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Abstract: Pursuing the various existing stainability dimensions obliges leaders of society 
to engage in more comprehensive monitoring of collective economic and other supplies 
and demands, particularly in a geographic context. In turn, the affected inputs, outputs, 
resources/goods/services stocks, and generated garbage/trash waste, which all exist and 
are tagged implicitly or explicitly in geographic space, are definite harborers of spatial 
autocorrelation. Harnessing this nearly ubiquitous georeferenced data property implants 
a capability of fostering efficient and effective sustainability ventures. Tessellation strati-
fied random sampling to monitor environmental pollution alludes to one example of this 
assertion. This paper illustrates this exemplification with an examination of 2023 air qual-
ity data for Poland. In doing so, it translates a framework build upon idealized tessellations 
into one for the administrative districts of Poland. This methodological conversion enables 
governmental organizations to participate in and oversee any intended monitoring with-
out additional jurisdictional complications. Serendipitous academic discoveries include an 
initial extension of the set of standard polygon shapes (e.g., square and hexagon) to the 
trapezoid for spatial sampling purposes, and the possibility that spatial autocorrelation 
impacts upon design-based statistics may far outweigh a  violation of the conventional 
random sampling equiprobable commandment. Finally, the discerning conclusion reached 
through the analyses summarized in this exposé argues that spatial autocorrelation does 
matter for sustainable regional development planning and evaluation.
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Introduction

Sustainable regional development commits to meeting economic, social, and en-
vironmental resource needs in a given geographic landscape for its present hu-
man generation without depleting them, and hence compromising the ability of 
future peoples to meet their own same resource needs (after Brundtland 1987). 
One consequence of this enactment is improved perpetual agricultural produc-
tion, energy use, natural resource management, and industrial production (Rut-
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kauskas et al. 2014, Dočekalová et al. 2015, Straková 2015) at regional, rather 
than solely local, national, and/or worldwide levels. One outcome is a transcend-
ing of the single imperative of alleviating regional disparities, converting it to 
a multiple obligation of inter-regional equity plus resources perpetuation.

Meanwhile, the necessary accompanying sustainability evaluation, the general 
topic of this paper, is the method of identifying, measuring, and appraising po-
tential impacts of alternatives for this sustainability (Devuyst 2000). Accordingly, 
it requires both macro- and micro-level monitoring: the former involves gauging 
short- and long-run development of regional economies (e.g., analyses of intra- 
and inter-regional flows in addition to regional wealth stocks, such as natural 
resources); and, the latter involves supporting benchmarking that stimulates re-
gion-based learning behavior and innovations. Therefore, the principal challenge 
is to develop a science-base that promotes better understanding, standardization, 
and informed decision-making concerning resource usage, both of which entail 
more accurate quantification of and communication about the sustainability of 
agricultural and industrial products, green energy, and natural assets harvesting. 
Doing so compels proper environmental monitoring, particularly of the pollution 
by-products of these economic activities. Excess pollution diminishes or even 
prevents sustainability!

Within this context, the purpose of this paper is to discuss selected aspects of 
spatial sampling – with regard to statistical populations as well as superpopula-
tions – for sustainable development pollution monitoring purposes that collects 
data for sustainability evaluation. The indirect focal element of these geospatial 
data traits is spatial autocorrelation (SA), whereas the direct focus is effective 
geographic sample size. In other words, the question this narrative helps answer 
asks whether or not SA matters for sustainable regional development planning 
(e.g., knowledge accumulation and comprehension), specifically through environ-
mental monitoring ventures, and evaluation (e.g., resources renewal skills) by, 
among other contributions, enabling remarkably smaller sample sizes to support 
geographic landscape monitoring and surveillance. Quantitative model- and de-
sign-based inference become inescapable topics for macro-level global measures 
across a region (Griffith, Plant 2022). In contrast, qualitative inference becomes an 
unavoidable topic for micro-level individual human subject measurements within 
a region (Griffith 2013, Griffith et al. 2016, Brown et al. 2017). This troika of sam-
pling strategies aligns with the following triplet of themes Graymore et al. (2008) 
promote: wellbeing (e.g., equity and essential sustenance; from the economic 
dimension), ecological footprint (e.g., waste handling; from the environmental 
dimension), and quality of life (e.g., individual time-specific perceptions vis-à-vis 
benchmark mensuration contrasts; from the social dimension). Their mutual un-
derlying feature of interest is their potential effective sample size, say n*, usually 
materializing mostly from the presence of SA. A deviation of n* from the naive 
n of classical statistics impacts evidence-based inferences, their resulting deci-
sion-making judgments, and sustainability knowledge and cognition. Moreover, 
SA exists whether or not sustainability is engaged, rather than being a cause or 
effect of this sustainability. However, it offers potential welfare economies that 
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should be exploited (e.g., effective geographic sample size), and it flags a gap in 
the literature concerning state-of-the-art spatial sampling, namely ideal hexagonal 
geographic tessellations are awkward and difficult to implement (e.g., correcting 
for edge effects), more pliable square tessellations are less cumbersome but still 
remain difficult to implement, and little positive has been said analytically to date 
about utilizing existing administrative district irregular tessellations. In fact, these 
far more convenient latter surface partitionings seem to have been dismissed in-
stead of embraced. This paper addresses this gap, and in doing so outlines spatial 
sampling methodology that contributes to improved techniques for evaluating 
sustainable development progress and continuation, highlighting its importance.

