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Abstract: It is possible that Georg Cantor and Walter Christaller may have been aware of one another during their 
careers, however, there is no indication the two collaborated. Also, there is no documentation that Christaller’s central 
place theory (CPT) contains any tenets derived from Cantor’s middle third set (CMT). Regardless, CMT and CPT are 
linked by their constructions as nested hierarchies and the geometry of hexagons. The end points and intervals of CMT 
may be incorporated, respectively, as anchor points and radii for the hexagonal tessellations of central place theory.
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Cantor’s middle third set

Cantor’s set is one that is based on an under-
lying rectilinear geometry. Consider its construc-
tion as follows. Take a line segment, divide it into 
thirds, and remove the middle third. Continue 
this process on the remaining two segments. Re-
peat the process endlessly. The result is the Can-
tor middle third set (CMT), which consists of lim-
its of end points of intervals (Cantor 1915). Figure 
1 suggests the process through four iterations. To 
visualize the endless process, think of the set be-
coming dust.

Binary representation of Cantor’s 
middle third set — the fractal 
connection

In fractal geometry, an initiator is the starting 
shape to be modified through successive itera-
tions (Mandelbrot 1983). For the CMT, the initia-
tor is the closed interval [0, 1] at the outset (level s 
= 0 of the iterative process). At each subsequent it-
erative level, a generator is applied to the current 
geometric object(s). For example, if (1/3, 2/3) is 
removed from [0, 1], then the values remaining in 
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Fig. 1. Cantor’s middle third set through four iterations
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the CMT at level s = 1 are [0, 1/3] U [2/3, 1]. Once 
a point is an endpoint of an interval, it remains 
in the set. As the process continues, the resulting 
set is a fractal dust, formed from the collection of 
points never removed.

It is a straightforward matter to create a bina-
ry representation of the Cantor interval (I) and 
the respective hierarchical level. For example, 
I(0) = [0, 1/3]. Generally, 

I(Ω) = [0, 1]

I(Ωs) = I(ωs,i) ... I(ωs,i) = [as,i, bs,i] ... [as,i, bs,i]

such that as,i = {the left endpoint} and bs,i = {the 
right endpoint} for interval (i) of hierarchical lev-
el s. Also, s = {the number of 0’s or 1’s in (ω)} and 
i ∈ [1,2i]. The binary coding – where ω = I1 ...In is 
a unique series of 0’s and 1’s and each In = {0 or 
1} – simplifies the notation with the realization 
that a  0 represents the left third of the interval 
s–1, and 1 represents the right interval from s–1. 
For example, at s = 3,

In I(00), the first 0 implies the left segment was 
chosen at s = 1, and the second 0 means the left 
interval was chosen at s = 2, while (1/9, 2/9) is 
not in Ω3. In contrast, I(01) denotes that the left 
segment was chosen at s =1 and the right seg-
ment chosen at s = 2. Likewise, both I(10) and 
I(11) indicate that the right segment was selected 
at s = 1. Figure 1 illustrates the binary representa-
tion procedure through three hierarchical levels 
of the CMT.

The fractal connection as a pivot to 
other theories

Because the CMT can be captured as a nest-
ed hierarchy using fractal iteration sequences 
to generate it, a natural place to look for further 
connection is to central place theory (Christaller 
1933) and its characterization using fractal gener-
ation sequences. In 1985, Arlinghaus illustrated 
how to do this process for all K values, and in 
1989 Arlinghaus and Arlinghaus proved how to 
do it for all possible K values and for all outstand-
ing previously posed unsolved problems derived 
from a non-fractal approach (Dacey 1965). What 
is sought in the future is to attempt to capture 
similar power from a  fractal characterization of 
the CMT and eventually to consider its implica-
tions in urban planning, which is often based on 
an underlying rectilinear geometry rather than 
on a hexagonal one.
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