does not converge on a normal distribution.

The preceding mixture analysis suggests 
a 2-component finite beta mixture specification. 

Table 3. Analytical moments of eigenvalues extracted from matrices C and W that depict selected regular hex-
agonal tessellations expanding in concentric rings (r > 2) around a central hexagon

Moment Matrix C Matrix W

0 0

6R(3R + 1)/(1+3R+3R2) (6R2 + 11R + 6) /[12(1+3R+3R2)]

36R2/(1+3R+3R2) (4R2 + 7R + 4)/[24(1+3R+3R2)]

6(45R2 – 9R – 2)/(1+3R+3R2) (120R2 + 289R + 208)/[576(1+3R+3R2)]

120R(9R – 4)/(1+3R+3R2) 5(288R2 + 673R + 462)/[10368*(1+3R+3R2)]

60(102R2 – 65R + 3)/ (1+3R+3R2) (16320R2 + 45151R + 37596)/[124416*(1+3R+3R2)]

NOTE: R denotes the number of concentric rings; n = 1 + 3R + 3R2.

Table 2. Summary statistics for selected illustrative eigenvalue examples for matrix W
Eigenvalue Mean Standard deviation λmin λmax

the Brazilian Amazon surface partitioning (ν = 0)
Observed 0 0.45307 –0.91088 1
Equation (1) prediction 0 0.45242 –0.56898 0.98442
Equation (11) prediction 0 0.45298 –0.91088 1

a 72-by–79 regular square tessellation with a rook’s adjacency definition
Observed 0 0.50411 –1 1
Equation (1) prediction 0 0.50034 –0.83725 0.92572
Equation (11) prediction 0 0.50369 –1 1

a 72-by–79 regular square tessellation with a queen’s adjacency definition
Observed 0 0.36347 –0.48577 1
Equation (1) prediction 0 0.36273 –0.35626 0.96156
Equation (11) prediction 0 0.36297 –0.48577 1

NOTE: attempts were unsuccessful to rewrite equation (1) constraining λmax to equal 1.
NOTE: in the queen’s case, point connection weights = 1/√2.
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But the asymptotic implications for the hexago-
nal configurations addressed in this section are 
that the limit is not such a  mixture. Estimation 
for the eigenvalues of matrix C based upon the 
method of moments (see Farell et al. 2011), with 
the four parameters requiring a matching of the 
first four moments (i.e., 1/3, 2/27, 4/243, and 
10/729), yields the pair of beta distributions 
B(1.03624, 3.16472) and B(0.62840, 0.92950); the 
probability trajectory through R = 43 concentric 
rings of hexagons implies p = 0.44692. These two 
components fail to produce the correct frequency 
distribution shape. In contrast, the estimated beta 
mixture parameter trajectories imply the first 
component is B(2.09525, 12.60373), which com-
bined with the method of moments (only two 
need to be matched) yields B(1.14833, 1.20721) as 
the second component. This solution has the cor-
rect form (Fig. 9a), but each of its third and fourth 
moments deviates from its asymptotic equiva-
lent by roughly 1.75%. Therefore, the finite beta 
mixture model furnishes only a  rough approxi-
mation to the distribution of the eigenvalues, as 
Fig. 9b also illustrates. Its partial success is attrib-
utable to its probability density function includ-
ing y, relating to the maximum eigenvalue, and 
(1 – y)β, relating to the minimum eigenvalue [see 
equation (11)].

As mentioned previously, although the beta 
mixture conceptualization highlights the pres-
ence of two components, one relating to each of 
the two extreme eigenvalues, the preceding time 
series conceptualization emphasizes that eigen-
value spacings are extremely important. To this 

end, the following equation furnishes a  much 
better eigenvalue estimator than the beta mix-
tures treated in this section:

where ri is the ascending ith rank of a set of or-
dered eigenvalues. For the case of R = 43 for 
rings of hexagons, β̂  = 2.49729, γ̂  = 0.31773, and 
δ̂   =  0.01583. Matching the first three moments 
with equation (12) yields β̂   = 2.45555, γ̂    =  0.28013, 
and δ̂    = 0.00002. These sets of estimates render 
the following summary statistics:

statistic Table 3
modified 
beta mix-

ture

equation 
(12)

equation 
(12) with 
moment 
matching

mean 0 –0.00891 –0.00274 0
variance 5.90805 3.80396 5.86752 5.90805
skewness 0.81650 0.87734 0.81220 0.81650
kurtosis 2.50760 2.93891 2.52330 2.50702

