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Abstract

Causal inference is a fundamental goal of many research endeavors, including schol-
arship in the field of language education and learning. Randomized controlled trials
are considered an ideal design to test causal claims, but not all claims can be sub-
jected to experimental treatment due to ethical and practical constraints. In this ar-
ticle, we provide an overview of the conditions under which causal inference may
be made from observational data. This includes recognition of the role of confound-
ers and colliders; the former are common causes of the independent and depend-
ent variables and must be controlled, while the latter are common effects and must
not be controlled. We illustrate these ideas with two examples involving ability be-
liefs and demonstrate them through directed acyclic graphs. We discuss the impli-
cations of this approach to causal inference from observational data, specifically in
individual differences in language learning research, highlighting the need for ex-
plicit modeling of causal relationships and the risk of the atheoretical inclusion of
variables, whether as controls, predictors, or covariates.
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Any claim coming from an observational study
is most likely to be wrong
(Young & Karr, 2011, p. 116)

1. Introduction

Statistics textbooks typically tell readers that there are two options when deal-
ing with data: descriptive statistics and inferential statistics. Descriptive statistics
provide a concise summary of the data at hand (e.g., with means and standard
deviations), while inferential statistics aim to come up with conclusions about
the population from which the sample was selected (e.g., using t-tests and ANOVAS).
While the descriptive-inferential distinction is useful, it does not clearly reflect
the different goals of research from many paradigms and may therefore mislead
unwitting researchers. Generally speaking, the goals of research include descrip-
tion, prediction, and causal inference (e.g., Hernan et al., 2019). While descrip-
tion is essentially the same in the two classifications, inferential statistics are
further divided into those that are limited to prediction and those that extend
to causation. At the prediction level, a researcher might find that a certain emotion
(e.g., anxiety, happiness) is associated, either positively or negatively, with perfor-
mance in a language task. At the causal level, however, the researcher would be
advocating a counterfactual that if happiness or anxiety were absent (or if we
intervened and changed their values), performance would have been different.
This is an important distinction.

Although both prediction and causal inference are useful for different pur-
poses, causal inference involves additional assumptions and is therefore harder to
come by. These assumptions have to do with the data generating process, and
therefore must come from outside the data. In other words, both description and
prediction represent a data reduction process, while causal inference requires
combining the data with knowledge about the world. This is why experimental de-
signs permit causal inference since the researcher intervenes and influences how
the data are generated. Thus, two datasets with the same set of variables can lead
to different conclusions if one comes from an observational study and the other
from an experiment. The observed association between a certain emotion and
task performance may indeed be causal, or it might turn out to be an artifact of a
third variable (e.g., self-efficacy) that is exerting a causal influence on both.

Clearly, making sound causal inferences is a crucial element of all quantitative
individual differences (IDs) research in second language (L2) learning — particularly
the case in language motivation research, where we locate much of our own work.
Indeed, if a researcher reports that they obtained a correlation of, say, .40 between
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two variables, many readers will not think much of this finding if they consider this
correlation simply spurious or that the actual (causal) relationship, if any, is much
smaller. This is why statements like “The ideal L2 self was consistently found to cor-
relate highly with the criterion measure (Intended effort), explaining 42% of the
variance, which is an exceptionally high figure in motivation studies” (Dornyei, 2009,
p. 31, emphasis added) leave many readers unsatisfied, as they do not clarify the
extent to which this correlation underlies a genuine causal process or merely a spu-
rious association. Indeed, an unusually high correlation may invite an equally high
risk of a spurious association. Additionally, assuming a causal relationship, readers
would also wonder about the direction of causality, especially with more pro-
nounced preliminary evidence suggesting a reverse causal process with effort po-
tentially increasing the ideal L2 self over time (see Hiver & Al-Hoorie, 2020a).

While the correlation-is-not-causation mantra is well-established in the field
intheory, practice suggests otherwise. Researchers studying IDs in language learn-
ing routinely present correlation and regression tables listing numerous variables
with stars representing significance levels. This stargazing syndrome (McElreath,
2020), coupled with a scarcity of intervention research (Al-Hoorie et al., 2022;
Lamb, 2017) and the customary practice of devoting entire manuscript sections
to pedagogical implications from these observational results (Al-Hoorie et al.,
2021), suggests that the field only pays lip service to the concept that correlation
is not causation. Attempting to inform practice implies that the researcher, at least
implicitly, presupposes a causal relationship underlying their findings. In reality,
correlational results, even if consistently replicable with the same designs, usually
do not hold up when examined experimentally. This is because there are usually
many more correlational than causal relationships in any system (e.g., voodoo cor-
relations, Fiedler, 2011, crud factor, Orben & Lakens, 2020; piranha principle, Tosh
etal., 2021). For example, in an ambitious metascientific undertaking, Young and
Karr (2011) reviewed 52 claims from observational research and found that not a
single one of them withstood randomized controlled testing, and five even
showed the opposite pattern.