Effective geographic sample size

One interpretation of any correlation concept is the presence of replicate/redun-
dant information. If correlation is zero, then any information overlap in data is 
completely absent, whereas if correlation is 1, then all information embedded in 
data is entirely shared, making this overlap an equivalency. In more traditional 
situations, this redundancy needs to materialize as a linear trend, whereas in con-
temporary situations, it also can manifest itself as a nonlinear trend. Non-zero 
correlation can contaminate probabilities (e.g., sampling without replacement, 
with finite population selection probabilities sequentially decreasing from 1/N, 
where N is the population size), multiple attributes (e.g., collinearity, with prin-
cipal component/factor analysis covariance eigenvalues increasing from 1 to the 
number of attribute variables, P, accompanied by declining degrees of freedom), 
and/or observations (e.g., self-correlation, with sampling distribution behavior 
being that for sample sizes less than n, namely n*). This third possibility is the 
correlated data source of interest in this piece. In his treatment of this data prop-
erty, Griffith (2020) presents n* calculations for a wide variety of self-correla-
tion issues, not just those for SA, expanding upon Griffith (2005). The ensuing 
discussion restricts attention to only SA situations. It accentuates how SA does 
and does not change sampling situations: non-zero correlation means n misrep-
resents, whereas zero correlation means n properly measures, sample size, which 
also may need a degrees-of-freedom modification.

Hence, the relevant question asks about the ways to quantify sample size in 
the presence of non-zero SA. Griffith (2005) derives n* for model-based spatial 
statistical inferences, furnishing an equation to estimate it after calculating a SA 
parameter employing a spatial simultaneous autoregressive (SAR; aka spatial er-
ror in the spatial econometrics literature) model specification. This formulation 
is sufficiently general to capture both autoregressive response (AR; aka spatial 
lag in the spatial econometrics literature), and conditional autoregressive (CAR) 
models. A critical assumption here is the ceaselessly invoked independent and 
identically distributed (iid) one pervasive in classical statistics. The definition of 
n* becomes: the number of equivalent iid observations affiliated with all undu-
plicated areal unit information content latent in geotagged data. The independent 
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portion – the first i in iid – is the relevant part of this acronym. Griffith and Plant 
(2022) show that the id part of iid merely increases the effective geographic sam-
ple size n* in keeping with its counterpart for a finite mixture distribution sub-
sample having the largest n* if it were the lone random variable. Griffith (2005) 
portrays a negative exponential declining trendline curve (i.e., concave upward, 
but shallowly) for this adjusted sample size, with n* = n when zero, and n* = 1 
when perfect positive, correlation prevails (Fig. 1a displays a n = 100 simulated 
realization case). Especially remotely sensed pixel data for which is relatively 
close to 1 can have n* deflating to less than 1% of n (e.g., the Adirondack remote-
ly sensed image in Griffith 2015). Socio-economic/demographic polygonal data 
for which a single parameter is closer to 0.5 frequently yield an n* approaching 
20% or more of n (e.g., the Chicago insurance map adapted in Griffith 2020).

Fig. 1. Effective geographic sample size n* 
trendlines. a – the model-based SA plot; 
b – a design-based SA plot after Griffith 
and Plant (2022), black filled circles 
denote selected data points; c – a  de-
sign-based weighted statistics SA plot 
founded upon this document’s enquiries
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Griffith and Plant (2022) conceptualize n* for design-based spatial statistical 
inferences, noting that the well-known and recognized conventional stratified 
random sampling (STRS) design effect – i.e., the variance ratio between an es-
timator calculated with a STRS divided by a simple random sampling (SRS) de-
sign – required to achieve a given statistical precision level and routinely labelled 
an effective sample size adjustment, implies that a  tessellation STRS (TSTRS) 
design accounting for SA renders the following definition of n*: the number of 
equivalent SRS observations affiliated with all unduplicated information content 
latent in geotagged data isolated by a TSTRS design. Tessellation stratification 
tends to maximize SA within, while minimizing it between, grid polygons – the 
statistically most efficient geometric shape for this task being regular hexagons, 
although squares are nearly as statistically efficient (see the apropos subsequent 
discussion). As grid polygon size increases, SA effects tend to decrease, with 
resulting numerical map patterns becoming more random [i.e., the Moran Coeffi-
cient (MC) approaches −1/(n−1), and the Geary Ratio (GR) approaches 1, their 
respective zero-SA null hypothesis values]. Figure 1b portrays an averaged (for 
n = 25, 64, and 100) bivariate plot reminiscent of typical standard multiple test-
ing circumstances: a complex nonlinear negative exponential declining trendline 
curve1 (i.e., concave downward) for this adjusted sample size, again with n* = n 
when zero, and n* = 1 when perfect positive, SA prevails.

Griffith (2013), Griffith et al. (2016), and Brown et al. (2017) establish that 
SA is an important factor to account for when determining qualitative – which 
rarely involve any form of SRS – as well as, by default, mixed methods, geograph-
ic sampling designs, crucial for sustainable quality of life features. Latent SA in 
georeferenced socio-economic/demographic and political household attributes 
tends to foster moderate-to-strong geographic clustering (i.e., SA) of individual 
time-specific viewpoints (e.g. Martin, Webster 2020, Fages, Cerda 2022), which, 
in turn, can promote perception discovery failure and misleading saturation lev-
els with the relatively small sample sizes often employed in qualitative research 
(Mocănașu 2020, Sebele-Mpofu 2021, Subedi 2021, Mthuli et al. 2022). Exacer-
bating this situation is a lack of convincing numerical rules or techniques guiding 
a qualitative researcher pertaining to what constitutes a proper sample size. On 
the one hand, a quality biography can have a sample size of n = 1 (e.g., the person 
of interest) On the other hand, larger sample traditions such as grounded theory 
rarely exceed the desirable quantitative minimum sample size of 30 (Mthuli et al. 
2022, Nasheeda 2022), let alone 100 or more. The preceding TSTRS procedure 
furnishes insights for this setting, too: spacing respondents relatively far apart in 
geographic space enables social, political, and other preferences to be more inde-
pendent by diminishing the degree of operational SA, thus remediating discovery 
failure and misleading saturation levels primarily attributable to SA. In other 
words, a sample size increases from n* toward n. This more unambiguous con-
text suggests that snowball/chain-referral sampling, with its concomitant geo-
graphic dimension (Griffith et al. 2016), warrants special consideration during 

1	 n* = n {1 / n + [(n − 1) / n](1 − ρ)1/3exp(−0.6ρ8.8), where exp denotes the anti-natural logarithm.
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the sample size determination stage of a qualitative research design, even one 
employed in sustainability monitoring.

