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Abstract. This paper addresses new trends in quantitative geography research. Modern social science research 
– including economic and social geography – has in the past decades shown an increasing interest in micro-
oriented behaviour of actors. This is inter alia clearly reflected in spatial interaction models (SIMs), where discrete 
choice approaches have assumed a powerful position. This paper aims to provide in particular a concise review 
of micro-based research, with the aim to review the potential – but also the caveats – of micro-models to map out 
human behaviour. In particular, attention will be devoted to interactive learning principles that shape individual 
decisions. Lessons from cognitive sciences will be put forward and illustrated, amongst others on the basis of 
computational neural networks or spatial econometric approaches. The methodology of deductive reasoning 
under conditions of large data bases in studying human mobility will be questioned as well. In this context more 
extensive attention is given to ceteris paribus conditions and evolutionary thinking.
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1. Prefatory remarks

“As far as the laws of mathematics refer to reality, 
they are not certain, and as far as they are certain, they 

do not refer to reality”.
Albert Einstein

One of the most revolutionary developments 
in our age has been the rapid introduction of 
miniaturisation in all fields of industrial tech-
nology, e.g. in the use of materials, medical sci-
ence, information and communication technol-
ogy (ICT), particle physics, or chemistry. The 
search for small items or particles in the natural 
sciences was encouraged by a seminal and chal-
lenging article by Richard Feynman (1960) that 
caused a  radical transformation in fundamental 

research in physics and chemistry. His scientific 
work laid the foundations of the emergence and 
rising popularity of nanotechnology, essentially 
characterised by the motto ‘small is beautiful’. Not 
only is it possible nowadays to store an entire ‘lab 
on a chip’, but also to store more information on 
the ‘head of a pin’ than on a mainframe computer 
a few decades ago.

These new developments are possible thanks 
to interconnected technologies and interoperable 
information systems (see also Haining et al. 2010). 
Similar trends can be observed in research in be-
havioural sciences, such as experimental psychol-
ogy, micro-economics, criminology, transporta-
tion science, and human geography. An example 
is spatial interaction modelling based on discrete 
choice analysis, such as logit or probit models. 
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Modern ICT developments and advanced statis-
tical storage and data mining techniques have led 
to a drastic re-orientation in applied research in 
the behavioural sciences, along two lines. First, 
we observe a  clear emphasis on micro- (indi-
vidual) data (e.g. panel and longitudinal studies, 
individual survey questionnaires, interconnected 
data bases). And next, we see the emergence of 
extensive data bases (for instance, permanent 
observation and monitoring of individual traffic 
behaviour), which far exceed the limited empiri-
cal information on human behaviour in the past. 
This trend towards a wealth of individual multi-
actor behavioural data calls for a more systemic 
approach in applied research, e.g. complexity 
analysis, agent-based modelling, evolutionary 
behavioural geography, and so forth (see also 
Bavaud & Mager 2009).

From a  methodological perspective, the un-
precedented volumes of data in our age question 
the relevance of a  nomothetic or deductive ap-
proach in behavioural research. The traditional 
research starts from a series of propositions and 
testable hypotheses, to be validated by (often lim-
ited) empirical data (through the use of economet-
ric models or appropriate statistical techniques). 
But in modern behavioural research, data are 
sometimes so extremely rich and extensive that 
a  consistent testing of theoretical concepts may 
become so cumbersome that Hempel’s ‘bridge 
principle’ can hardly be met. A  reverse meth-
odological solution is nowadays becoming more 
popular and appropriate, namely ‘letting the 
data speak for themselves’ (data-instigated theo
ry). Through statistical identification techniques 
it is then possible to trace hidden structures in 
large data sets, which may then form a basis for 
new theory development employing cognitive 
research approaches (‘computational social sci-
ences’; see Lazer et al. 2009). This implies, inter 
alia, more emphasis on heuristic or ‘data-rich’ and 
‘theory-free’ statistical techniques, such as com-
putational neural networks, genetic algorithms, 
or self-organising mapping procedures.

In the present paper we will address new re-
search challenges in the area of spatial analysis 
and modelling. After an illustration of the use of 
micro GSM data in a  space-time micro-context, 
we will offer some conceptual observations on 
new trends in quantitative research on nonlinear 

dynamic spaces. Next, we will address a cumber-
some concept in spatial research, viz. the ceteris 
paribus condition in relation to spatial equilibria, 
and review its relevance in data-instigated re-
search. We will then devote some attention to 
spatial complexity analysis, followed by a review 
of recent applications. In this context, spatial net-
works offer a great research field for investigating 
the structural patterns in complex and dynamic 
systems. In this vein we also address evolution-
ary thinking in geography, and finally, we draw 
some research conclusions. 