More careful researchers avoid the C-word for other euphemisms like as-
sociation, link, relationship, and variance explained (Grosz et al., 2020; Hernan,
2018). This practice can be misleading. In many cases, researchers and their
readers are actually interested in the causal relationship underlying their find-
ings, not just the extent to which some variables are associated. Avoiding being
explicit about the causal goal of research (e.g., because the design is observa-
tional) conflates the means and ends of research. While it is justifiable to use
associational language in the results section of an observational study, it be-
comes counterproductive in the introduction and discussion sections because it
introduces unnecessary ambiguity as to the purpose of the study, and readers
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are in any case likely to jump to causal conclusions even if these are not war-
ranted. Being transparent about one’s causal goals, in contrast, forces research-
ers to be explicit about their assumptions, to recognize the limitations of their
designs, and for the community to have an informed discussion about the po-
tential implications of the findings.

At the same time, we have to admit that interventions that permit clear
cause-effect inferences involve numerous practical and ethical challenges, which
have made them “a tiny proportion” (Lamb, 2017, p. 334) of the total research
into IDs in language learning. While conducting more experimental research is
laudable, this is not always feasible (Hiver & Al-Hoorie, 2020b). The purpose of
the present article is therefore not to call for more experimental designs, but to
discuss the assumptions behind making principled causal inferences from obser-
vational research. Indeed, if the purpose of most research is to uncover genuine
causal relationships (not mere associations with suspect causality), and if the only
way to uncover these causal relationships is through randomized controlled ex-
periments, then a lot of research will lose its value. There is, however, no reason
for this to be the case. The science of causality has made great advances in the
last few decades (Pearl, 2009; Pearl et al., 2016), attempting to resolve centuries-
old debates and ambiguities surrounding causality and causal inference. This
emerging body of research helps scholars think more clearly about data coming
from observational designs and the assumptions needed to deduce causality from
these data, which requires making those assumptions explicit and transparent
(Rohrer, 2018). In this article, we introduce the role of confounders and colliders
in making causal inferences. Throughout, we illustrate concepts with (hypothet-
ical) examples to make the ideas less abstract. A recurring theme in this article is
that the researcher is expected to develop an explicit and transparent model of
the causal links between their variables while designing the study, one that allows
other researchers to critique and build on it, rather than mechanistically including
more and more variables in empirical research (Wysocki et al., 2022).

2. Confounders: The case of too few controls

A primary obstacle that prevents inferring causality from observational data is
confounding. A confounder is basically a common cause that introduces a pre-
viously nonexistent association between two variables, or spuriously increases
the magnitude of an existing one. More technically, a confounder is a variable
that makes the observational distribution different from the interventional dis-
tribution. In order to better understand the intuition behind a confounder, imag-
ine that a researcher computes the correlations among a collection of variables
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and is then surprised to find a positive correlation between shoe size and reading
ability. Intrigued, the researcher collects new data and finds that this relationship
replicates reliably. Of course, the more plausible interpretation is not that larger
shoes lead to better reading competence, but that the sample comes from learn-
ers of different ages. Clearly, this association is spurious and not causal. However,
a researcher asking about whether the independent variable (e.qg., shoe size) has
anything to do with the dependent variable (e.g., reading ability), without remov-
ing the effect of the confounder (age in this example), will find that shoe size and
reading ability indeed appear to be empirically associated (see Figure 1, panel a).
This is because as children age, their shoe sizes increase, and their reading ability
also tends to improve. As shown by the dashed curve in Figure 1, panel a, the
(non-causal) association is transmitted from the independent variable through
the confounder and reaches the dependent variable (note that this non-causal
transmission can travel against the direction of the arrows, which may sound con-
fusing at first). This is called a back-door path.

Experimental and observational designs handle this third-variable prob-
lem differently. In an experiment, randomization is intended to minimize the risk
of this problem in that the independent variable is not systematically associated
with that third variable. In our example, the researcher would randomly give
children shoes with different sizes regardless of their age, so that age is no
longer related to shoe size. This is illustrated by the missing arrow from age to
shoe size in panel b of Figure 1 (technically, what connects two variables is called
an “edge,” while a “path” is the route where causality flows, possibly passing
through multiple variables). This is why removing an arrow is a stronger assump-
tion than including it (because, again, correlations are everywhere). In an obser-
vational study, however, the role of the researcher is to first identify that con-
founder and then remove its effect in order to exclude the non-causal associa-
tion resulting from it. Removing the confounder may be accomplished by anal-
ysis through statistically controlling for it (also called conditioning on it and ad-
justing for it) or by design through stratifying the sample according to that con-
founder (in this article, we use “control” as an inclusive term). In this way, the
researcher “blocks” the backdoor path and is able to estimate the path from
shoe size to reading ability, as shown in panel b of Figure 1.