Equation (12), which requires knowing the 
eigenvalues, and moment matching, which re-
quires knowing only the extreme eigenvalues 
and the moments, produce substantially better 
results than the modified (i.e., raised to an expo-
nential power to match the second moment) beta 
mixture. Because moment matching requires 
only the first three moments, as mentioned pre-
viously, kurtosis furnishes a check, which in this 
case indicates a slight deviation between the pre-
dicted and observed eigenvalues.

Fig. 9. Asymptotic beta distributions. Left (a): each component and the mixture. Right (b): the predicted eigenval-
ues, with (brown) and without (green) an inflation adjustment [similar to equation (8), γ̂   = 0.85], for n = 5,677  

(i.e., R = 43)
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The eigenvalue moments for a connected 
irregular surface partitioning

Given the first six moments of a set of eigen-
values, with the first being 0 by construction and 
the second being observable from the matrix it-
self (i.e., 1TC1 for matrix C, and 1TD–1CD–11 for 
matrix W) – in other words, the first two mo-
ments are known, whereas the remaining four 
moments need to be calculated, which is imprac-
tical when n is extremely or massively large – the 
parameters in equation (11) can be estimated 
without resorting to computing the non-extreme 
eigenvalues. Equation (8) requires only the first 
two moments, because symmetry results in all 
odd moments being 0; preserving symmetry is 
equivalent to matching these odd moments. Fur-
thermore, exploiting the asymptotic eigenvalue 
distribution and the theoretical approximation 
given by equation (7) furnishes even more in-
formation. Consequently, previously discussed 
eigenvalue approximation results for remote-
ly sensed image surface partitions consisting of 
hundreds of thousands or millions of pixels are 
extremely good.

Averaged powers of the eigenvalues of a spa-
tial weights matrix furnish the moments of in-
terest here. Because the eigenvalues are known 
analytically for a binary 0–1 spatial weights ma-
trix representing a  regular square tessellation 
forming a complete rectangular region, their mo-
ment approximations can be made for any size 
geographic landscape. Meanwhile, the moments 
can be expressed as a function of the various fre-
quencies of neighbors, as follows: 

a + ao/(PQ) + b{[(P–2)(Q–2)×4d + 2(P + Q – 4)×3d 
+ 4×2d]/(PQ)}c, 

where the coefficients a, ao, b, c, and d need to be 
estimated.

A sample of 961 such P-by-Q landscapes, 
ranging from P = 10 and Q = 10 (i.e., n = 100) to P 
= 100 and Q = 100 (i.e., n = 10,000) with a rook’s 
definition of adjacency, for which the frequency 
of neighbors is as follows:
number of neighbors frequency

4 (P – 2)(Q – 2)
3 2(P + Q – 4)
2 4

yields

μ4 ≡ –32 + 24/(PQ) + 17[(P–2)(Q–2)×4 + 2(P + Q 
– 4)×3 + 4×2]/(PQ), and

μ6 ≡ –648 + 600/(PQ) + 262[(P–2)(Q–2)×4 + 2(P + 
Q – 4)×3 + 4×2]/(PQ), 

which respectively are identical to results ap-
pearing in Griffith (2003: 42); c = 1 and d = 1 are 
the estimates here. These moment approxima-
tions are exact, and furnish the specification for 
irregular surface partitioning cases.

A sample of 22 P-by-Q landscapes, ranging 
from 5-by-6 to 75-by-75 (including, for example, 
50-by-100) with a  rook’s definition of adjacency 
and reflecting the specification μ2 ≡ 1TD‑1CD‑11/n 
[i.e., a moment is a function of 1/(ninj), where ni 
is the row and nj is the column sum of matrix C], 
whose estimation equation is

a + ao/(PQ) + b{[(P–2)(Q–2)/4d + 2(P + Q – 4)/3d 
+ 4/2d]/(PQ)}c,

yields

μ4 ≡ –0.14063 – 0.04302/(PQ) + 0.24923[(P–2)
(Q–2)/4 + 2(P + Q – 4)/3 + 4/2]/(PQ), and

μ6 ≡ –0.10656 + 0.01684/(PQ) + 0.81685[(P–2)
(Q–2)/4 + 2(P + Q – 4)/3 + 4/2]/(PQ),

which respectively are identical to results ap-
pearing in Griffith (2003: 44), except for rounding 
error5; c = 1 and d = 1 are the estimates here. As 
before, these moment approximations are exact, 
and furnish the specification for irregular surface 
partitioning cases.