2. Illustration: Micro-electronic 
footprint data in space-time geography

Geography has increasingly lost traces of 
a descriptive discipline on man-environment re-
lationships. On the contrary, modern geography 
has increasingly turned into a data-handling sci-
entific activity over the past decades. Transport 
geography offers a clear illustration of this trend. 
The methodology of data collection – and sub-
sequent statistical analysis in spatial interaction 
modelling – has exhibited drastic changes over 
the years. Many flow models used in the trans-
portation field (e.g. for commuting, shopping, 
recreation, freight transport) have traditionally 
used origin-destination (OD) data, either at an 
individual or at an aggregate level. Most of these 
models were based on gravity-type of approach-
es, which later on were often translated into 
spatial interaction models (SIMs). Well-known 
examples are entropy models and activity-based 
spatial models. All these approaches needed ex-
tensive data, obtained either from observed flows 
(e.g. manual counting, loop detection, cameras) 
or from (self-)reporting methods (e.g. mobility 
diaries, electronic devices, survey methods, or 
telephone interviews). The increase in large-scale 
data bases on the spatial behaviour of people (see 
Hägerstrand 1970) laid the foundations for the 
operational nature of modern geography.

The history of quantitative data analysis in ge-
ography spans already several decades. The need 
for a  more appropriate behavioural  underpin-
ning of spatial interaction models led in the 1980s 
to the emergence and popularity of discrete util-
ity (or choice) models, in particular multinomial 
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logit and probit models, later on followed by con-
joint analysis modelling. Such individually-based 
models were proved to be consistent with aggre-
gate-oriented spatial interaction models and got 
widely accepted in the transport research com-
munity. They also turned out to be well suited 
to actor-based policy simulation experiments, for 
instance in the context of micro-simulation mod-
els and agent-based models. In this vein, modern 
geography increasingly exhibits the methodol-
ogy of the natural sciences based on advanced 
statistical analysis and testable models (for a re-
view, see Pagliara & Timmermans 2009).

All such models were widely used for pre-
diction purposes, evaluation experiments and 
policy analyses in the field of planning and 
transportation science, for example to trace the 
system-wide effects of road pricing on the behav-
iour of car drivers. With the advent and intro-
duction of ICT, the computing capacity in quan-
titative research showed a  dramatic increase, 
so also spatial dynamics could be captured in 
a  statistically more satisfactory way. Complex-
ity theory has in recent years offered a remark-
able contribution to a  better understanding of 
the sensitivity of the evolution of spatial sys-
tems to endogenous non-linear space-time be-
haviour. Space-time dynamics (e.g. in the cellu-
lar automata domain) has become an important 
ingredient of advanced transportation research 
and spatial analysis, and prompted a  new de-
parture, viz. the use of data mining methods for 
large data sets (see also Batty 2005). The current 
use of computational neural networks and ge-
netic algorithms demonstrates convincingly the 
great potential of more sophisticated data col-
lection techniques. The real essence of space as 
highlighted in Tobler’s (1970) law (“All things 
in space are related to each other, but nearby 
things are more related than distant things”) 
has been taken up in a new strand of literature 
addressing spatial – and spatio-temporal – auto-
correlation, either as testing devices or as design 
mechanisms for spatial (dynamic) models (see 
also Tobler 2004). Cellular automata, spatial fil-
tering techniques and self-organised mapping 
procedures (‘Kohonen maps’) for spatial inter-
action analysis have been a  logical follow-up 
and complement to the above-mentioned trends 
(e.g. Arribas et al. 2010, Codd 1968, Couclelis 

1997, Kohonen 2000, Kulkarni et al. 2002 and 
Patuelli et al. 2010).

In the recent years, we have witnessed an in-
creasing popularity of location-based services 
(LBS) and data using various kinds of electronic 
identification systems, so that at an individual 
level (a traveller, a  container, a  truck, or a  taxi) 
the geographic position of a  unit can be traced 
with great precision. Many applications are avail-
able for purchase and free to cell-phone and oth-
er wireless-device users. For example, Japanese 
parents use location-based tracking devices to 
monitor the spatial movement of their kids. This 
new approach will certainly prompt many new 
applications in space-time geography. 

An interesting source of individually-based 
information on the space-time position and be-
haviour of persons is in principle available from 
mobile (or cell) phone data, derived from the 
GSM network. The penetration rate of mobile 
phones is rapidly reaching a full saturation level 
in most OECD countries, so a system-wide cover-
age does in principle exist, almost in continuous 
space-time format. Such data – as very accurate 
representations of an individual space-time loca-
tion – are in principle available with telephone 
operators. If such data – in an anonymous form – 
could be made available to the research commu-
nity, an unprecedented source of information on 
the space-time geography of individuals could 
be used in applied research (for an overview, see 
Steenbruggen et al. 2010). 