In many cases, controlling for confounders is the only option researchers
have, as many variables are not amenable to experimental manipulation. For
example, a researcher may be interested in examining whether an older sibling’s
language aptitude has a causal impact on their younger sibling’s aptitude level
(e.g., through socializing). Computing the correlation between the levels of ap-
titude in a sample of sibling pairs will not yield a precise estimate of the intended
causal relationship because, simply, this correlation could be at least partly due
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to shared genetic variance. In order to avoid this problem, the researcher would
need to remove the effect of genes. Of course, removing the effect of genes might
be too difficult, so the researcher may decide to use parents’ language aptitude as a
proxy, imperfect as it is (see Figure 2). Controlling for a descendant of a confounder
partially controls for that confounder. Of course, other researchers might think of
other potential confounders of this relationship. These additional confounders can
be tested in an improved model, and this is how research accumulates.

In order to further appreciate the risk of confounders, consider panel a of
Figure 3. In this example, supportive teaching is hypothesized to improve student
learning, and this process is further hypothesized to be mediated by students
studying more hours. The researcher may decide to control for study hours in or-
der to, first, test the hypothesis that study hours are a mediator and, second, es-
timate the direct effect of supportive teaching that is not mediated by study hours,
if any. However, by controlling for study hours, a confounder is now introduced
(MacKinnon & Pirlott, 2015). As shown in panel b of Figure 3, if a variable like con-
scientiousness has a causal effect on both study hours and achievement (Meyer
et al., 2022), a back-door path will open, thus biasing the estimate. To block this
back-door path, conscientiousness and all other confounders must also be con-
trolled. Notice that this problem occurs even if the study is an experiment, as ma-
nipulating supportive teaching still does not affect path b in panel b of Figure 3
(study hours are also a collider; see later). This demonstrates the need to formulate
clear conceptual and analytical models in an a priori manner and carefully consider
potential confounders before causal inferences can be defensible.

In contrast to the back-door approach, researchers can also utilize the
front-door approach (Pearl, 1995). The front-door approach permits causal in-
ference even ifitis not possible to control for confounders. Here, the researcher
needs to identify the variable that mediates the relationship between the inde-
pendent and dependent variables. This mediator must satisfy the front-door cri-
terion, which requires that it fully mediates that relationship, and that there are
no (uncontrolled) confounds either between the independent variable and the
mediator or between the mediator and the dependent variable. This approach
therefore blocks all back-door paths caused by the unmeasured confound. As an
example, consider the effect of class size on student achievement. There are
confounders (e.g., socioeconomic status, educational policies, etc.) that create
a back-door path, consequently making the correlation between class size and
student achievement non-causal. Typically, therefore, the researcher would
need to conduct an experiment manipulating class size. With the front-door ap-
proach, however, the causal effect may be calculated from an observational study.
The researcher needs to identify the mediator between this relationship, possibly
teaching quality (see Figure 4). The researcher calculates the correlation between
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class size and teaching quality and between teaching quality and student achieve-
ment. The estimate of the total causal effect can then be obtained by combining
these two correlations. Research by Glynn and Kashin (2018) has demonstrated
that this approach provides estimates that closely approximate experimental re-
sults. The missing arrows in Figure 4 also explain the required assumptions — that
the unknown/unmeasured confounders do not affect the teaching quality, and
that no confounders exist between the independent variable and the mediator or
between the mediator and the dependent variable — or that these confounders
are controlled for. Thus, this approach forces the researcher to make their model
and its assumptions explicit and transparent for the field to critique and build on.

A third method to make causal inferences without (direct) experimental
manipulation is through an instrumental variables approach (Angrist et al.,
1996; Hiver & Al-Hoorie, 2020b). This approach requires the identification of a
variable that affects the independent variable of interest, but one that is not
associated with the dependent variable or any confounder affecting the inde-
pendent and dependent variables. For example, the researcher might be inter-
ested in finding out the causal effect of teaching experience on student achieve-
ment (see Figure 5). The mere correlation between teaching experience and stu-
dent achievement is non-causal due to confounding, and the researcher may
not be able to experimentally manipulate teaching experience. With an instru-
mental variables approach, the researcher identifies an instrument, such as
available teaching positions in a certain geographical area. Availability of teach-
ing positions is typically an administrative decision governed by financial or pol-
icy considerations. The availability of positions in different locations requiring
different levels of teaching experience is therefore not expected to be related to
student achievement or a confounder between teaching experience and stu-
dent achievement. Based on these assumptions, the association between teach-
ing experience and student achievement may be interpreted as causal.