Although all three geographic sampling scenarios can pertain to sustainabil-
ity confirming exercises, this examination explores the second of them while 
addressing environmental pollution appraisal so critically important to sustain-
ability efforts. In summary, non-zero SA means that a properly designed spatial 
sample can have a much smaller n than would be required by a classical SRS, to 
achieve the same level of precision, tremendously reducing pollution and other 
types of monitoring costs for sustainable development progress and continua-
tion surveillance. This focus on SA and the physical environment automatically 
alludes to spatial statistical techniques, such as krigging and Moran eigenvector 
spatial filtering (MESF).

Selected empirical demonstrations

This section summarizes specimen regional development sustainability illustra-
tions that embrace SA while spanning three different geographic resolutions. 
Poland supplies the empirical geographic landscape. The sustainability data ex-
emplar concerns air pollution by voivodeships, poviats, and gminas across Po-
land, primarily because air pollution is harmful when it accumulates in the lower 
ground-level atmosphere beyond certain threshold concentrations. High intensi-
ties can cause human and wildlife health problems, as well as agricultural crop 
(e.g., increase plant susceptibility to diseases, pests, and other environmental 
stresses) and tree (e.g., reduced tree seedling growth and survivability) damage, 
among other sustainability compromisers. Therefore, achieving and maintaining 
sustainability requires environmental monitoring of air pollution to determine 
the need for and activation of remediation action The subsequent spatial statisti-
cal analysis dedicated to conceptualizing this task engages geostatistics (ordinary 
co-kriging to create a fine resolution geographic landscape), spatial autoregres-
sion, and MESF to explore observed geotagged instrument sensed 2023 PM10 
(i.e., inhalable aerosol particulate matter no more than 10 micrometers in diam-
eter) measurements, overlaid with administrative district TSTRS to probe n* in 
its articulation. In addition, because air pollution is a continuous, fluid phenom-
enon, it naturally encompasses spatial spillovers, and hence SA. This geospatial 
feature and situation are so obvious that, for example, the United States (US) 
Clean Air Act’s “good neighbor” provision [section 110(a)(2)(D)(i)(I)], dating 
back decades, requires states to implement controls prohibiting any interstate 
transport of emissions interfering with downwind states’ ability to attain and 
maintain national ambient air quality standards. A sustainable world needs clean 
air. The simplest way to achieve this end is to devise a spatial sampling design 
that builds upon existing administrative surface partitionings to take advantage 
of governmental jurisdictions. This goal is the reason for presenting foundational 
work in this section that underpins the ensuing illustrative analysis.
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The administrative spatial hierarchy of Poland2

In 1999, pursuant to a series of acts passed by its parliament in 1998, and re-
placing its 49 smaller voivodeships existing from 1975 until then, Poland was 
reorganized into the following nested administrative areal unit sets: 16 voivode-
ships [Nomenclature of Territorial Units for Statistics (NUTS) 2]; 373 poviats 
(similar to counties), of which 65 were cities—these have been consolidated into 
369 areal units for purposes of this paper; and, 2,489 gminas (similar to munic-
ipalities), 11 of which were in the capital city, Warsaw, with another 302 being 
urban (including 107 cities), 638 being mixed rural-urban, 1,537 being rural, and 
one retained for the purposes of this article that had been abolished since the 
utilized shapefile’s creation (Fig. 2). This scheme was revised in January of 2022 
to the following: 16 voivodeships; 314 poviats, of which 66 are cities; and, 2,477 
gminas, of which, respectively, 302, 662, and 1,513 are urban, mixed rural-urban, 

2	 See Bradley and Zaucha (2017), in which the word municipalities rather than gminas appears in 
conjunction with poviats and voivodeships terminology.

Fig. 2. The 2007 administrative partitioning 
of Poland outline maps. a – 16 voivode-
ships; b – 373 poviats; c – 2,489 gminas

a b

c
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and rural. Research finalized for this narrative did not employ this newer delinea-
tion to avoid any possible beta-testing nuisances.

Figure 2 portrays the three geographic surface partitionings employed to im-
plement TSTRS simulation experiments investigating n* within the context of 
design-based inference. It parallels the varying size hexagons Griffith (2005) uses 
to study n* within the context of model-based inference. Furthermore, because of 
its coarseness, the voivodeship surface partitioning (Fig. 2a) serves as the testbed 
geography for special sustainability air pollution monitoring probes.

The high-resolution elevation covariate for co-kriging

Hart et al. (2013), among others, note that common covariates used to analyze 
ambient air pollution include elevation, and population density. Because a high 
resolution version (i.e., 311,448 geographic pixels covering Poland’s 312,608 km2 
of surface area) of elevation via a digital elevation model (DEM) is readily accessi-
ble (via https://www.eea.europa.eu/data-and-maps/data/digital-elevation-mod-
el-of-europe), the numerical analysis for this effort adopts it as a co-kriging co-
variate (Fig. 3a). This DEM under-represents the official physical area of Poland 
by 11,127 km2. This discrepancy of roughly 3.5% relegates the analyses summa-
rized here to an insightful exploratory role. Meanwhile, the co-krigging inter-
polation surface constitutes 309,632 raster points, likewise slightly too few by 
nearly 3,000 for a one-to-one correspondence matching with an invisible 1 km2 
quadrat mesh overlaying the country.