It is noteworthy that this idea of a  continu-
ous space-time map at an individual scale was 
already put forward by the late Swedish geogra-
pher Torsten Hägerstrand in 1967. He introduced 
the ‘space-time cylinder’ and its related time-
space model (Fig. 1) to offer a description of both 
individual space-time patterns and the resulting 
spatial interactions if many individuals were ‘en 
route’ at the same time and place, a  situation 
caused by the universal limited supply of daily 
time resources. His work was regarded as a new 
perspective in social-behavioural geography, as 
it highlighted so clearly the essence of interaction 
and congestion phenomena in space (see Pred 
1977). Three constraints appear to act on the dai-
ly mobility pattern of individuals, viz. capability 
constraints, coupling constraints, and authority 
constraints. It also laid the foundations for activi-
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ty-based transport geography, but, unfortunately, 
lack of data and of an appropriate technology to 
implement the framework often precluded a full 
operational application of his path-breaking ide-
as. Now with the potential availability of large-
scale continuous space-time information bases 
on spatial movements of individuals, a  really 
interesting novel approach might be developed, 
which may have great implications for spatial 
modelling. Two such approaches can be found 
in the literature. The first incorporates elements 
of cognition by considering individuals’ prefer-
ences via the theory of affordances proposed by 
Gibson (1979) (Raubal et al. 2004). Cognitive con-
straints, e.g., choice behaviour, were not given 
explicit attention in the original time-geography 
framework. These constraints can help personal-
ise location-based services (LBS), making it possi-
ble to collect more detailed information about the 
choices individuals make, their likes and dislikes. 
The other adjusts the space-time prism concept 
to support interactions and activities between the 
physical and virtual spaces (Yu & Shaw 2008). 
This approach would help model and under-
stand how individuals allocate their space and 
time resources in the age of mobile computing, 
when a variety of activities and services can be 
carried out on the go.

In the literature, we can already see the first 
interesting applications of GSM data, e.g. in the 
study of the intensity of social networks (Eagle 
et al. 2009), the spatial distribution and concen-
tration of tourists (Ahas et al. 2006), traffic speed 
and journey time (Bar-Gera 2007), individual 
mobility patterns in cities (Gonzales et al. 2008), 
or urban structure patterns (Reades et al. 2009). 
Interesting applications can also be found in 
the use of private or public spaces by individu-
als (e.g., Calabrese et al. 2001), the concentration 
of people in a city (e.g., Reades et al. 2009), the 
activity spaces of commuters (Ahas et al. 2006), 
non-recurrent mass events such as a pop festival 
(e.g., Reades et al. 2007), the entry of tourists into 
a certain area of attraction (e.g., Ahas et al. 2007, 
2008), or the estimation of spatial friendship net-
work structures (e.g., Eagle et al. 2009). Especially 
in the transport sector, the potential applications 
are vast, and consequently, the use of cell-phone 
data has shown a rapid increase in urban trans-
port applications. These data are a rich source of 

information on continuous space-time geography 
in urban areas. They can be used for daily traf-
fic management, but also for incidence manage-
ment, for instance, in case of big fatalities, terror-
ist attacks, or mass social events, such as festivals 
or demonstrations. 

It should be noted that the use of LBS data (ei-
ther GPS or GSM information) has also met with 
scepticism and even criticism, as in this case it 
may be possible to track humans in all their space-
time movements. Some authors even talk about 
‘geoslavery’1 as a  new form of big-brother con-
trol on location behaviour (e.g., Dobson & Fisher 
2003) and highlight important privacy issues (Sui 

1	 Geoslavery is defined in the Encyclopedia of Human Ge-
ography (p. 186) as follows: “Geoslavery is a radically 
new form of human bondage characterized by loca-
tion control via electronic tracking devices. Formally, 
it is defined as a  practice in which one entity (the 
master) coercively or surreptitiously monitors and 
exerts control over the physical location of another in-
dividual (the slave). Inherent in this concept is the po-
tential for a master to routinely control time, location, 
speed, and direction for each and every movement of 
the slave or, indeed, of many slaves simultaneously. 
Enhanced surveillance and control may be attained 
through complementary monitoring of functional 
indicators such as body temperature, heart rate, and 
perspiration”.

Fig. 1. Hägerstrand’s time-space model
Source: Warf (2006).
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2004, Jiang & Yao 2006). Notwithstanding such 
socio-ethical issues, GIS technology offers an 
important vehicle for the use of such geo-based 
devices for mobility planning and management. 
The Open GIS Consortium (OGC) (http://www.
opengis.org) through the OpenGIS Location 
Service (OPENLS) initiative has defined stand-
ards to facilitate the interaction with LBS. ESRI, 
the largest GIS company world-wide (Shiode et 
al. 2002), in its efforts to stay in the forefront of 
GIS technology has offered its services as part of 
the Amazon Cloud (ESRI 2010) (for a discussion 
on cloud computing for mobile users, see Kumar 
& Lu 2010). This will provide the organisation 
with the ability to run GIS services in the cloud 
without having to purchase the software. This 
in turn will offer LBS additional functionalities 
previously unavailable that can manipulate and 
analyse the spatial data, giving even more impor-
tance to the development of new approaches in 
the field of time-geography.