Non-causal association

L — e

a) . TS, b)
/ \
Confounder Confounder
(age) (age)
Independent Dependent Independent Dependent
variable variable variable —) variable
(shoe size) (reading ability) (shoe size) (reading ability)

Figure 1 a) back-door path due to confounding; b) removing the effect of the
confounder through experimental manipulation
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Confounder
(genes)

Descendant of a confounder
(parents’ aptitude)

Independent variable : Dependent variable
(older sibling’s aptitude ) (younger sibling’s aptitude )

Figure 2 Controlling for a descendant of a confounder partially controls for that confounder

a)
Mediator
(study hours)
- ? .
Independent variable : Dependent variable

(supportive teaching) (student achievement)

b)
Mediator
(study hours)
a b
Independent variable ? Dependent variable
(supportive teaching) (student achievement)

Figure 3 a) mediation model; b) confounder introduced because of the inclusion
of a mediator

Unknown confounders

Independent variable Mediator Dependent variable
(class size) (teaching quality) (student achievement)

Figure 4 Teaching quality opening a front-door path if relevant assumptions hold
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Unknown confounders

Inst_runje_}ntal vanab_le Independent variable ? Dependent variable
(availability of teaching ———— > - s

positions) (teaching experience) (student achievement)
Figure 5 Availability of teaching positions functions as an instrumental variable
assuming relevant assumptions hold

3. Colliders: The case of too many controls

If confounders prevent unbiased causal inference and should therefore be controlled,
this might suggest that it is wise to try and control for everything the researcher could
get their hands on — just in case. This more-the-merrier conception, where one be-
lieves that adding more controls to the model will improve inference, has been de-
scribed as a methodological urban legend (Spector & Brannick, 2011) and as a prac-
tice that creates causal salad (McElreath, 2020). Indeed, many analysts feel frustrated
by the common experience that adding just one more variable can make a huge dif-
ference in the results, sometimes even changing the sign (from negative to positive
or vice versa) altogether. This issue is complicated further by the unhappy fact that
causally incorrect models can make better predictions (McElreath, 2020). Thus, a
model that can, consistently and replicably, explain more of the variance might still be
a wrong model. Therefore, on the one hand, adding a variable (even if apparently
irrelevant, such as shoe size [see Figure 2]) can lead to confounding through opening
up a back-door path, thus introducing a spurious, non-causal association. On the
other hand, adding a variable with the intention to control for it can open up a previ-
ously closed back-door path, again introducing a non-causal association. In this sec-
tion, we discuss this problem of bad controls (Cinelli et al., 2022). We start with the
idea of colliders before moving to mediators and posttreatment variables.

While confounders introduce omitted variable bias, colliders lead to in-
cluded variable bias. It might, at first, seem counterintuitive that adding another
variable (as predictor, control, or covariate) with the intention of improving the
model can instead end up damaging it. To better understand the intuition be-
hind this, consider an extension of the hypothetical aptitude example above.
Imagine this time that a researcher is interested in finding out whether a hus-
band’s language aptitude has a causal effect on the wife’s aptitude level. Unlike
the siblings example, couples may not have shared genetic variance that might
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work as a confounder, so the researcher looks for other potential sources of
confounding (e.g., a certain dimension of personality that attracts couples in the
first place). Then the researcher might think, as there are no shared parents to
control here, why not control for children’s aptitude instead? This is a very bad
idea. One way to look at this situation is that removing variance in a descendant
of the dependent variable removes some of the very variance the researcher is
targeting. Another way to look at it is that controlling for this variable opens up
a previously closed back-door path, thus allowing non-causal association to flow
through it. Graphically, while a confounder is represented with a fork (e.g., Fig-
ure 1, panel a), a collider is represented with an inverted fork (see Figure 6). A
collider, therefore, is a common effect. Non-causal association (dashed curve in
Figure 6) does not flow through a variable with an inverted fork unless it is con-
trolled (i.e., it is blocked by default). In short, while researchers should control
for parents (confounders), they should not control for children (colliders).

To further demonstrate the complexities involved, imagine that a re-
searcher is interested in testing the effect of some form of supportive teaching on
student achievement. The researcher examines the relationship between these
two variables (it does not matter whether the study is experimental or observa-
tional for the purpose of this example) but is disappointed to find no association.
The researcher might hypothesize that students’ “happiness” might somehow be
related to this relationship, and so they decide to control for this variable, and
then they indeed find a relationship. What could possibly go wrong? Controlling
for happiness opens up a back-door path if it is a collider on the path between
supportive teaching and the unmeasured variable well-being. If this happens, it
will in turn introduce the unmeasured confounder income, which has a causal in-
fluence on both well-being and student achievement (Killingsworth, 2021; see Fig-
ure 7). These additional variables are outside of the researcher’s radar altogether
and were therefore not included in the study design. This situation underscores
the need to carefully consider the ramifications of selecting a variable to control.
Sometimes controlling for a variable to avoid one source of bias can lead to an-
other source of bias, in a process called butterfly bias (Ding & Miratrix, 2015).