PM10 data described in the next section were retrieved from a publicly avail-
able archive (i.e., https://discomap.eea.europa.eu/App/AirQualityStatistics/in-
dex.html). The number of monitor stations networking Poland is rather meager, 

Fig. 3. Poland DEM. a – 1km-by-1km tertile choropleth DEM map; 0–183 values range; el-
evation directly proportional to grayscale; b – scatterplot portraying the association be-
tween elevation and PM10 (gray filled circles); black, red, and burgundy lines respec-
tively denote the linear trend, 95% confidence intervals, and 95% prediction intervals

a b

https://www.eea.europa.eu/data-and-maps/data/digital-elevation-model-of-europe
https://www.eea.europa.eu/data-and-maps/data/digital-elevation-model-of-europe
https://discomap.eea.europa.eu/App/AirQualityStatistics/index.html
https://discomap.eea.europa.eu/App/AirQualityStatistics/index.html
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numbering only 154. This DEM furnishes a covariate (see Fig. 3b; elevation ac-
counts for roughly 7% of the country’s PM10 geographic variation) for co-kriging 
to couple with SA in order to interpolate PM10 to a fine pixel grid, bolstering the 
analysis capabilities undertaken for this current work.

The geographic distribution of PM10 across Poland

Breathable air quality is a sustainable regional development concern: as air pollu-
tion worsens, public health risks tend to increase. Locational indices quantifying 
it often incorporate concentration values for: both PM2.5 and PM10 particulate 

Fig. 4. Monitoring station sites, and tertile choropleth maps depicting the geographic dis-
tribution of PM10. a – Thiessen polygon surface partitioning based upon monitoring 
station sites; b – a  K-Bessel function co-krigged surface; black dots denote sample 
locations; c – the krigging prediction error surface; black dots denote sample locations; 
increasing prediction error is directly proportional to the darkness of red; d – voivode-
ships resolution local PM10 maxima

a

c

b

d
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matter, ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), and carbon 
monoxide (CO), among other pollutants.  Meanwhile, factors impacting con-
structed effluence scales, sometimes even inducing small-area geographic varia-

Fig. 4 (continued). Monitoring station sites, 
and tertile choropleth maps depicting 
the geographic distribution of PM10. 
e – poviats resolution local PM10 max-
ima; f  – gminas resolution local PM10 
maxima; g – voivodeships resolution lo-
cal PM10 standard deviation; h – poviats 
resolution local PM10 standard devia-
tion; i – gminas resolution local PM10 
standard deviation

e

g

i

f

h
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tion, include: wind speed and direction; terrain/topography/elevation; precipita-
tion, smoke plumes; vehicular and other traffic; and, sundry fine dust emitters. 
Government agencies attempt to sustain clean air by interventions curtailing or 
scrubbing airborne pollution, suppressing it in at least some places, although 
its fluidity allows it to backfill from nearby unhampered spots. Wind currents 
circulate aerial contamination, relocating it from one locality to another. These 
competitive types of displacement mechanisms imply that SA for these phenom-
ena should contain a mixture of positive and negative components. PM10 is the 
contaminant examined in this subsection. Three-year-average PM10 data were 
obtained3 for 154 monitoring stations (Fig. 4a), co-krigged (using ordinary krig-
ing and DEM elevation as a covariate) with a K-Bessel function semivariogram 
model (it links to an SAR model; its effective range estimate is 8.8km) to inter-
polate the data at an additional 309,632 sites across the country (Fig. 4b, c shows 
the accompanying prediction error map). Following this data generation was an 
aggregation of interpolated PM10 values as small geographic area averages for 
Poland’s three different polygon resolutions; Figures 4d–f portray the geographic 
distribution of local PM10 maxima (this often is a target when checking for clean 
air) by administrative areal unit aggregations, whereas Figures 4g–i  visualize 
within areal unit PM10 variability.

Preliminary spatial statistical analysis of the aggregated average 
PM10 geographic distribution across Poland

Because the sample of monitoring places procured for this paper is not random, 
spatial statistical analyses require model-based inference, whose soundness re-
quires a minimal of model assumption violations. A critical feature is that the 
data conform to a bell-shaped (i.e., normal or Gaussian) frequency distribution. 
Accordingly, Figure 5 supplies diagnostic normal quantile plots: Figure 5a rep-
resents the raw data, whose Shapiro-Wilk test statistic H0 probability is 0.0032; 
Figure 5b represents the best Box-Cox transformation, with a power exponent 
of zero coupled with a  translation parameter of roughly 26, which essentially 
over-shrinks the magnitude of the upper outlier while marginally exacerbating 
the extremeness of the lower outlier, increasing the preceding Shapiro-Wilk sta-
tistic probability to 0.0405; and, Figure 5c characterizes the best Manley trans-
formation, which effectively over-shrinks the magnitude of the lower outlier 
while slightly exacerbating the extremeness of the upper outlier, increasing the 
aforementioned Shapiro-Wilk statistic probability to 0.0595. Complications in-
troduced (e.g., back-transformation hurdles) into an analysis by employing either 
of these transformations seems to far outweigh their meager benefits (see Fig. 
5a). Thus, the raw data remain the target of analytical treatment. Furthermore, 
because these PM10 data may well harbor a positive-negative SA mixture, the 
enhanced specification of choice here is a  composite SAR and spatial moving 

3	 Source: https://discomap.eea.europa.eu/App/AirQualityStatistics/index.html.

https://discomap.eea.europa.eu/App/AirQualityStatistics/index.html
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average (MA) model (i.e., SAR-MA), complemented by an MESF specification as 
an affirmatory tool.

