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Abstract 
Network science is an emerging discipline drawing from sociology, computer sci-

ence, physics and a number of other fields to examine complex systems in economi-

cal, biological, social, and technological domains. To examine these complex sys-

tems, nodes are used to represent individual entities, and links are used to represent 

relationships between entities, forming a web-like structure, or network, of the entire 

system. The structure that emerges in these complex networks influences the dynam-

ics of that system. We provide a short review of how this mathematical approach has 

been used to examine the structure found in the phonological lexicon, and of how 

subsequent psycholinguistic investigations demonstrate that several of the structural 

characteristics of the phonological network influence various language-related pro-

cesses, including word retrieval during the recognition and production of spoken 

words, recovery from instances of failed lexical retrieval, and the acquisition of 

word-forms. This approach allows researchers to examine the lexicon at the micro-, 

meso-, and macro-levels, holding much promise for increasing our understanding of 

language-related processes and representations. 
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1. Introduction to Network Science 

 

Network science is an emerging discipline that draws on techniques devel-

oped in sociology, computer science, physics, and a number of other fields to 

examine complex systems in economical, biological, social, and technologi-

cal domains (Barabási 2009). Nodes (or vertices) are used to represent indi-

vidual entities, and connections (or edges) are used to represent relationships 

between entities, forming a web-like structure, or network, of the entire sys-

tem. In the psychological and brain sciences, networks have been used to re-
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conceptualize the diagnostic criteria of psychological disorders (Borsboom 

and Cramer 2013), with nodes representing symptoms and connections link-

ing symptoms that co-occur, and to better understand connectivity of various 

regions in the brain (Sporns 2010). 

In the language sciences, the structure of the mental lexicon has been ex-

amined in a variety of ways, including networks where the links between 

words represent semantic relationships (Griffiths et al. 2007; Hills et al. 

2009; Steyvers and Tenenbaum 2005), and networks where the links between 

words represent phonological relationships (Vitevitch 2008; Arbesman et al. 

2010). (A useful bibliography of research using networks to study various 

aspects of language can be found at: http://www.lsi.upc.edu/~rferrericancho/ 

linguistic_and_cognitive_networks.html.) 

The structure of a network can be measured in a number of ways at the 

micro-level, the meso-level, and the macro-level. At the micro-level one can 

analyze individual agents in the network. Using macro-level measures one 

can describe the overall structure of the network. Finally, at the meso-level 

one can describe the network at scales between the micro- and macro-levels. 

An important tenet of network science is that the structure of a network in-

fluences the dynamics that take place in that network (Watts and Strogatz 

1998). The remainder of this review will summarize some of the analyses 

and psycholinguistic experiments that have examined the structure found 

among the phonological word-forms in the mental lexicon (Vitevitch 2008), 

and how the structure of that lexical network influences language-related 

processes. 

2. The structure of the mental lexicon 

 

Vitevitch (2008) applied the tools of network science to the mental lexicon 

by creating a network with approximately 20,000 English words as nodes. A 

connection was placed between nodes if the addition, deletion, or substitution 

of a phoneme turned one word into the other. Other logical and linguistically 

motivated ways to define phonological similarity exist, including connecting 

a longer word to shorter words that are contained in that word (e.g., catalog 

would connect to cat, a, at, log, etc.), connecting words that share mor-

phemes (e.g., dog would connect to dogs, dogged, doggedly, etc.), or con-

necting words that contain phonetically related phonemes (e.g., bull would 

connect to veer; see Goldinger et al. 1992). We used the “one-phoneme met-
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ric” because of its simplicity and fairly widespread use as a way to opera-

tionalize “phonological similarity” (e.g., Luce and Pisoni 1998). Despite the 

simplicity of this metric, it seems to adequately capture what language users 

implicitly use to decide if two words are phonologically similar (see Luce 

and Large 2001; Otake and Cutler 2013). Figure 1 shows a small portion of 

the network that is created by using the one-phoneme metric to connect pho-

nologically similar word-forms (see Hills et al. 2009, and Steyvers and 

Tenenbaum 2005 for networks based on semantic rather than phonological 

relationships among words). 

 

 

Figure 1. A sample of words from the phonological network analyzed in Vitevitch 

(2008). The word speech and its phonological neighbors (i.e., words that differ by the 

addition, deletion or substitution of a phoneme) are shown. The phonological neigh-

bors of those neighbors (i.e., the 2-hop neighborhood of speech) are also shown. 

 

 

Network analyses of the English phonological network revealed several 

noteworthy characteristics about the macro-structure of the mental lexicon. 