A topic related to collider bias is controlling for mediators. A mediator is
an intervening variable that explains the mechanism of the effect of the inde-
pendent variable on the dependent variable. Controlling for a mediator may be
helpful for the purpose of calculating direct and indirect effects, though (as
shown in Figure 3) this requires strong assumptions, such as the absence of con-
founding (MacKinnon & Pirlott, 2015). Problems arise when the researcher is
not aware that a variable acts as a mediator and controls for it. The unwitting
researcher would be controlling for the very effect they are after. Due to overcon-
trol bias, the effect will completely disappear in the case of full mediation or will
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be reduced in the case of partial mediation. In hindsight, it might seem common
sense that controlling for a mediator is problematic, but some situations can be
tricky. Consider this example: A researcher is interested in the effect of supportive
teaching on student achievement. The researcher knows that this effect is medi-
ated by student motivation, so they are careful not to control for this mediator. But
the researcher controls for class participation. Hypothesizing that the effect of sup-
portive teaching might be different for those who actively participate in class and those
who do not, the researcher controls for class participation either through entering this
variable as a predictor in the regression model or by splitting the sample and com-
paring high-participators and low-participators. This is a bad idea. As shown in Fig-
ure 8, because it is a manifestation of behavioral engagement (Hiver et al., 2021;
Zhou et al., 2021), class participation is a descendant of the mediator in this rela-
tionship. Controlling for a descendant of a mediator constitutes partially control-
ling for the mediator itself, again removing the very effect the researcher is inves-
tigating. This again demonstrates the need to explicitly state the reasons behind
adding controls in the model or dividing the sample into subgroups.

A final and closely related point we discuss in this section is the idea of
conditioning on (i.e., controlling for) posttreatment variables. In the above ex-
ample about controlling for class participation, it matters when class participa-
tion data were collected: before or after they were influenced by the independ-
ent variable supportive teaching. At first, it might not be clear why the timing of
participation data collection is relevant, but consider the following explanation.
In the sample, there are teachers who provide supportive teaching and those
who do not. Within each case, as a result, there will be students who exhibit
high participation and those who exhibit low participation. If the researcher
splits the sample (or computes interaction effects) based on high versus low par-
ticipation, the groups will not be comparable. Low participation after supportive
teaching is not the same as low participation after non-supportive teaching. The
former points to students with low motivation who refrained from participating
despite supportive teaching, while the latter possibly includes students with
higher motivation who did not manifest in participation due to lack of support-
ive teaching. Comparing these groups is similar to comparing apples and or-
anges. This problem of conditioning on posttreatment variables applies equally
to experimental (Montgomery et al., 2018) and observational (Acharya et al.,
2016) research, perhaps more so in the latter case. Avoiding this problemin the
case of observational research requires collecting participation data before
these data are influenced by the independent variable supportive teaching (e.g.,
during the previous semester). A similar problem occurs with participant exclu-
sion, noncompliance, and attrition happening during the course of the study,
which leads to endogenous selection bias (Elwert & Winship, 2014). As controlling
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for posttreatment variables is useful in only limited cases (e.g., Cinelli et al., 2022),
researchers need to carefully plan not only what variables and controls they need
but also when these should be measured.

Independent variable ? Dependent variable
(husband’s aptitude) (wife’s aptitude)

i !

1 !

\ !

\ !
"« /
N, collider s
N, . (children’s aptitude) . . Non-causal association

Figure 6 Controlling for a collider opens up a back-door path

Supportive teaching : Student achievement
(independent variable) (dependent variable)
Control variable
(happiness)
Unmeasured collider Unmeasured confounder
(student well-being) (income)

Figure 7 Controlling for one variable (happiness) could open up a back-door path

Supportive teaching Student motivation Student achievement
(independent variable) (mediator) (dependent variable)

Class participation
(descendant of a mediator)

Figure 8 Controlling for a descendant of a mediator constitutes partially control-
ling for that mediator