As noted previously, because of symmetry, 
the odd moments are 0 for a regular square tes-
sellation coupled with the rook’s adjacency.

Asymmetric eigenvalue distributions are pos-
itively skewed, and hence have a positive value 
for the third and fifth moments. The preceding 
two specimen datasets were merged to explore 

5	 An assessment of r = 1,000 (n = 3,003,000) yields an ap-
proximate set of eigenvalues with a mean of 0.00828, 
a near-perfect match of the variance, and the follow-
ing ratios for moments 3–6: 0.98745, 0.98858, 0.98842, 
and 0.98212. In other words, the approximation is 
very good, but not perfect.
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an appropriate specification for these moments. 
For the 0–1 binary spatial weights matrix,

μ3 ≈ (λ1 + λn)0.22031 [2.51113 – 1.73877/(PQ) 
+ 0.19128[(f2×2 + f3×3 + f4×4 + f5×5 + f6×6)/

(PQ)]2.00139, and

μ5 ≈ (λ1 + λn)1.11521 [67.38840 –199.54911/(PQ) 
+ 0.59412[(f2×2 + f3×3 + f4×4 + f5×5 + f6×6)/

(PQ)]5.74858.

For the row-standardized spatial weights 
matrix, 

μ3 ≈ (λ1 + λn)0.22438 {0.03072 – 0.04349/(PQ) + 
2.29262[f2,3/(2×3) + f2,4/(2×4) + f2,5/(2×5) + f3,3/
(3×3) + f343/(3×4) + f3,5/(3×5) + f3,6/(3×6) + f4,4/
(4×4) + f4,5/(4×5) + f4,6/(4×6) + f5,6/(5×6) + f6,6/

(6×6)]/(PQ)}290176, and

μ5 ≈ (λ1 + λn)0.22692 {0.01410 – 0.02316/(PQ) + 
1.78297[f2,3/(2×3) + f2,4/(2×4) + f2,5/(2×5) + f3,3/
(3×3) + f343/(3×4) + f3,5/(3×5) + f3,6/(3×6) + f4,4/
(4×4) + f4,5/(4×5) + f4,6/(4×6) + f5,6/(5×6) + f6,6/

(6×6)]/(PQ)}2.45354,

where λ1 and λn are the extreme eigenvalues of 
matrix C. In all four cases, the pseudo-R2 is al-
most exactly 1. A comparison of these equations 
with those in Griffith (2003: 42–43) for the hexag-
onal tessellation confirms that these are extreme-
ly good approximations. These equations yield 
exactly 0 for the square tessellation case.

Based on these preceding equations, the mo-
ment approximations for irregular tessellations 
are as follows:
matrix C

matrix W

Cross-validation supports the quality of these 
approximations, which are superior to those ap-
pearing in Griffith (2000: 45–46). 

Eigenvalue approximations for 
connected irregular graphs

Griffith (2000: 48) presents an eigenvalue ap-
proximation equation that has six parameters and 
exploits the rank ordering of a set of eigenvalues. 
Extensive analysis with the specimen dataset re-



54	 Daniel A. Griffith

veals that estimation of these six parameters with 
the method of moments can yield unstable val-
ues. The discussion in this section builds upon 
the preceding features of this paper, namely the 
calculation of regular square lattice eigenvalues 
using areal unit coordinates, the pair of extreme 
eigenvalue power law components, the rank or-
dering of eigenvalues, and the importance of ei-
genvalue spacings.