Modern GIS technology in combination with 
location-based services (LBS) – in the context of 
either GPS or GSM systems – is indeed able to 
design real-time tracking and tracing systems 
for goods and people. Especially the integration 
of spatial integration and individual information 
from various sources has raised public concern 
about personal surveillance and information pri-
vacy. As mentioned above, in principle, an inte-
grated space-time information system may pave 
the road towards permanent location control, 
coined geoslavery (Dobson & Fisher 2003, Goss 
1995). Clearly,  the advantages of remote-control 
tracking and tracing systems are numerous, for 
instance, in route navigation systems, LBS in the 
trucking sector, wristbands for tracking the move-
ments of schoolchildren, incident identification 
among mountaineers, spatial positioning of tem-
porarily released prisoners, etc. However, there are 
evidently also shadow sides to be faced by public 
authorities and commercial vendors or marketers 
aiming at exploiting the potential of such electron-
ic information systems, in particular as an ‘infor-
mation master’ may structurally control time, lo-
cation, speed and direction for every movement of 
any individual. It is clear that specific regulations 
on the use of and access to such electronic tracking 
and controlling systems are needed to prevent any 
abuse and violation of privacy protection.

The previous observations offer a clear dem-
onstration of the radical changes in modern geo-
graphical research, where large micro-data bases 
offer an unprecedented scope for detailed spatial 
analysis of human behaviour. This new opportu-
nity calls also for a more critical reflection on the 
research methodology of geography. The latter 
issues will be touched upon in the next section, 
which is more explicitly devoted to the spatial 
footprints of GSM networks.

3. Organising principles for the space-
economy: A conceptual overview

The research domain of modern geography is 
vast and increasingly interacting with other dis-
ciplines, such as economics, law, planning, po-
litical science, sociology, and architecture. This 
trend has caused important interdisciplinary 
cross-fertilisation and has also prompted a rapid 
introduction of advanced research tools, such as 
dynamic systems models, computable spatial 
economic equilibrium models (for instance, in 
new economic geography), spatial interaction 
analysis, discrete choice models, spatial network 
analysis, spatial innovation and diffusion analy-
sis, migration studies, and so forth. Modern data 
mining techniques are important vehicles in this 
context. 

Another set of important statistical tools that 
have been developed in the past decades is of-
fered by spatial econometrics, which has gained 
much popularity in recent quantitative regional 
and urban research. Spatial econometrics has al-
ready a long history. It started as a simple statis-
tical test to detect spatial autocorrelation (or spa-
tio-temporal autocorrelation) in a multi-regional 
data set by using Moran’s statistic. Later on, it 
was realised that the use of spatially correlated 
data in multi-regional models might lead to bi-
ased estimators (see Anselin & Rey 2010). Two 
pathways were essentially developed to cope 
with autocorrelation in spatial models with inter-
action effects, viz. the spatial lag model and the 
spatial error model. The first class includes a spa-
tially lagged dependent variable, while the sec-
ond class contains a spatial auto-regressive error 
term expression. Spatial econometrics has gained 
a great deal of popularity in modern quantitative 
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geographical research and has become a standard 
tool in this field. Over the years, much progress 
has been made by combining a spatially lagged 
dependent variable and a spatially autocorrelat-
ed error term in one model, while more recently 
also combined spatially lagged dependent and 
explanatory variables have been developed (the 
spatial Durbin model) (LeSage & Pace 2009; El-
horst 2010).

A major limitation in current spatial econo-
metric research – and a  great future research 
challenge – is the fact that the determination of 
the spatial weight matrix is still fraught with 
many uncertainties. Essentially, the way a spatial 
weight matrix W is normally estimated (e.g., via 
the reverse distance between adjacent regions, 
the length of the common border between contig-
uous areas) is rather naive and does not incorpo-
rate any cognitive information on the interaction 
intensity among regions, such as socio-cultural 
cohesion, behavioural commonalities, inter-
linked institutional regimes. There is, no doubt, 
much scope for further sophisticated research by 
endogenising the specification of the W matrix. In 
this context, adjusted techniques – based on e.g. 
instrumental variables methods – may have to be 
employed. Similar observations can be made on 
space-time autocorrelation, where the combined 
lag structure – over space and time – needs more 
careful attention.

It should be noted that one issue has received 
less attention in quantitative applied research, 
namely the management of geographical space 
(e.g. sustainable land use planning), which has 
assumed a  far less prominent place in spatial 
statistics and modelling, although the current 
popularity of complex and self-organising sys-
tems is a promising new departure (see Portugali 
2006). The planning of space (e.g. land use, infra-
structure) has in recent years been positioned in 
an evolutionary world, which is less dictated by 
top-down control, but much more by micro-be-
haviour from a bottom-up perspective in which 
learning and interaction play a crucial role. The 
development of spatial mega data systems ties 
in with these new trends in planning, which has 
increasingly moved into coordination of spatial 
developments over the past years rather than the 
command and control of spatial developments 
(see Portugali 2000).  