Vitevitch (2008) found that the phonological network had: (1) a large, highly 
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interconnected component, as well as many islands (words that were related 

to each other – such as faction, fiction, and fission – but not to other words in 

the large component) and many hermits, or words with no neighbors (known 

as isolates in the network science literature); the largest component exhibited 

(2) small-world characteristics (“short” average path length and, relative to a 

random graph, a high clustering coefficient; Watts and Strogatz 1998), (3) as-

sortative mixing by degree (which means a word with many neighbors tends 

to have neighbors that also have many neighbors; Newman 2002), and (4) a 

degree distribution that deviated from a power-law. In the phonological net-

work examined in Vitevitch (2008), the degree distribution indicates how 

many nodes have x phonological neighbors. Vitevitch (2008) found that there 

were many nodes in the network with few phonological neighbors, and only 

a few words with many phonological neighbors. In many real-world net-

works the degree distribution can be best-fit by a power-law (Albert and 

Barabási 2002) – that is, when the axes of the degree distribution are plotted 

in a logarithmic scale, a straight line is observed – but that was not the case 

for the phonological network examined in Vitevitch (2008). 

Arbesman et al. (2010) found similar features in phonological networks 

of Spanish, Mandarin, Hawaiian, and Basque, and elaborated on the signifi-

cance of these characteristics. For example, the giant component (i.e., the 

largest group of nodes that are connected to each other) of the phonological 

networks contained, in some cases, less than 50% of the nodes; for compari-

son, social networks have been observed with giant components that contain 

over 90% of the nodes. Arbesman et al. (2010) also noted that assortative 

mixing by degree is found in social networks. Recall that assortative mixing 

by degree means a word with many neighbors tends to have neighbors that 

also have many neighbors (in the context of a social network, a person with 

many friends has as friends people who also have many friends). The typical 

values for assortative mixing by degree in social networks range from .1–.3, 

whereas the phonological networks examined by Arbesman et al. (2010) 

were as high as .7.  

Finally, most of the languages examined by Arbesman et al. exhibited 

degree distributions fit by truncated power-laws, which resembles two 

straight lines joined together when the axes of the degree distribution are 

plotted in a logarithmic scale (but the degree distribution for Mandarin was 

better fit by an exponential function). The degree distribution is a convenient 

way to statistically characterize the topology of large networks, and is essen-

tially a frequency distribution that summarizes the number of nodes in a net-
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work that have x number of connections. Networks with degree distributions 

that follow a power-law are known as scale-free networks. Scale-free net-

works have attracted attention because of certain structural and dynamic 

properties, such as remaining relatively intact in the face of random failures 

in the system, but becoming vulnerable when attacks are targeted at well-

connected nodes (Albert and Barabási 2002; Albert et al. 2000). That is, if a 

system like the power grid that supplies electricity to a nation has a random 

transformer malfunction, the entire country will not experience a power out-

age (i.e., the system remains intact). However, if terrorists were to sabotage 

several of the most connected electrical transformers in the system, it is like-

ly that most of the nation would experience a power outage (i.e., a vulnera-

bility in the system is observed). This pattern of stability/vulnerability is typ-

ical of scale-free systems (i.e., those with degree distributions that follow a 

power-law), but systems with degree distributions that are best-fit by other 

functions exhibit other characteristics of stability/vulnerability; see work by 

Amaral et al. (2000) for the implications on the dynamic properties of net-

works with degree distributions that deviate from a power-law in certain 

ways.  

Observing similar features in the networks of several languages 

(Arbesman et al. 2010) is somewhat surprising given the variety in the lin-

guistic properties of the languages examined, and the various “families” from 

which the languages were sampled. For example, English is from the Ger-

manic branch of Indo-European languages, whereas Spanish is from the Ro-

mance branch of Indo-European languages. Mandarin is not only a Sino-

Tibetan language, but it further differs from English, Spanish, Hawaiian and 

Basque in that it uses tones to convey word meanings (n.b., tone was not rep-

resented in the phonological network, however). Finally, Hawaiian is an Aus-

tronesian language with a phoneme inventory that is smaller than the inven-

tories found in English, Spanish, Mandarin, and Basque. Basque is, of 

course, notable for being a linguistic isolate, or not known to be related to 

any other language.  

Observing similar network features across a variety of languages may 

indicate that such networks capture important and relevant information about 

the similarity relationships that exist among phonological word-forms in the 

mental lexicon. Given the fundamental assumption of network science that 

the structure of a network influences processing, it is important to examine 

how the network features described above may influence various language 

processes, which is the focus of the next section. 
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3. The influence of the structure on processing 

 

Previous studies that have examined the influence of several network 

measures on language-related processing will be summarized in this section. 

The research summarized in this section is a somewhat biased sample (focus-

ing on work coming mostly from our lab), and is by no means a complete 

sampling of such work. Our goal is simply to give the reader a taste of what 

the tools of network science can offer language scientists. The network 

measures that will be considered include: degree, clustering coefficient, as-

sortative mixing by degree, path length, and nodes that occupy “key” posi-

tions in the network (Borgatti 2006). Table 1 provides a brief definition of 

these network metrics. 

 

 
Table 1. Brief descriptions of the network measures discussed in the text. 

 

Network measure Scale Definition 

Degree Micro-level The number of connections incident 

to a node. 

Clustering Coefficient Micro-level The extent to which the neighbors 

of a given word are also neighbors 

of each other in a phonological net-

work like that in Vitevitch (2008). 

Path Length Meso-level The number of connections that one 

must traverse to get from one node 

to another node in a network.  