A surface partitioning by a  set of polygons 
can be converted to a  geographic distribution 
of points by calculating each polygon’s geomet-
ric centroid (a standard GIS function), say (ui, 
vi). These are the values used in equation (7) to 
calculate the eigenvalues of a regular square tes-
sellation forming a complete rectangular region. 
They also are the values used in equation (8) to 
calculate eigenvalue approximations. Extending 
this to an irregular surface partitioning, the co-
ordinate system georeferencing the centroids of 
these polygons can be standardized so that all 
centroids lie within the unit square, whose ver-
tex coordinates are, in counterclockwise order, 
{(0, 0), (1, 0), (1, 1), (0, 1)}. This standardization is 
achieved by subtracting the smallest coordinate 
value from each value for a given axis, and then 
dividing each of the resulting values by the dif-
ference between the largest and the smallest orig-
inal values for each axis: ([ui – umin]/[umax – umin], 
([vi – vmin]/[vmax – vmin]), where xmin and xmax re-
spectively are the minimum and maximum val-
ues of x. Next, initial eigenvalue approximations 
can be calculated with, for eigenvalue i,

which also needs to be standardized such that for 
eigenvalue i,

which produces a set of values ranging from 0 to 
1. Accordingly,

Conjecture 3. Let matrix M denote an n-by-n 
irreducible adjacency matrix (either matrix C 
or W) associated with an undirected connected 
planar graph G. Let λmax denote the largest eigen-
value, λmin the smallest eigenvalue, and λi the ith 
eigenvalue of matrix M. Then 

(13)

where λ̂  i denotes the estimate of the ith eigenval-
ue, λi, for suitable values of parameters β and γ.

When λtemp,i = 1 (i.e., i = 1), equation (13) reduc-
es to λmax, and when λtemp,i = 0 (i.e., i = n), equation 
(13) reduces to λmin. Equation (13) can be rewrit-
ten as

  

which reveals that an exponent is applied to the 
temporary approximation values contained in 
the interval [0, 1], with this exponent either in-
flating or deflating these values; the eigenvalue 
approximation is the eigenvalue range times 
a standardized rank number in the interval [0, 1] 
plus the minimum eigenvalue. Accordingly, the 
exponent inflation/deflation of the standardized 
ranks allows matching of the approximate and 
exact eigenvalue moments. The exponent term 
(λmax + λmin) ensures that this eigenvalue approxi-
mation for regular square tessellations, for exam-
ple, yields a symmetric set of values. Therefore, 
equation (13) rivals equation (9), although its 
fourth moment result deviates by 10.5%.

For a connected irregular planar graph, these 
approximations can be obtained with the follow-
ing set of two equations in two unknowns, utiliz-
ing the method of moments estimation technique:

The left-hand side of this equation comprises 
the values of the first and second moments. The 
right-hand side is given by the preceding estimat-
ed moments for matrix C or W. The third through 
sixth moments can function as checks, or be used 
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to estimate additional parameters included in 
a refinement of this equation.

Approximate eigenvalues for matrices C and 
W: a Poland example

A full assessment of Conjecture 3 with the 
specimen sample of eigenvalues is not possible at 
this time because equation (13) also requires the 
geometric centroids of polygons, which presently 
are unavailable for many of the sample surface 
partitioning. Poland is one exception.

Poland is partitioned into communes (n = 
2,468), which nest into poviats (n = 369), which 
in turn nest into voivodeships (n = 16). Equation 
(13) furnishes an extremely good approximation 
for these three sets of eigenvalues, with some-
what better results for matrix C than for matrix 
W. Fig. 10 indicates that equation (13) needs fur-
ther development, particularly with regard to 
negative eigenvalues. But this equation furnish-
es a remarkably good approximation given that 
it has only two parameters. It suggests that the 
coordinates of polygons offer a convenient set of 
data to approximate eigenvalues, contributing 
in terms of their spacing property. Considerable 
future research should be devoted to refining 
this equation. The preceding moments approxi-
mations allow support of up-to-a-six-parameter 
specification, which presently needs to be identi-

fied. Meanwhile, Table 4 summarizes encourag-
ing preliminary results.

Appendix A presents a detailed step-by-step 
simple example (i.e., the voivodeships tessella-
tion) of the necessary calculations for computing 
the eigenvalue approximations. Because n is so 
small, the approximations are somewhat poor for 
this example. As n increases, the interval defined 
by the true extreme eigenvalues becomes increas-
ingly more densely filled, with the approxima-
tions improving.

Appendix B presents estimates for the same 
example, not only for polar coordinates, but also 
for a  universal transverse Mercator projection, 
a Lambert conformal conic projection, and a Lam-
bert azimuthal equal area projection. These map 
projection results indicate that the eigenvalue ap-
proximations seem reasonably insensitive to the 
coordinate system used. Again, as n increases, 
such differences are expected to diminish.