Griffith et al. (2022a,b) and Griffith (2023) demonstrate the presence of pos-
itive-negative SA mixtures in a  wide variety of real-world georeferenced data. 
These publications imply that it conceivably is a universal sensation. A Thiessen 
polygon partitioning of Poland based upon monitoring station locations reveals 
the same categorization for PM10 (Table 1; recalling that the MA coefficient sign 
is the opposite of its SA nature). Although the SAR-MA residuals fail to perfect-
ly, or nearly so, conform to a bell-shaped curve, their Shapiro-Wilk diagnostic 
statistic supplementing their reported K-S statistic is 0.96 (re the Shapiro-Wilk 
diagnostic statistic for Fig. 5a is 0.97), which is not very far from 1. Hence, their 
normal approximation seems to lack a dramatic substantive deviation from a bell-
shaped curve (e.g., its skewness is well within a six-sigma confidence interval). 

Fig. 5. Normal quantile plots for the original 
PM10 data measured by monitors (n = 
154); solid gray circles denote observed 
values – the two transformation appli-
cations retained the original variable 
mean and variance – black lines denote 
the theoretical normal quantile values, 
and red lines denote the 95% confidence 
intervals. a – raw data; b – LN(PM10 
+ 26.3) Box-Cox transformed data; c – 
e–0.023PM10 Manley transformed data

a

c

b
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Meanwhile, K-Bessel function krigging markedly smooths interpolated PM10 val-
ues, not surprisingly removing their latent negative SA component. Regardless, 
positive SA constituents across Poland’s geographic resolutions are consistent, 
resembling those for most remotely sensed images (e.g., is in the 0.9+ range), 
a consequence also conspicuously disclosed by a visual inspection of Figure 4b.

Table 2 tabulations are in the spirit of confirmatory spatial statistical data 
analysis, utilizing generalized linear model (GLM) theory coupled with a beta 
random variable – DEM values are integers ranging from 0 to 255, with division 
by 255 converting them to proportions in the unit interval. The statistical sig-
nificance subset eigenvector selection criterion was a Bonferroni-adjusted α = 
0.10/k, where k is the number of candidate eigenvectors, sometimes changing by 
increasing it – at most to the common stepwise default value 0.20/k – as a trade-
off to minimize residual SA as measured jointly by the MC and GR indices. Gen-
eration of the interpolated PM10 values for all three Polish administrative district 
resolutions involved only this phenomenon’s positive SA. However, the co-krig-
ing DEM covariate is a potential negative SA pathway that allows a mixture to 
emerge. Table 2 entries endorse an anticipated bias toward positive SA for these 
three surface partitionings. The coarsest resolution (i.e., voivodeships) retains 
the unmodified Bonferroni-adjusted α. MESF constructs a  strictly positive SA 
eigenvector spatial filter (ESF) that accounts for roughly 90% of the geograph-
ic variation in average PM10 values in this case; its model-based inference di-
agnostics authenticate a sound inferential basis for it. The intermediate degree 
of coarseness (i.e., poviats) does not fare as well: although its purely positive 
SA ESF accounts for nearly as much geographic variation, its inferential basis is 
not very sound. In this second case, estimation involved weighting by areal unit 
PM10 variance to avoid selection of all candidate eigenvectors (i.e., 250) The use 

Table 1. Selected summary spatial autoregressive estimation outcomes for 2023 PM10

Geographic 
resolution

n; points
(points/polygon‡)

SAR SAR-MA SA 
index

Residual 
SA p†

K-S p†

Thiessen 
polygon

154; 154
(1; 1; 1)

0.475
(0.092)

0.976
(0.028)

0.86 0.866
(0.081)

< 0.01
(0.10)

MC 0.32
GR 0.43

Gmina 2,489; 309,507⁑

(2; 124; 668)
0.999

(0.001)
0.997

(0.001)
0.29 –0.167

(0.040)
< 0.01
(0.06)

MC 0.39
GR 0.25

Poviat 369; 309,632
(14; 839; 3,024)

0.998
(0.002)

0.995
(0.004)

0.29 –0.239
(0.72)

< 0.01
(0.06)

MC 0.14
GR 0.31

Voivodeship 16; 309,632
(9,030; 19,352; 

35,514)

0.878
(0.113)

0.651
(0.320)

0.68 –0.841
(0.364)

> 0.15
(0.14)

MC 0.20
GR 0.26

‡semicolons separate the minimum, arithmetic mean, and maximum point #s in each sequence
†p denotes Type I error probability; n > 2000 dictates using K-S (Kolmogorov-Smirnov)
⁑unaligned peripheral concomitant gmina, poviats, and voivodeship borders omit 125 points (see 

Appendix A).
NOTE: parenthetical values denote parameter estimate standard errors or K-S Type I p
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of smoothed krigged values necessitates this weighting because a lack of resid-
ual stochastic error ascribable to smoothing biases coefficient standard errors 
downward, unveiling false positives. In addition, the next selection by a modified 
Bonferroni adjustment is a  negative SA eigenvector, counter to the prevailing 
K-Bessel function spawned expectation. Pragmatically the same description holds 
for the gminas resolution, which has a candidate set of 1,738 eigenvectors. One 
difference is that its ESF contains negative SA eigenvectors before any alterations 
are made to its Bonferroni adjustment. Liberalizing the selection criterion here 
incrementally adds three more positive SA eigenvectors without substantially 
improving its diagnostic statistics. 

