
QUAESTIONES GEOGRAPHICAE 34(4) • 2015

THE CURIOUS CASE OF 2½ D

Waldo Tobler

Geography Department, University of California, USA

Manuscript received: February 2, 2015 
Revised version: October 10, 2015 

Tobler W., 2015. The curious case of 2½ D. Quaestiones Geographicae 34(4), Bogucki Wydawnictwo Naukowe, Poznań, 
pp. 85–89, 7 figs. DOI 10.1515/quageo-2015-0040, ISSN 0137-477X.

Abstract: Some geographical phenomena are continuous and exist in whole number dimensions. Topography, for 
example. Other phenomena, such as population density, depend heavily on the area used in their computation. Some 
refer to this as existing in 2½ dimensions. Is the difference just because it is a computed, rather than an observed quan-
tity? I argue the case for considering treatment of discrete geographic data as continuous. 
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Some geographical phenomena, topography 
for example, are treated as continuous. One can 
walk on it. Other phenomena, for example popu-
lation density, are not. You can’t walk on it. It is 
defined as population over an area, and depends 
heavily on the area used in its computation. 
When given by country, state, county, or city 

block, it has a  different value. Is the difference 
just because it is a computed, rather than an ob-
served quantity? Other phenomena, disease rates 
for example, suffer from the same problem. What 
is a cancer rate at a point location? Topography 
is defined by a solid surface. Or is it? The mate-
rial is after all made up of molecules and these 
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Fig. 1. Ann Arbor population as (left) choropleth map and (right) bivariate histogram in perspective
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by atoms, with lots of empty space. That’s what 
the physicists tell us. Similar problems occur in 
other situations. Rain comes in discrete drops 
but is often depicted as contours. There are many 
other comparable instances. Richardson (1926), 
for example, asked (and gave an answer to the 
question) “Does the wind have a velocity?” Ve-
locity, along with acceleration, is a concept going 
back to Galileo, and assumes calculus, and this 
was controversial for over one hundred years. 
How do we make wind, or population density, 
into a continuous object? Or should disease rates, 
population density, and wind be considered as 
fractal entities, possibly of increasing variance as 
they are looked at more closely? If so, I doubt that 
their fractal dimension is exactly 2½. 

When involving areal data, the most common 
procedure, going back to the mid–1800s (Rob-
inson 1982; Palsky 1996), is to assume a  distin-

guished point location within each area. Often 
this is the area centroid, or a major location ap-
propriate for the data. Then the observations for 
the entire area are assigned to this point, possibly 
by dividing by the size of the area to get a density 
value. Thus, it is assumed that the data are like 
elevations taken on a topographic surface. Next, 
it is usually further assumed that point interpo-
lation methods, such as kriging, are appropriate 
for these phenomena. So now we can make a con-
tour map of this interpolated ‘surface’, or use oth-
er methods for its depiction. In order to distin-
guish the resulting surface from a  ‘real’ surface 
it is often called a 2½ dimensional surface. This 
seems rather curious terminology; in fact it is ri-
diculous, in my opinion. But the student of GIS is 
required, in the GIST – Body of Knowledge (DiBase 
et al. 2006), to be able to “differentiate between 
2½-D representations and true 3-D models.” 

Fig. 2. Pycnophylactic reallocation: left, with zero iterations; right, with two hundred iterations

Fig. 3. Density with contours & gradient (left), and perspective with streaklines, showing possible lines of growth
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A somewhat different approach to the prob-
lem is given by the pycnophylactic reallocation 
method (Tobler 1979). This assumes an approxi-
mation by a two-dimensional lattice (raster) cov-
ering the entire region. The information is then 
smoothly spread over the individual areas by 
an iteration, without loss, or accretion, from any 
area. That is, each area contains the correct ob-
servations, but they have now been spread out 
and merge smoothly with the data from adjacent 
areas. The information now applies to the nodes 
of an approximating lattice, presumably fine-
grained. This can then be contoured with only 

a simple linear adjacency interpolation, and also 
shown as a solid surface, as illustrated (Figures 
1–3) An alternate, rather similar, version is via 
kernel estimation. Why call it 2½ dimensional? 
The smooth surface also permits the computation 
of gradients and streaklines. The latter, as noted 
by Borchert for Minneapolis (1961), suggest lines 
of urban growth. 

Another type of geographical phenomena is 
represented by interaction or movements (Beck-
mann 1952; Angel, Hyman 1976; Iri 1980; Puu, 
Beckmann 2003) This is also typically not contin-
uous and connects places in a table. By allowing 

Fig. 4. Raster of US states

Fig. 5. Pressure to move, from the difference between in-migration and out-migration
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the data collection areas conceptually to shrink 
to infinitesimal size, this information can also be 
rendered in a continuous fashion. The procedure 

is essentially similar to that given above. The 
data zones are approximated by a fine lattice, and 
the data assigned to the nodes of the lattice, then 

Fig. 7. Streaklines of 16 million persons migrating, showing spatially coherent migration domains

Fig. 6. Same, shown as pressure contours and migration gradient
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contoured. Consider an N by N migration table. 
The total out-migrations are given by the row 
sums; the in-migrations are the column sums. In 
the contiguous US state case we can assign each 
of these sums to the raster nodes covering each 
state. Then take the difference, to get the net mi-
gration, and smooth these and interpolate to see 
the values for all areas of the individual states. 
This visualization can then be contoured and its 
gradients, and higher derivatives, shown. Finally 
the gradients can be connected to emphasize dif-
ferential coherent migration zones in the country 
(Figures 4–7). A discrete version, showing migra-
tion arrows between the states, as an alternate 
representation, seems somewhat less informa-
tive. Certainly it is less impressive.

I hope that I have made the case for consider-
ing treatment of discrete geographical data as con-
tinuous. This seems to work at any geographical 
scale, and enlarges the possible interpretations of 
the observations. Still, like all geographical phe-
nomena, topography and coastlines included, the 
observations are resolution dependent, implying 

a fractal nature. But let us not call them two and 
one-half dimensional! 
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