Clearly, the existence of spatial externalities 
(e.g. density effects, environmental decay) will 
always prompt a call for intervention, but in re-
cent years the nature of this intervention shows 
a tendency towards a conviction rather that a co-
ercion mode. In the recent literature we observe 
an increasing popularity of self-organising prin-
ciples for dynamic interactive spatial systems. 
This runs parallel to the rising acceptance and 
use of spatial complexity concepts (see also Sec-
tion 5), which are essentially based on nonline-
ar, dynamic interaction effects among agents in 
space. Such effects are usually characterised by 
a  multi-disciplinary and multi-actor constella-
tion, with various feedback and learning effects. 
Consequently, spatial governance systems have 
been re-modelled into game-like negotiation 
strategies in which public actors have become an 
endogenous part of a broader policy system.

Despite the changing nature of planning prin-
ciples and practice, there is still the need for ef-
ficient and effective ordering principles. In his 
seminal article on “The architecture of complex-
ity”, Simon (1962) makes an original attempt to 
formulate some general organising principles for 
systems subject to systemic complexity. His gov-
ernance rules are essentially based on three an-
chor points: the existence of a rationally bounded 
paradigm, the adoption of learning principles, 
and the use of decomposed hierarchical princi-
ples favouring management efficiency. This ap-
proach is essentially an attempt to reduce com-
plexity to ‘simplexity’.

From an analytical perspective (see Reggiani 
& Nijkamp 2009), a wealth of concepts and mod-
els has been developed over the past two dec-
ades, in particular: bifurcation, chaos, synerget-
ics, resilience, complex networks, evolutionary 
behaviour, scale-free networks, criticality, or 
small-world networks. Many of these models 
are purely illustrative and pedagogical in nature, 
but in recent years we have witnessed various 
interesting applications, for example in traffic 
management, ecosystems policy, ethnic conflict 
management, medical treatment and therapy, 
financial crisis management, innovation policy, 
and urban evolutionary development. 

Such new analytical departures originate from 
well-known and solid frameworks, such as grav-
ity theory, entropy modelling, neural network 
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analysis, genetic algorithm applications, Thuring 
principles, power laws, preferential attachment 
principles, etc. It is noteworthy that in their spa-
tial manifestation, many of these principles are 
directly or indirectly rooted in Tobler’s first law 
(which is essentially a consequence of the gravity 
principle).

It is important to note that many of the above-
mentioned modelling types are rather general 
natural science tools – and not necessarily specif-
ic behavioural analysis tools, so that the question 
may be raised of whether such models are rele-
vant and appropriate research tools in analysing 
the space-economy. The use of the methodology 
of ‘social physics’ presupposes the fulfilment of 
two conditions: (i) a  formal correspondence be-
tween relevant social science and natural science 
phenomena; and (ii) a  substantive behavioural 
interpretation of ‘social physics’ models, so that 
behavioural motives can be traced in such mod-
els. It is important to mention here that in many 
cases these two conditions are met (for example, 
entropy models are essentially generalised cost 
minimisation models), so there is hardly a valid 
counter-argument to find for the use of social 
physics models in geography.

Clearly, social physics is a  translational re-
search approach in which findings from one dis-
cipline are incorporated into the research design 
in another discipline. But this is only a  partial 
strategy to study real-world phenomena from 
a  perspective of multiple disciplines. The chal-
lenge of interdisciplinary research essentially 
boils down to a methodological issue of the de-
marcation lines and bridges between distinct dis-
ciplines. This will be further outlined in the next 
section.

4. Ceteris paribus in the modern space-
economy

In its long history, social science theory and 
application has adopted a  consistent, though 
rather restrictive, methodological approach in 
dealing with the presence of multiple disciplines 
by drawing strict border lines and assuming de-
velopments in a  different disciplinary domain 
as given. For example, location analysis in eco-
nomic geography took for granted that psycho-

logical perception and preference formations 
were handled by psychologists, while the results 
of individual preferences were assumed by the 
economic geographer to be given, without him 
asking whether there might be feedback effects 
through which geographical space might impact 
on preference formation or spatial attitudes. The 
simplifying and stylised assumption in such a re-
ductionist approach increased the consistency 
but not necessarily the realism in regional and 
urban research (see also Nijkamp 2007).

Such a reductionist assumption originates es-
sentially from a ceteris paribus condition which has 
been introduced in social science research to han-
dle system-internal (endogenous) and system-
external (exogenous) factors in a consistent way. 
The focus on a few selected variables in a research 
design leads of course to a streamlined approach, 
although this is not strictly needed from a  con-
ceptual or logical perspective (Nijkamp 2007). In 
real-world applications, this approach may even 
frustrate transferability of scientific findings to 
other empirical domains. Admittedly, the ceteris 
paribus condition forces the research to concen-
trate on the main factors to be studied, so that – in 
a partial sense – strict inferences can be drawn. 
Interestingly enough, the ceteris paribus has al-
ready a long history; according to Persky (1990), 
its earliest use in the current meaning dates back 
to the year 1311(!) when it was already used in 
scholastic philosophy. The ceteris paribus postu-
late was introduced as a major analytical tool in 
economic equilibrium analysis since the seminal 
work of Marshall (1898), who needed a  demar-
cation of his economic research domain in order 
to guarantee a partial equilibrium. Even though 
general equilibrium theory was able to relax the 
ceteris paribus assumptions, the necessity to intro-
duce stylised assumptions was never questioned, 
not even in spatial equilibrium theory, general 
systems analysis, and computable general equi-
librium theory.