Finally, to help illustrate that the findings 
summarized in this section are not specific to the 
Polish example, and help illustrate the general-
ity of this approximation, Appendix C furnish-
es results based upon a set of random Thiessen 
polygon surface partitionings. The horizontal 
and vertical axis coordinates were drawn at ran-
dom from a  uniform distribution. The generat-
ed tessellations are for n = 500, 1,000, 2,000, and 
5,000 points. Results reported in Appendix C cor-

Fig. 10. Scatterplots of approximation versus actual eigenvalues for the surface partitioning of Poland
Top row: matrix C. Bottom row: matrix W. Left-hand column: communes. Middle column: poviats. Right-hand column: voivodeships
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roborate those summarized here for the Polish 
tessellations.

Conclusions and implications

Eigenfunctions, especially eigenvalues, play 
an important role in parts of spatial analysis. 
But determining them presents a  challenge for 
large surface partitionings whose sets of poly-
gons have a  dual connected planar graph. This 
paper confirms that the important feature of a set 
of eigenvalues is their spacing across the range 
defined by the easily computable extreme values. 
It also confirms that a two-component finite beta 
mixture furnishes a good description of the fre-
quency distribution for a set of eigenvalues, but 
fails to furnish good predictions. This description 
still is useful because it confirms that an eigen-
value approximation equation needs to include 
two terms, one that is a function of the largest ei-
genvalue, and the other that is a function of the 
smallest eigenvalue. 

The first and second statistical moments 
of a  set of eigenvalues always are known from 
properties of a  spatial weights matrix. This pa-
per provides sound approximations for the third 
through sixth statistical moments, for both the bi-
nary spatial weights matrix C, and its row-stand-
ardized counterpart, matrix W, for the rook’s 
definition of adjacency. These moment approxi-
mations can be coupled with the method of mo-
ments estimation technique to approximate a set 

of eigenvalues, and, in some cases, check the 
quality of eigenvalue approximations. Approx-
imation results for regular square tessellations 
for either complete or incomplete rectangular re-
gions are extremely good. Conjecture 1 summa-
rizes this situation.

Conjecture 2 summarizes initial results for ir-
regular surface partitionings. It exploits the rank 
ordering of a  set of eigenvalues, but fails to ef-
fectively incorporate their variable spacing prop-
erty. It also has six parameters to estimate, with 
the method of moments estimates being unsta-
ble for some sets of eigenvalues. Nevertheless, it 
motivated the establishment of a set of moment 
approximation equations. Furthermore, its insta-
bility motivated the formulation of Conjecture 
3, which attempts to better capture the variable 
spacing property. Equation (13) is an initial spec-
ification that, as illustrated by Fig. 10 and Table 
4, merits further refinement for proper model 
identification. This will be the focus of future 
research, as will be the compilation of areal unit 
centroids for surface partitionings contained in 
the specimen dataset, and both the impact of in-
creasing n and of a wide range of map projections 
on the quality of the eigenvalue approximations.
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Table 4. Summary statistics for the nested hierarchy of surface partitions for Poland

Statistic
Communes Poviats Voivodeships

C W C W C W
β̂ 2.00238 1.52497 2.59046 1.82606 2.45731 1.77469

γ̂ 0.00072 0.69815 0.07213 0.16230 –0.00100 –0.66847

mean 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

standard deviation 2.37232 0.41804 2.28773 0.43057 2.12916 0.50222

skewness 0.60478
(0.81512)

0.28047
(0.71272)

0.72695
(0.82560)

0.34867
(0.62738)

0.98429
(0.89987)

0.66728
(0.73192)

excess kurtosis –0.49848
(–0.27254)

–0.69284
(–0.59217)

–0.31237
(–0.12194)

–0.81155
(–0.66316)

0.16646
 (–0.08241)

–0.52344
(–0.59337)

RESS 0.00653 0.03090 0.00528 0.01395 0.01924 0.02494
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APPENDIX A

Step-by-step calculation of the Polish voivodeships tessellation eigenvalue approximations.