4. Discussion

This article has reviewed an approach to making causal inferences from observa-
tional data in a principled fashion. In most situations, authors and their readers
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are, explicitly or implicitly, interested in the causal implications of a set of findings,
not just mere associations that might end up being spurious. However, because re-
searchers are usually aware of the limitations of their designs, causality has become
“a dirty word that respectable investigators do not say in public or put in print” (Her-
nan, 2018, p. 616). This mindset muddies the waters, goes against transparency val-
ues, and prevents other researchers from zooming in on these causal claims, sub-
jecting them to careful testing, and elaborating and expanding on them. We there-
fore urge fellow researchers to address causal claims explicitly rather than shying
away from this issue. The approach presented here falls under the rubric of d-sep-
aration, where d stands for directional (Pearl, 2009; Pearl et al., 2016; for an acces-
sible treatment, see Hayduk et al., 2003). Causal inference may be made to the ex-
tent that two variables are d-separated, which requires that all confounders are
controlled to close back-door paths and that no colliders are controlled to prevent
opening up back-door paths that are already closed. Thus, while it is true, as stated
in the epigraph to this article, that most claims coming from observational studies
are false in the sense that they do not underlie the causal relationships researchers
are typically interested in (as correlations are everywhere), d-separation with an ex-
plicit model offers a formal approach to testing causal claims. Randomized con-
trolled experiments are not the only approach in the researcher’s arsenal, and
hence researchers should think beyond experiments (Diener et al., 2022).

The graphical representations we used in this article are known as di-
rected acyclic graphs (DAGs). DAGs offer a simple but effective way to represent
causal models (e.g., Tennant et al., 2020). DAGs are “acyclic” in that a variable
cannot cause itself. Two variables may indeed have a mutual causal relationship,
but the temporal dimension will make each a different variable (“anxiety at time
1” affects performance, which in turn affects “anxiety at time 2”). Furthermore,
although the arrows linking variables are straight, DAGs are nonparametric. A
DAG is simply a qualitative representation of the direction of causality, and thus
it does not make assumptions regarding the sign of the relationship (positive or
negative), its magnitude (small or large), its certainty (deterministic or probabil-
istic), its structure (simple or complex), or its shape (linear or nonlinear). It is a
common misconception that a straight line means linear (e.g., Dérnyei & Ryan,
2015, p. 202). Whether the nonlinear relationship is exponential, logarithmic,
polynomial, or follows any other pattern, and whether the interaction is nonlin-
ear in that the relationship between two variables is not constant but depends
on the level of a third variable, all this can be modeled with a DAG. We encour-
age scholars in the field to begin formally modeling causal claims using DAGs.
For convenience, DAG generation can also be automated using open-source
software such as DAGitty (www.dagitty.net; Textor et al., 2016) and Causal Fu-
sion (www.causalfusion.net; Bareinboim & Pearl, 2016).
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In this article, we also argued that adding one more variable to the model
can sometimes have a damaging effect. Sometimes adding a variable produces a
confounder bias (observed association becomes non-causal because the added
variable introduces a previously nonexistent back-door path; see Figure 3, panel
b), at other times, it leads to a collider bias (observed association also becomes
non-causal because the added variable opens a previously existing but closed
back-door path) and in some other times it results in overcontrol bias (removing
the very effect the researcher is targeting). An unmeasured/unobserved variable
can also damage the precision of the estimation of the causal effect as long as it
is not included in the model and controlled, even if the researcher is unaware of
that variable or its role (Tennant et al., 2020). These dynamics are relational, in
that the very same variable can have different effects depending on what other
variables are included in the model. Drawing a DAG forces the researcher to be
explicit about their model and the hypothesized dynamics and mechanisms un-
derlying their data, which gives readers the chance to critique the model and its
hypotheses. The first step for the researcher is therefore to build a diagram that
expresses the most plausible causal web for the variables of interest based on
existing knowledge, theory, and evidence (Westreich & Greenland, 2013). One
concern might be that life is too complex to be represented in one simple dia-
gram, as there is always the possibility of unknown confounders, for example.
But no one said research is easy. Nor should it be a mechanistic process of
thoughtlessly adding more and more variables to an omnibus regression model.
Models should be expressed transparently to allow examination and knowledge
accumulation, as “rounds of model criticism and revision embody the real tests
of scientific hypotheses” (McElreath, 2020, p. 139).

When it comes to ID research in language learning, correlational results abound.
There is exploratory research where fad constructs are thrown into an analysis, the-
ory-free, and are used to “explain” or “predict” a certain outcome. These “garbage-
can regressions” (Achen, 2005) have little theoretical and causal rationale, make lit-
tle empirical sense, and consequently provide no straightforward interpretation.
With very few exceptions (e.g., Gardner, 2000), ID researchers also tend to avoid
the topic of causality and its implications, sometimes treating it as an after-
thought. For example, more than ten years after the L2 motivational system was
proposed (Dornyei, 2005), You et al. (2016) acknowledged that “the L2 motiva-
tional self system was originally proposed as a framework with no directional links
among the three components” (p. 97). This situation led to contradictory concep-
tualizations even in chapters in the same edited volume (see Hiver & Al-Hoorie,
2020a). This situation also led to little accumulation of knowledge in the field over
the past six decades, as well as little attention to coming closer to a consensus about
a clear set of collective and measurable goals the field aspires to reach (Al-Hoorie
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et al., 2021). This is perhaps especially problematic for an “applied” field that pur-
ports to inform society. In short, a researcher needs a clearly articulated theory that
explains what should be included and controlled for, and what should not, and why.
It should no longer be tenable to justify the inclusion of a variable by lazy argumen-
tation like “we know little about this variable, so we add it to the analysis.”