A geospatial simulation sampling experiment: toward 
a better design-based n* understanding 

The preceding section surveys pertinent spatial statistical methodology for moni-
toring air pollution in a geographic landscape for sustainability progress indexing 
and/or maintenance. The simulation experiments in this section build upon an 
adaptation of the TSTRS protocol outlined in Griffith and Plant (2022), who em-
ulate coauthored work by Overton and Stehman (1993, 1996), and reviewed in 
the preceding section. Using interpolated rather than observed values magnifies 
the similarity of nearby PM10 quantities (e.g., see Griffith and Liau 2021): an 
aftermath attributable to an artificial absence of stochastic noise (a la their being 
conditional expectations) coupled with exceptionally high positive SA (a la their 
being predictions; see Tables 1 and 2). This situation reinforces the argument 
championing an exploitation of redundant information in geospatial data (i.e., 
SA), while offering an insightful testbed for augmenting Figures 1a and 1b.

Particularly because of compactness (i.e., maximum interpoint distance min-
imization partiality) and pervasive SA, the ideal tessellation is a  regular poly-
gon mesh, the two most popularly implemented ones being the square and the 

Table 2. Selected PM10 MESF estimation and diagnostic results across geographic reso-
lutions

Feature Thiessen polygon Gmina Poviat Voivodeship

stepwise selection α 0.12/133 0.10/1738 0.10/250 0.10/12
# PSA† vectors 7 76 32 3
# NSA‡ vectors 2 3 0 0
linear regression R2 0.3277 0.8584 0.8621 0.9252
ESFPSA R2 0.2664 0.0109 0 0
ESFNSA R2 0.0613 0.8693 0.8621 0.9252
MCresidual

 

(H0 p value) 0.19 < 0.0001 < 0.0001 0.33
GRresidual (H0 p value) 0.08 < 0.0001 < 0.0001 0.40
S-Wresidual (H0 p value) 0.01 < 0.0001 < 0.0001 0.05

†PSA denotes positive SA; ‡NSA denotes negative SA.



26	 Daniel A. Griffith 	 Does spatial autocorrelation matter for sustainable regional development planning	 27

hexagon (e.g., Birch et al. 2007). This latter plane geometry form is the preferred 
tessellation for spatial sampling purposes (e.g., Stough et al. 2020), in part be-
cause it reduces sampling bias arising from grid shape edge effects. For kriging 
of geotagged phenomena, hexagons yield the lowest average and maximum stan-
dard errors (Olea 1984), favored and desirable statistical properties. Such spatial 
sampling advantages prompted the US Environmental Protection Agency’s En-
vironmental Monitoring and Assessment Program (EMAP) scientists to devise 
a 40-square-kilometer hexagonal tessellation covering the entire coterminous US 
(Carr et al. 1992, p. 235, White 1992) for spatial sampling purposes. The US 
Geological Survey has released this regular hexagonal grid for public use. Inter-
estingly, this regular hexagonal grid predilection continues today with, among 
others, forestry inventories (e.g., Frank, Monleon 2021).

Although Webster and Oliver (2007, p. 188) graphically demonstrate that the 
most precise TSTRS design is the one conducted using a regular hexagonal grid, 
which geographically spreads out nearer sample points to the greatest extent 
possible, their sketch also shows that a square grid has almost the same preci-
sion. This comparison is fortunate because sampling plan designers generally 
tend to approve harnessing the more application-friendly square grid mesh. Fur-
thermore, if a georeferenced random variable has a high degree of positive SA, 
then two nearby locations exhibit a strong tendency to deliver exceedingly simi-
lar, if not identical, values, an important spatial resampling and sampling distri-
bution construction property (re the best TSTRS plan selects only one draw from 
each polygon, which SA helps guarantee is locally representative), implying that 
attribute sampling variance directly relates to the average randomly chosen pair-
wise interpoint distance within polygons. Bäsel (2021) summarizes already 
known, as well as derives new, statistical moments for the distribution of this 
distance genre within regular polygons. For such squares and hexagons enclosing 

the same area, namely , for a hexagon with radius r > 0 and a square with 

sides , the random straight line segment length variance for this general 

square is given by

	 (1),

whereas the parallel variance for this general hexagon is given by

	
(2).

The relative efficiency (i.e., an unbiased parameter estimate’s comparative degree 
of concentration reflecting its precision as sample size increases) is  ≈ 
(0.38811/0.39963)2 ≈ 0.94, consigning a square-for-hexagon substitution to the 
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same exchange category as classical nonparametric, vis-à-vis parametric, statis-
tics. Simplicity together with this somewhat modest quintessential theoretical 
statistical property difference is a primary reason Griffith and Plant (2022) chose 
the square, rather than the hexagon, tessellation for their simulation experiments.

A relative efficiency exploration of a Polish administrative polygon 
surface partitioning

Bäsel (2021) presents the necessary statistical moments to posit formulae like 
(1) and (2) for a sequence of regular polygons, beginning with a triangle, then go-
ing to a square, a pentagon, a hexagon, and so forth through a dodecagon, finally 
ending with the circle as a convergent limit to the number of regular polygon 
sides going to infinity. Now the remaining unanswered question asks whether 
or not relative efficiency insights are possible about TSTRS built upon an even 
more convenient, but almost always involving an irregular polygon shapes tiling, 
administrative districts surface partitioning.