Step 1: obtain the original coordinates (e.g., longi-
tude and latitude)
Step 2: map each coordinate to the unit square 
with the transformations

X = (longitude – 15.3475)/(22.9318 – 15.3475)
Y = (latitude – 49.8613)/(54.1535 – 49.8613)

Step 3: calculate the cosine transformation of the 
unit square coordinates, COS (πX) and COS (πY)

Step 4: calculate, and sort in descending order, 
the initial eigenvalue approximations, 

Step 5: compute the true extreme eigenvalues, 
λmax and λmin, which are 1 and –0.5879 for the Pol-
ish voivodeships example 

Step 6: estimate the exponent  for λ̂  , by 
matching the first two true and approximation 
moments to calculate the approximate eigenval-
ues λ̂̂   , which are β = 1.5436 and γ = –1.1494 for the 
Polish voivodeships example
Step 6 involves setting up a pair of simultaneous 
equations for estimation purposes, one for each 
moment.

Table A1 reports the results of these steps for 
the Polish voivodeships example. Table A2 fur-
nishes comparative statistics for the three sets of 
eigenvalues.

Table A2. Summary statistics for Polish voivodeship eigenvalues estimation

Eigenvalue Mean Standard 
deviation Skewness Excess kurtosis Minimum Maximum

λ 0.0000 0.5022   0.7319 –0.5934 –0.5879 1.0000

λ̂ 0.5478 0.2899 –0.3833 –0.3464   0.0000 1.0000

λ̂̂ 0.0000 0.5022   0.6673 –0.5234 –0.5879 1.0000

Table A1. Step-by-step details for geographic weights matrix W

Voivodeship

Original 
coordinates

Unit square 
coordinates

COS 
transformation

λ̂ λ̂̂ λ
Longi-
tude Latitude u v u v

Lower Silesia 16.4127 51.0894 0.1405 0.2861 0.9042 0.6225 1.0000 1.0000 1.0000
Kujavia-Pomerania 18.4895 53.0741 0.4143 0.7485 0.2661 –0.7038 0.9408 0.8345 0.8068
Lublin 22.9047 51.2205 0.9964 0.3167 –0.9999 0.5446 0.8416 0.5640 0.6518
Lubuska Land 15.3475 52.1964 0.0000 0.5440 1.0000 –0.1379 0.8000 0.4542 0.4067
Mazovia 21.0995 52.3446 0.7584 0.5786 –0.7255 –0.2443 0.7062 0.2170 0.3200
Małopolska 20.2650 49.8613 0.6484 0.0000 –0.4495 1.0000 0.6824 0.1595 0.0720
Opole 17.9008 50.6470 0.3367 0.1831 0.4909 0.8392 0.5929 –0.0440 0.0181
Subcarpathia 22.1683 49.9535 0.8993 0.0215 –0.9504 0.9977 0.5899 –0.0504 –0.0470
Podlasie 22.9318 53.2648 1.0000 0.7930 –1.0000 –0.7958 0.5653 –0.1022 –0.2191
Pomerania 17.9781 54.1535 0.3469 1.0000 0.4628 –1.0000 0.5547 –0.1238 –0.3068
Warmia-Mazuria 20.8374 53.8539 0.7239 0.9302 –0.6467 –0.9761 0.4087 –0.3797 –0.3078
Wielkopolska 17.2454 52.3318 0.2502 0.5756 0.7066 –0.2352 0.4035 –0.3872 –0.3217
West Pomerania 15.5665 53.5811 0.0289 0.8666 0.9959 –0.9135 0.3788 –0.4207 –0.4314
Silesia 18.9957 50.3339 0.4810 0.1101 0.0596 0.9408 0.2486 –0.5456 –0.4775
Świętokrzyska Land 20.7726 50.7628 0.7153 0.2100 –0.6260 0.7901 0.0521 –0.5879 –0.5762
Łódź 19.4197 51.6057 0.5369 0.4064 –0.1157 0.2898 0.0000 –0.5879 –0.5879
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APPENDIX B

Eigenvalue approximations for the Polish voivodeships tessellation and selected map projections.