With the advent of dynamic and complex sys-
tems, the issue of the demarcation of disciplines 
and research domains has seen a revival. For ex-
ample, if we make a distinction between fast and 
slow dynamics in space (e.g. fluctuating daily 
traffic flows versus the construction of trans-
port infrastructure), it is questionable which fac-
tors have to be regarded as constant in the same 
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model. Clearly, as Kaldor (1985) has argued in 
his Okun Memorial lecture, it is difficult to im-
agine economics without equilibrium; the ceteris 
paribus is a  postulate that is critical in standard 
economic equilibrium thinking. Kaldor then con-
tinues: “It seems clear that if we are to get out of 
the present impasse we must begin by construct-
ing a  different kind of abstract model, one that 
recognizes from the beginning that time is a con-
tinuing and irreversible process; that it is impos-
sible to assume the constancy of anything over 
time, such as the supply of labour or capital, the 
psychological preferences for commodities, the 
nature and number of commodities, or technical 
knowledge” (Kaldor 1985: 61).

New methodological departures may perhaps 
circumnavigate the strict limitations of a  ceteris 
paribus approach, such as the analysis of dissipa-
tive spatial structures, complexity theory, evo-
lutionary approaches, or the use of cognitive (or 
learning) principles. An interesting challenge is 
offered by the above-mentioned trend towards 
data-driven research in which spatial economet-
rics and spatial filtering approaches may relax 
the limitations of a strict ceteris paribus postulate. 
These issues certainly prompt a  new debate on 
specification theory in behavioural spatial re-
search.

The ceteris paribus condition has been the cru-
cial element in equilibrium theory, as this is the 
only tool to identify the conditions under which 
a  space-economy is in balance. However, with 
the increasing availability of large data sets (and 
with the emergence of advanced data mining 
techniques), the specification of spatial equilib-
rium models – with a large share of ceteris paribus 
conditions – is becoming less relevant, as such 
an extensive data set may contain a multiplicity 
of ceteris paribus variables. Consequently, the 
specification of spatially autocorrelated models 
becomes more problematic, so it seems plausible 
that exploratory spatial autocorrelation modes 
will gain more importance in the future.

Next, there is another trend in ceteris paribus 
research, namely controlled experimentation 
through so-called CP networks. In this way, micro-
information on user preferences can be handled 
in the context of automated decision making on 
the basis of ceteris paribus interpretations (see, e.g., 
Boutilier et al. 2004, McGeachie & Doyle 2002). 

Finally, ceteris paribus also plays a role in coun-
terfactual analysis, which aims to trace alterna-
tive developments under ‘what if’ or ‘what if 
not’ conditions. A good example can be found in 
a recent study on the efficiency of the Victorian 
British Railway Networks by Casson (2009). Also 
here, the spatial interaction component plays 
a critical role.

5. Spatial-economic complexity

“I truly believe that we are at the threshold of under-
standing complexity.” 

(…)
“The real reason is the data: when it comes to our 
social and economic systems, we can increasingly 

monitor what is going on. We can trace where people 
are, when and with whom they communicate, we can 
track shopping and travel patterns, and so on. To be 

sure, these penetrating technologies raise fundamental 
questions about privacy.” 

(…)
“Much of our previous work in complexity was driven 

by theory, by ideas that were not always well rooted 
in reality. On the back of network theory a new, quite 

pragmatic approach to complexity is emerging: one 
which is driven by data and by measurements, and 
which leads to theories that are motivated by a deep 

desire to understand what is really going on. This 
data-rich era is creating an unprecedented opportu-

nity, and all we need is the right attitude to crack the 
mysteries of complex systems.” 

(Barabási 2009: 26)

Complexity has turned into a  fashionable 
concept in contemporaneous dynamic research. 
Complexity refers to an organised structure that 
is driven by multi-actor interactions at various 
scale levels where selection and learning play 
a key role. They lead to nonlinear systemic feed-
back effects that, through path dependency and 
fast and slow nonlinear dynamics, create the con-
ditions for unexpected developmental trajecto-
ries of a system (Reggiani & Nijkamp 2009). It is 
not a  surprise that complexity research is often 
linked to resilience, sustainability, Volterra-Lot-
ka and predator-prey dynamics, symbiosis and 
self-organisation. Complexity forms a  contrast 
with traditional reductionism, as in a  complex 
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system the macro-behaviour of a system cannot 
be unambiguously understood from the emer-
gent properties of the constituent elements that 
may have self-organising local interactions. This 
interaction at various scale levels implies that 
complex systems are closely related to dynamic 
networks. It goes without saying that complex 
systems prompt various serious questions about 
the predictability of such systems, the relation 
between emergent properties and micro-interac-
tions, the origin and nature of self-organisation 
and learning, the stochasticity in complex mod-
els, the simplicity-simplexity-complexity chain, 
and the econometrics of such models.