Table 3 tabulates selected illustrative summary statistics to help illuminate 
this situation. Bhardwaj and Kumar (2019) discuss a simple shape index – whose 

formula is , which equals 1 for a circle,  ≈ 1.13 for a square, and 

approximately 1.36 and 2.10, respectively, for a rectangular shaped region dis-
playing the equivalent silhouette of 3.5 juxtaposed squares and a  trapezoidal 
shaped region exhibiting the equivalent silhouette of 2.5 juxtaposed squares 
sandwiched between two half-square right triangles having the same orientation, 
both housing the same aforementioned area. Figure 2a divulges that the Polish 
voivodeships do not approximate either circles or squares, a contention corrobo-
rated by their respective shape indices appearing in Table 3. In general, they most 
closely resemble distorted trapezoids, which, once more, their respective shape 
indices signal, after appropriately adjusting their empirical boundary length 

Table 3. A preliminary strata assessment of a coarse partitioning of Poland into 16 provin-
cial level administrative units

Voivodeship Area Shape 
index

Relative 
efficiency† Voivodeship Area Shape 

index
Relative 

efficiency†

Dolnośląskie 19356 1.40 1.31 Podlaskie 20506 1.10 1.27
Kujawsko-pomorskie 18246 1.25 1.09 Pomorskie 18893 1.34 1.35
Lubelskie 24410 1.24 1.19 Warmińsko-Mazurskie 24797 1.07 1.23
Lubuskie 13965 1.29 1.34 Wielkopolskie 29692 1.44 1.37
Mazowieckie 35514 1.49 1.36 Zachodniopomorskie 22993 1.45 1.54
Małopolskie 14355 1.28 1.28 Śląskie 11788 1.49 1.40
Opolskie  9030 1.31 1.17 Świętokrzyskie 11220 1.18 1.16
Podkarpackie 16988 1.22 1.33 Łódzkie 17878 1.24 1.16

†this comparison is between the voivodeship and trapezoid tessellation sampling variances
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measurements for excess sinuosity (e.g., see Chen 2020, Banaszak et al. 2023). 
Accordingly, their within location average random distances increase by a factor 
of nearly 2.2, perceptibly diminishing SA impacts upon attribute sampling distri-
butions vis-à-vis regular square and hexagon strata, whereas their variance in-
creases by slightly more than a factor of 6. Table 3 reports relative efficiency cal-
culations for these sixteen coarse geographic resolution areal units when 
compared with their trapezoidal-shaped irregular polygon counterparts. Its arith-
metic average is about 0.90, again, comparable to the preceding square-to-hexa-
gon strata comparison. Of course, a  trapezoid-square or hexagon comparison 
would expose much lower relative efficiency scores.

Design-based regional arithmetic average sampling variance 
estimation: pseudo-equiprobability sampling

A critical automatic benefit of a regular polygon TSTRS plan is equiprobability. 
This is why the preceding squares, hexagons, rectangles, and trapezoids all need 
to have the same area, as well as why some polygons in and of themselves are 
incapable of exhaustively partitioning a surface. Thus, any shape alterations (e.g., 
replacing squares with trapezoids) impact only geographic coverage, and hence 
SA effects, essentially maintaining the goal of more precise information about, 
and hence more accurate estimates for, a parameter of interest (e.g., a geographic 
landscape-wide global arithmetic mean). If this uniform distribution of sampling 
probabilities is unattainable, then legitimate statistical computations can incor-
porate sampling weights (the inverse selection probabilities for each observation) 
to convert varying choice probabilities to a single constant. In other words, an 
application of sampling weights enables a reconfiguration of a sample so that it 
behaves as if it were a simple random draw from its parent population. After all, 
the principal objective of sampling is to calculate a descriptive statistic that accu-
rately measures its true parameter value in its parent population. In other words, 
a paramount purpose of adopting sampling weights is to overturn any sampling 
distribution distortions imposed by using differential sampling probabilities. 

If polygons have varying areas, Ai (i = 1, 2, …, n), then the probability of sam-
ple inclusion when drawing one observation from each polygon is the known 

fixed measure  for areal unit i. This fraction reduces to a single 

value for regular polygons, satisfying the aforementioned equally likely principle. 
In contrast, if irregular polygon strata vary in size, the ensuant nonconstant prob-
abilities require usage of a weighting scheme in which the weights are inversely 
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proportional to these sampling probabilities, namely, . Accordingly, the 

weighted mean for some random variable Y is given by

	 ,	 (3)

which has an expected value of µ because each of the n Ai weights is a fixed 
amount (i.e., they do not change between repeated sampling exercises with a giv-
en geographic landscape). This statistic’s affiliated pertinent quantity that is in 

keeping with the goals of this paper is its sampling variance, , an expression 

that differs from the weighted variance companion of estimator (1) often given 
by

	 ,	 (4)

which has an expected value of σ2.
Meanwhile, the sampling variance of the estimated weighted mean [i.e., equa-

tion (3)] is given by

	 ,	 (5)

where  denotes a more traditional effective sample size, neff. This factor 

certifies that an irregular polygon TSTRS plan in the presence of SA incurs a mod-
ification to Figure 1b (hence, Fig. 1c).
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Polish 2023 PM10 resampling experiments: implications 
for effective geographic sample size n*

Table 4 tabularizes the most germane simulation experiment output. First, as 
already commented with regard to formula (3), the weighted arithmetic average 
equals its unweighted mean population parameter (except for rounding error). 
Second, formula (5) implies neff ≤ n (the inequality part being attributable to 
weighting to compensate for nonconstant selection probabilities), which mate-
rializes here by a  sizeable amount (i.e., 70% to 89%). The estimated formula 
(4) result, after being adjusted for unequal probabilities sampling, still reflects 
an overwhelming SA impact (see Table 3). Sampling only one observation from 
each tessellation strata helps mediate this complication within a sample, but not 
between samples, in practice.

In conclusion, Figure 1a implies a conjecture stating that weighting to rec-
tify design-based unequal sample selection probabilities leaves the relationship 
between SA and effective geographic sample size, n*, fundamentally untouched, 
although the resulting trendline curvature may be steeper. Clearly, considerably 
more future research needs to address this topic. Nevertheless, the cardinal find-
ing is that concocting idealized tessellations to execute a proper spatial sampling 
design is needless and preventable, offering considerable civic budgetary sav-
ings when performing sustainability monitoring. Existing administrative units, 
accompanied by their legislative authority, are easily adaptable for this purpose. 
The air pollution case furnishes a powerful exemplification of this contention.