Table B1. Matrix C eigenvalue approximations for selected map projection coordinates
λ(C) long/lat UTM LAEA LCC λ(W) long/lat UTM LAEA LCC
4.6811 4.6811 4.6811 4.6811 4.6811 1.0000 1.0000 1.0000 1.0000 1.0000
3.2979 3.7083 3.8973 3.4193 3.4228 0.8068 0.8345 0.8694 0.7806 0.7813
2.6059 2.2666 2.3767 2.3763 2.3699 0.6518 0.5640 0.5907 0.5818 0.5805
1.5601 1.7306 1.3833 1.9291 1.9324 0.4067 0.4542 0.3858 0.4908 0.4915
1.1471 0.6642 0.6623 0.8430 0.8404 0.3200 0.2170 0.2224 0.2534 0.2529
0.2965 0.4235 0.2944 0.3429 0.3444 0.0720 0.1595 0.1333 0.1350 0.1354
0.0641 –0.3749 –0.3516 –0.3149 –0.3115 0.0181 –0.0440 –0.0344 –0.0308 –0.0299

–0.1778 –0.3990 –0.3922 –0.3981 –0.4018 –0.0470 –0.0505 –0.0454 –0.0527 –0.0537
–0.9294 –0.5889 –0.6628 –0.5722 –0.5692 –0.2191 –0.1022 –0.1210 –0.0992 –0.0984
–1.2051 –0.6668 –0.6794 –0.7581 –0.7585 –0.3068 –0.1238 –0.1257 –0.1499 –0.1500
–1.3105 –1.5339 –1.4957 –1.3969 –1.3983 –0.3078 –0.3797 –0.3735 –0.3325 –0.3330
–1.5290 –1.5583 –1.4964 –1.4951 –1.5003 –0.3217 –0.3872 –0.3738 –0.3617 –0.3633
–1.8775 –1.6660 –1.6536 –1.8770 –1.8729 –0.4314 –0.4207 –0.4243 –0.4767 –0.4755
–2.0761 –2.0798 –1.9827 –2.1765 –2.1751 –0.4775 –0.5456 –0.5278 –0.5628 –0.5625
–2.2416 –2.3010 –2.2750 –2.2972 –2.2976 –0.5762 –0.5879 –0.5877 –0.5875 –0.5875
–2.3056 –2.3056 –2.3056 –2.3056 –2.3056 –0.5879 –0.5879 –0.5879 –0.5879 –0.5879

CSS 1.3083 1.3397 0.8395 0.8481 0.0944 0.0763 0.0742 0.0747
Long/lat denotes degrees of longitude and latitude, UTM denotes universal transverse Mercator (Zone 34N) projection, LAEA denotes 
(North Pole) Lambert azimuthal equal area projection, LCC denotes (Europe) Lambert conformal conic projection, CSS denotes corrected 
sum of squared differences.
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APPENDIX C

Results for selected Thiessen polygon surface partitionings based upon randomly generated points 
with each coordinate drawn from the [0, 1] uniform distribution.

Scatterplots of approximation versus actual eigenvalues for selected Thiessen polygon surface partitionings based upon ran-
domly distributed points. Top row: matrix C. Bottom row: matrix W. Left-hand column: n = 500. Left-hand middle column: 

n = 1,000. Right-hand middle column: n = 2,000. Right-hand column: n = 5,000

Table C1. Summary statistics for selected Thiessen polygon surface partitionings based on random points

Statistic
n = 500 n = 1,000 n = 2,000 n = 5,000

C W C W C W C W
̂ 0.04268 2.02646 0.03139 1.84456 0.03884 3.64997 0.05535 4.34486
γ̂ 1.96495 1.03095 1.98839 1.39045 1.88243 1.29677 2.01190 1.41049
mean 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
standard deviation 2.34841 0.43417 2.37479 0.42670 2.41387 0.41615 2.38785 0.42374

skewness 0.78666
(0.80069)

0.35169
(0.65586)

0.81355
(0.80208)

0.42069
(0.68962)

0.80096
(0.81519)

0.53464
(0.74812)

0.76902
(0.80700)

0.41913
(0.70339)

excess kurtosis –0.20478
(–0.31393)

–0.60858
(–0.60055)

–0.09850
(–0.34909)

–0.49227
(–0.58849)

–0.18764
(–0.34541)

–0.52266
(–0.53817)

–0.18887
(–0.34248)

–0.55460
(–0.56621)

RESS 0.00625 0.03156 0.00578 0.02983 0.00582 0.03066 0.00454 0.02386
NOTE: exact skewness and excess kurtosis values are in parentheses.