In order to illustrate the concepts in this article, we present two examples
next, drawing from ability beliefs. For the first example, consider the DAG in Figure
9. Just like other examples presented above, we use the model in Figure 9 as a meth-
odological exercise (if other researchers argue for a modified model configuration,
the principles will remain the same). In this model, the researcher is interested in
the causal effect of teacher support on student achievement. Some variables in this
model must be controlled, and others must not be controlled. The independent-
dependent relationship in this model is confounded by assessment type, in that the
type of assessment may have a washback effect on the level of teacher support as
well as on student achievement. Therefore, assessment type must be controlled. If
the researcher has not collected data on assessment type, this confounder must
still be represented in the DAG — along with any other confounders known from
theory — and the implications for the imprecision of the causal estimate must be
discussed. Without this transparency, the researcher may simply advance generic
claims that teacher support is a good “predictor” of student achievement.

Assessment type

Teacher ability beliefs Student prior achievement

Teacher support ———> Intrinsic motivation —— >  Student achievement

|

Student curiosity

Teacher satisfaction Student ability beliefs

Positive emotions

Figure 9 Example of a causal web

On the other hand, Figure 9 indicates that the researcher must not control
for positive emotions. The same applies to similar constructs, such as student
course satisfaction, the L2 learning experience, and attitudes toward the learn-
ing situation, if these are descendants of both teacher support and student
achievement. Including these colliders in the model opens up a back-door path
and introduces a non-causal association. The field has taken for granted that
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these variables exert a causal effect on student achievement (Al-Hoorie, 2018)
despite evidence pointing to the contrary: “Students who expect to receive a
good grade evaluate a teacher more positively than students who expect to re-
ceive a poor grade” (Stroebe, 2020, p. 227). This raises serious questions about
the claim that the L2 learning experience is the “best predictor” of learning out-
comes (for a discussion, see Al-Hoorie, 2017, pp. 160-166).

As for the other variables in the model, most must not be controlled (see
Cinelli et al., 2022). Both intrinsic motivation and its descendant curiosity must
not be controlled since this will remove the effect the researcher is interested
in. An exception would be applying the front-door criterion if its assumptions
are met as discussed above. Similarly, it would be a bad idea to control for
teacher ability beliefs or teacher satisfaction, as this will reduce variation in
teacher support (and, in the case of teacher ability beliefs, it may even lead to
bias amplification). One situation where it might be useful to control for teacher
ability beliefs is if it can be argued that it satisfies the assumptions of an instru-
mental variable as explained previously. Controlling for student ability beliefs is
also harmful if it is a descendant of the dependent variable (also called a de-
scendant of a virtual collider). Some researchers might argue that the variable
“student ability beliefs” is not a descendant of achievement but a mediator be-
tween teacher support and achievement, but this still renders it identical to in-
trinsic motivation where controlling for it removes the intended effect in this
particular model. The only variable that the researcher may control for is prior
student achievement, which will improve the precision of the estimate.

This example shows that many types of variables are harmful if included as
predictors. As explained above, researchers may argue for a different model con-
figuration, and this is fine as long as the modified model is presented transpar-
ently and defended based on theoretical and empirical grounds. Variables should,
of course, not simply find themselves in a model for random reasons to satisfy a
capricious researcher. The same d-separation principles will apply to this modified,
or improved, model. And in fact, this is how scientific knowledge accumulates in-
crementally. However, following conventional wisdom, the researcher may be
tempted to simply use all of these variables, along with a couple more bandwagon
variables-du-jour, as “predictors.” This will arguably make the results meaningless.

In the second example, imagine that a researcher is now interested in
finding out the contribution of ability beliefs and anxiety to student achieve-
ment (see Figure 10). There are different modeling possibilities for the relation-
ships among these three variables, and each model requires a different data an-
alytic approach. The relationship could be that of full mediation (see Figure 10,
panel a) or partial mediation (see Figure 10, panel b). In these two cases, the
researcher must not control for the mediator, unless it is explicitly modeled as a
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mediator to compute direct and indirect effects — assuming relevant assump-
tions hold. According to Figure 10, panel c, the relationship is confounded, and
therefore the researcher must control for the confounder in order to obtain an
accurate estimate. According to Figure 10, panel d, however, the relationship
contains a collider, and so the researcher must not control for that collider to
avoid opening a back-door path. Thus, with an apparently simple three-variable
model, a number of possibilities emerge, each with a very different substantive
interpretation. The researcher must first examine available theory and evidence,
construct an explicit DAG of the relationships among the variables, defend these
relationships, and then use the appropriate analytic procedures.