Conclusions and Implications

Fruitful sustainable regional development compels continuous monitoring and 
surveillance of the human condition, natural resources (especially energy) com-
piling/consumption, agronomy, and environmental quality, all endeavors amena-
ble to spatial sampling because it is bursting with SA. Accordingly, successful 
sustainability strategies warrant taking advantage of this latent SA, particularly to 
minimize the number and complexity – and thus operating costs – of geographic 
sampling networks. This paper encapsulates such an approach for pollution mon-
itoring, a most relevant sustainability illustration, expounding upon ways that 
SA can stimulate efficiencies and furnish cost savings when spatially sampling 

Table 4. Simulation output for an irregular polygon mesh TSTRS plan; 10,000 replications

Geographic 
resolution n µ & 

Central limit theorem:  Median # km2 
points neff % of n

Voivodeships  16
24.7

2.244/4 ≈ 0.5610 18,570  14.3 89.1 0.2433
Poviats  369 2.244/19.2 ≈ 0.1168  768  258.5 70.0 0.0241
Gminas 2.489 2.243/49.9 ≈ 0.0450  110 1761.0 70.8 0.0050
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a geographic landscape with the use of TSTRS techniques. One recorded finding 
is that administrative unit point sampling behavior may resemble that of trape-
zoidal tessellations. Verification of this claim could inspire numerous theoretical 
studies cloning those already existing for regular hexagon and square tessella-
tions. Another is that SA impacts, which instigate very similar numerical results 
when repeatedly sampling attributes in a compact local area, are about twice as 
pronounced as those produced by resorting to classical weighted statistics to 
counterbalance a practicality-obliged implementation of varying sample selection 
probabilities. New evidence reviewed in this paper fortifies that already provided 
by Griffith and Plant (2022), solidifying a general conclusion about the impor-
tance of SA in both design- and model-based inference. This composition also is 
another testimony to the authenticity of a near-universal inclination by georef-
erenced attributes to possess positive-negative SA mixtures. Because its use of 
interpolated/imputed (i.e., krigged) data is somewhat obfuscating in this inves-
tigation (e.g., suppression of natural variation), far more environmental datasets 
other than air pollution merit such scrutiny before appending their kind to the 
already uncovered and steadily growing cluster of mixture variables. On the one 
hand, air pollution is a natural phenomenon for having unmistakable positive 
SA because of its physical fluidity. On the other hand, wind-forced circulation, 
remediating interventions, and sundry anthropomorphic activities can cause it to 
compete for territory within itself as well as with nearby lesser-polluted regions, 
the hallmark of negative SA. All in all, then, the perceptive conclusion reached 
through this air pollution narrative argues that SA does matter for the broader 
context of sustainable regional development planning and ongoing evaluation.
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Czy autokorelacja przestrzenna ma znaczenie w kontekście 
planowania i oceny zrównoważonego rozwoju regionalnego?

Zarys treści: Dążenie do osiągnięcia różnych wymiarów zrównoważonego rozwoju zobowiązuje wła-
dze społeczne do zaangażowania się w bardziej gruntowne monitorowanie zbiorowej podaży i po-
pytu, m.in. w sferze ekonomicznej, szczególnie w kontekście geograficznym. W rezultacie, nakłady 
i wydajność na które ma to wpływ, jak również zasoby/towary/usługi do wykorzystania oraz genero-
wane odpady, które występują i są oznaczone pośrednio lub bezpośrednio w przestrzeni geograficz-
nej, są wyraźnymi nośnikami autokorelacji przestrzennej. Wykorzystanie tej prawie wszechobecnej 
właściwości danych georeferencyjnych pociąga za sobą możliwość wspierania wydajnych i skutecz-
nych przedsięwzięć w  zakresie zrównoważonego rozwoju. Losowy dobór próby metodą tesalacji 
warstwowej w celu monitorowania zanieczyszczenia środowiska nawiązuje do jednego z przykładów 
tego twierdzenia. Artykuł ilustruje ten przykład poprzez analizę jakości powietrza w Polsce w 2023 
roku. W ten sposób struktura oparta na wyidealizowanych tesalacjach zostaje przełożona na struktu-
rę polskich okręgów administracyjnych; to przekształcenie metodologiczne umożliwia organizacjom 
rządowym uczestniczenie w każdym planowanym monitorowaniu oraz jego nadzorowaniu bez dodat-
kowych komplikacji prawnych. Przypadkowe odkrycia naukowe obejmują wstępne rozszerzenie zbio-
ru standardowych kształtów wielokątów (np. kwadratów i sześciokątów) o trapezy w celu pobrania 
próbek przestrzennych oraz ewentualność, że wpływ autokorelacji przestrzennej na statystyki oparte 
na projektach może mieć znaczną przewagę nad naruszeniem konwencjonalnego przykazania zrów-
noważonego losowego pobierania próbek. Wniosek jaki się nasuwa w trakcie analiz streszczonych 
w niniejszej publikacji dowodzi, że autokorelacja przestrzenna ma znaczenie w planowaniu i ocenie 
zrównoważonego rozwoju regionalnego.

Słowa kluczowe: PM10, Polska, autokorelacja przestrzenna, zrównoważony rozwój regionalny, loso-
wy dobór próby metodą tesalacji warstwowej
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Appendix A

Peripheral locations of excluded gminas resolution krigged points

Fig. A1. The 125 points located outside of gminas, but not voivodeships or poviats, bo-
undaries
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