Usually, complex systems have a  multipli
city of interacting elements or modules, so graph 
theory may be an appropriate analytical tool in 
the study of complex systems. Mobility, airline 
connections or Hägerstrand’s space-time geog-
raphy provide illuminating examples of complex 
networks.

The research on the behaviour of networks 
started with the introduction of random graphs in 
which network nodes were randomly connected 
by links (see Erdős & Rényi 1959). A drawback of 
this approach was that such networks displayed 
a highly regular structure, which forms a contra-
diction with real-world phenomena where un-
equal distributions and concentrations are likely 
to appear.

A new perspective was offered by the intro-
duction of small-world networks by Watts & 
Strogatz (1998), who designed a simple network 
on a ring in which each node was only linked to 
its nearest neighbours. These networks, coined 
small-world networks, offered a broad spectrum 
of organised and random patterns.

Almost simultaneously, Barabási & Albert 
(1999) provided a new extension by introducing 
the principle of preferential attachment through 
which an extension of a network by the addition 
of a node could be analysed. Preferential attach-
ment means essentially that a new node seeks for 
connectivity with an existing node that is well-
connected to the rest of the network, so that dis-
tance friction costs to other nodes are minimal. In 
this framework, the so-called scale-free networks 
were introduced. Such networks may have a rel-
evance for hub-and-spoke systems in the airline 
sector (see Reggiani & Nijkamp 2010) or for social 

networks (see Boccaletti et al. 2006). The degree 
distributions can be related to a  power law, as 
this distribution describes a structure with a high 
connectivity for a few central places (hubs) in the 
network and a low connectivity for other nodes. 
The hubs have of course sensitive positions in 
a scale-free network, at least in the case of drastic 
changes.

In geography, research on complex spatial 
systems has in recent years shown a rapid rise in 
scientific interest. Applications include inter alia:

morphogenesis of cities (Batty 2005, Medda et ––
al. 2009);
configuration of airline networks (Reggiani & ––
Nijkamp 2010);
urban evolution (Wilson 2009, Rozenblat & ––
Melançon 2009);
geography of internet infrastructure (Tranos ––
2005);
dynamics in residential locations (Fothering-––
ham et al. 2002);
complex urban and regional systems (Ber-––
tuglia & Vaio 2009; Portugali 2004, 2008);
urban networks dynamics (Andersson et al. ––
2006); and
small spatial networks (Gorman & Kulkarni ––
2004).
In conclusion, complexity theory offers an 

entirely new reason for quantitative dynamic re-
search in geography. The main challenge for the 
years ahead will be the operational development 
of testable models that can stand the scrutiny of 
the real world.

Next to complexity models, in the recent years 
we have also witnessed the emergence of anoth-
er, related strand of literature, namely evolution-
ary thinking in geography. This will be briefly 
discussed in the next section. 

6. Evolutionary thinking in geography

“Darwinism is too important  
to be left to the biologists.”

(J. Mokyr)

Evolutionary thinking has gradually entered 
the domain of the social sciences, be it with some 
hesitation and criticism (see, e.g., Gough et al. 
2008). In some disciplines, such as economics (see 
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Nelson & Winter 1982), it has gained a respect-
able position, but in other disciplines it is still at 
the beginning of its life cycle. A field where evo-
lutionary thinking has been widely adopted is 
ecological economics (see Boulding 1981, Geor-
gescu-Roegen 1971, Penn 2003, van den Bergh 
2007, van den Bergh et al. 2007). Penn offers an 
interesting evolutionary-oriented explanation 
of “why humans are ecologically destructive, 
overpopulate, overconsume, exhaust common 
pool resources, discount the future, and respond 
maladaptively to modern environmental haz-
ards” (2003: 1). In his view, instigated by evolu-
tionary thinking, human-based environmental 
decay originates from a poor adaptability of the 
human species to its environment. It is clear that 
the rational decision-making paradigm based on 
selfish agents and oriented towards short-term 
utility is not compatible with long-term sustain-
able development. In a  recent article, van den 
Bergh (2007) offers an insightful overview of the 
distinct features of evolutionary, ecological, and 
mainstream environmental and resource eco-
nomics (see Table 1).

Evolutionary thinking also questions the rele-
vance of per capita GDP as a relevant and reliable 
growth indicator (or an indicator of social wel-
fare). An alternative way of conceiving welfare 
growth is to introduce the notion of evolution-
ary growth, which may comprise concepts like: 
increasing diversity, increasing complexity, ex-
tended division of labour, new ways of transmit-
ting information, population growth, or adapta-
tion (see van den Bergh 2007).