a) Full mediation models c) Confounder models

Ability beliefs
Ability beliefs ——> Anxiety e / \

Anxiety —> Ability beliefs ——> Anxiety Achievement

- \

Ability beliefs ———————> Achievement

b) Partial mediation models d) Collider models

Anxiety 5 .
/ \ Anxiety Achievement
\ — /

Ability beliefs ————————————>  Achievement

/ Ability beliefs \ Ability beliefs —————» Achievement

Anxiety Achievement Anxiety

Figure 10 a) full mediation models; b) partial mediation models; ¢) confounder
models, d) collider models

To summarize, researchers interested in incorporating the ideas pre-
sented in this article should follow three steps. In the first step, the researcher
should think causally, not merely correlationally, at the study design stage. They
should draw from theory, evidence, and experience to create and share a DAG
representing the causal web of all variables relevant to their investigation to the
best of their ability, including variables that will not be assessed in the study.
The DAG may be drawn by hand or using specialized software. In the second
step, the researcher should consider whether any variables, again whether as-
sessed or not, might function as a confounder — or a common cause of the in-
dependent and dependent variables — or a descendant of a confounder. Such
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variables need to be included in the model and controlled for. If this is not pos-
sible, it still needs to be explicitly acknowledged as a limitation to causal infer-
ence resulting from this study design. In the third step, the researcher should
consider whether any of the variables included in the study design function as a
collider, or a common effect of both the independent and dependent variables.
This includes descendants of colliders, as well as virtual colliders (descendants
of the dependent variable). These variables must not be controlled for in the
study design, whether through sample selection or stratification. Additionally,
the researcher should consider whether any variable is a mediator or a descend-
ant of a mediator and avoid controlling for it in a way that blocks the causal path.
This level of causal transparency helps future research build on findings resulting
from this study design cumulatively and meaningfully, and without reliance on
mere correlations. One implication of this approach is that once a third variable
(e.g., aptitude, prior ability) is established as a confounder in the relationship
between an independent variable (e.g., motivation) and a dependent variable
(e.g., achievement), the causal inference from any study that does not control
for that confounder becomes suspect. Future research should therefore include
such confounders to obtain a more precise estimate of the causal relationship.

5. Conclusion

A primary aim of this article is to call for a move in ID in language learning research
from a thoughtless kitchen-sink approach to an informed variable selection pro-
cess. In line with the principles of open scholarship, this variable selection process
should be transparently communicated to the reader, preferably with a visual DAG.
This cannot be substituted with replication, as (direct) replication is not designed
to address conceptual ambiguities — and if anything, successful replicability using
flawed designs may give the illusion that the results are valid (Al-Hoorie et al.,
2024). On the other hand, conceptual replication, that intentionally re-examines
design and variable selection, can address these ambiguities, especially when tak-
ing into account the level of theoretical maturity in the area of investigation (see
substantiation framework; Al-Hoorie, Hiver, et al., 2023).

This article has also argued that similar problems arise through sampling
procedures. Endogenous selection bias occurs when the researcher, intention-
ally or unintentionally, samples only a subset of the population before conduct-
ing the study, or loses participants (e.g., exclusion, noncompliance, or attrition)
after conducting the study. Such preferential selection can introduce collider
bias because the researcher, in effect, could be conditioning on (i.e., controlling
for) an additional variable. This is a tricky situation because there is no explicit
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variable that the researcher is controlling for in the analysis, but it is conditioned on
by design. Statistics cannot fix this problem. An example is selecting participants
based on age or location (e.g., exclusively college students or WEIRD language learn-
ers) when the phenomenon under investigation is relevant to a broader section of
the population. Procedures like multi-site replications cannot alleviate this problem
if the participants sampled still do not represent the full range of the intended pop-
ulation. Thus, a multi-site replication may show that an effect replicates consistently,
but this finding may still lack internal validity (flawed design) as well as external va-
lidity (not generalizable to the intended population).

Bigger is not always better. Nor does explaining more of the variance neces-
sarily mean a better model. Stripping causal inference from research findings
reduces them to mere mindless correlation-based predictions. In a causal web,
there are typically many more (spurious) correlations than there are genuine
causal relationships. Science progresses through thoughtful reflection on, cri-
tique of, and building on existing knowledge, whether experimentally or obser-
vationally, rather than through blind accumulation of correlations. We call on
our colleagues and fellow researchers investigating IDs in language learning to
take stock of available evidence-based knowledge, to eschew bandwagony var-
iable-of-the-day approaches that have proliferated the field, and to return to the
basic yet difficult work of explicitly modeling causal relationships through theo-
retically sound and careful empirical analysis.
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