It should be noted that many evolutionary 
contributions to social science are not based on 
hard-core Darwinism but rather on interpretative 
or symbolic similarities to Darwinism using met-
aphors from evolution theory. For instance, in ge-
ography, scholars talk more about evolutionary 
thinking in geography than about evolutionary 
geography. In the same vein, evolutionary mod-
elling is often an adjustment of standard dynam-
ic modelling with a  few symbolic components 
prompted by evolutionary thinking. An interest-
ing contribution to the debate on evolutionary 
modelling can be found in a recent study by Sa-
farzynska (2010), who made a successful attempt 
to design a series of cornerstones of evolutionary 
models in ecological economics. She mentions the 
following ingredients as necessary conditions:

diversity;––
innovation and selection;––
bounded rationality;––
diffusion;––
path dependency and lock-in;––
co-evolution;––
multilevel and group selection; and––
indigenous growth mechanisms.––
In her study she shows that advanced evolu-

tionary modelling techniques may mean a  par-
ticularly important and applied breakthrough in 
the following research domains:

evolutionary game theory and selection dy-––
namics;
evolutionary computation; and––
multi-agent modelling.––

Table 1. Differences in emphasis between evolutionary, ecological and mainstream environmental  
and resource economics

Evolutionary economics Ecological economics Environmental economics
Evolutionary potential

Agent, technique, and product 
diversity

Innovation-recombination/ mutation
Fitness

Evolutionary stability
Adaptive limits

Path-dependence
Varying time scales

Population/distribution indicators
Bounded rationality and selection

Functional morality (fitness)
Adaptive individuals and systems

Optimal scale
Biodiversity

Divergent views on innovation
Equity (intra/intergenerational)

Resilience
Limits to growth

Ecological irreversibility
Medium/long run

Physical and biological indicators
Myopic behaviour

Environmental ethics
Causal processes

Optimal allocation
Representative agents

Optimal R&D
Efficiency, cost-effectiveness
Sustainable macro growth

Growth of limits
Economic irreversibility

Short/medium run
Monetary indicators
Rational behaviour

Utilitarianism
Equilibrium, comparative statics/ 

dynamics
Source: adapted from van den Bergh (2004).
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It is noteworthy that there appears to be 
a striking parallel between evolutionary model-
ling and artificial intelligence, in particular in the 
following fields:

computational neural networks (see, e.g., ––
Fischer et al. 2010); 
self-organised criticality (see, e.g., Reggiani ––
and Nijkamp 2009); 
adaptive learning models (see, e.g., Bertuglia ––
and Vaio 2009); and
self-organising mapping procedures (see, e.g., ––
Kohonen 2000).
Applications of evolutionary approaches to 

geography are still rare, as it has taken some 
time before the discipline has adopted this new 
paradigm. One of the reasons is that at the same 
time, new economic geography has come into be-
ing (see Krugman 1991), which argues that the 
distribution of economic activity is the result of 
long-lasting agglomeration forces and inter-re-
gional or international trade in an open economic 
system. New economic geography rather advo-
cates universal economic motives related to ra-
tional decision-making, without paying attention 
to space specificity (or non-neutrality of space). 
Evolutionary approaches are more related to 
diversity, selection and real space, rather than 
universal behaviour, as this excludes adaptabil-
ity of economic agents as well as lock-in situa-
tions. Examples of contributions to evolutionary 
thinking in geography can be found, inter alia, in 
Storper (1997), Boschma & Lambooy (1999), Mag-
gioni (2002), Brenner (2004), Boschma & Frenken 
(2006), and Frenken (2007).

Over the past years the number of applica-
tions of evolutionary thinking in geography has 
extended. Examples can be found in:

firm dynamics and entrepreneurship (Stam ––
2006);
industrial dynamics (Boschma & Frenken ––
2006);
network analysis (Barabási & Albert 1999);––
spatial systems’ evolution (Boschma 2004);––
urban growth (Andersson et al. 2006);––
knowledge flows (Maggioni 2002); and––
spatial policy (Lambooy & Boschma 2001).––
These applications reveal interesting features, 

although most of them are based on simplified 
metaphors or evolutionary symbols rather than 
hardcore Darwinist modelling principles. As 

a  consequence, there is still a  range of research 
challenges in economic geography, in particular 
(i) a test of the operational validity of evolution-
ary approaches in the case of value transfer; (ii) 
specification of the micro-behavioural basis of 
a  multiplicity of factors; (iii) a  match between 
evolutionary behaviour and evolutionary model-
ling, including feedback and lock-in behaviour; 
and (iv) a  design of long-range data bases in 
space-time evolutionary geography as a basis for 
advanced applied modelling.

7. Prospect

In modern space-time geography, including 
transport science, we will most likely see a trend 
towards massive micro-data sets on human mo-
bility. This will prompt the need for smart spatial 
data management and for efficient statistical data 
manipulation where data mining and data krig-
ing will play a central role.

The emergence of large data sets on space-
time movements of individuals will also lead to 
a need for systematic comparative study in which 
spatial meta-analysis of large data manipulations 
may play a central role. 

And finally, there will be a need for better fore-
casting tools based on data-instigated theoretical 
frameworks. In space-time geography, this may 
also lead to challenging issues on evolutionary 
data-handling techniques.
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