Community Meso-level Highly interconnected sub-groups 

of nodes found in a network.  

Assortative mixing by degree Macro-level Highly connected nodes tend to 

connect to other highly connected 

nodes, and less-connected nodes 

tend to connect to nodes that are al-

so less-connected.  

Keyplayers/keywords Macro-level Nodes whose removal results in the 

network fracturing into several 

smaller parts. 
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3.1. Micro-level: Degree 

Degree refers to the number of connections incident to a given node. In the 

present review we discuss degree as a micro-level measure (i.e., a measure of 

individual nodes), but creating a frequency distribution of nodes varying in 

degree in a network (known as a degree distribution) can provide a macro-

level measure of the overall network.  

In the phonological network of Vitevitch (2008), degree corresponds to 

the number of word-forms that sound similar to a given word. In the field of 

psycholinguistics, the number of words that sound similar to a given word is 

better known as phonological neighborhood density. A word with few simi-

lar sounding words is said to have a sparse phonological neighborhood (or 

low degree), whereas a word with many similar sounding words is said to 

have a dense phonological neighborhood (or high degree). 

The discussion of the micro-level measure of network structure known as 

degree is meant to highlight an interesting point of convergence between 

conventional psycholinguistics and network science, not to suggest that net-

work science discovered something that is already well-known in psycholin-

guistics. Indeed, a number of studies have demonstrated that degree/   phono-

logical neighborhood density influences a variety of language-related pro-

cesses. 

For example, in studies of spoken word recognition, Luce and Pisoni 

(1998) found that English words with sparse phonological neighborhoods 

(low degree) are responded to more quickly and accurately than words with 

dense phonological neighborhoods (high degree). (See Vitevitch and 

Rodríguez 2005 for a different result in Spanish.) In studies of spoken word 

production, Vitevitch (2002) found that English words with dense phonologi-

cal neighborhoods (high degree) are named more quickly and accurately than 

words with sparse phonological neighborhoods (low degree). (See Vitevitch 

and Stamer 2006 for a different result in Spanish.) 

In the case of learning new words in English, corpus analyses (Charles-

Luce and Luce 1990) and experiments using nonsense words that conform to 

the phonotactics of English (Storkel 2004) both suggest that it is “easier” to 

learn new words if they sound similar to many known words in the lexicon. 

That is, easily learned novel words have dense phonological neighborhoods 

or high degree. Finally, Roodenrys et al. (2002) showed that redintegration –

that is, the use of representations in long-term memory to reconstruct repre-

sentations in short-term memory – was more effective for words with dense 
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phonological neighborhoods (high degree) than for words with sparse phono-

logical neighborhoods (low degree). The conceptual convergence of phono-

logical neighborhoods/degree suggested to researchers in our lab that it might 

be worthwhile to examine how other network science measures of the struc-

ture of the mental lexicon influence various language-related processes. 

 

3.2 Micro-level: Clustering Coefficient 

In the context of a phonological network like that in Vitevitch (2008), (local) 

clustering coefficient, a micro-level network metric, measures the extent to 

which the neighbors of a given word are also neighbors of each other. Note 

that the mean value of the local clustering coefficient of each node in the 

network can be computed, providing a macro-level measure of the network. 

(This macro-level measure is one of the measures – the other measure being 

average path-length – used to classify a real-world network as having small-

world characteristics instead of being either a regular or a random graph.) 

When clustering coefficient is low, few of the neighbors of a given word are 

neighbors of each other. When clustering coefficient is high, many neighbors 

of a given word are also neighbors with each other. 

More precisely, local clustering coefficient, C, is computed: 

 

 

ejk refers to the presence of a connection (or edge) between two neighbors (j 

and k) of node i, |...| is used to indicate cardinality, or the number of elements 

in the set (not absolute value), and ki refers to the degree (i.e., neighborhood 

density) of node i. By convention, a node with degree of 0 or 1 (which results 

in division by 0 – an undefined value) is assigned a clustering coefficient 

value of 0. Thus, the (local) clustering coefficient is the proportion of con-

nections that exist among the neighbors of a given node divided by the num-

ber of connections that could exist among the neighbors of a given node.  

Although degree/neighborhood density and clustering coefficient, C, are 

conceptually similar, it is important to note that they are, by definition, dis-

tinct concepts. In psycholinguistic experiments examining the role of C on 

processing, neighborhood density/degree was controlled in the stimuli. For 
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example, in studies of spoken word recognition Chan and Vitevitch (2009) 

found that words with low C were responded to more quickly than words 

with high C. They suggested that words with low C have neighbors that tend 

to be related to other words elsewhere in the network. This relationship re-

sults in activation being broadly dispersed to the rest of the network, allow-

ing the target word to “stand out” from its closest competitors. In contrast, 

words with high C have neighbors that tend to be related to other neighbors 

of the target word, resulting in activation being trapped in a more restricted 

area of the network, and making it difficult to distinguish the target word 

from the neighbors. 

The influence of C on word recognition has been replicated in a study of 

visual word recognition (Yates 2013). And, importantly, Vitevitch et al. 

(2011) observed independent effects of degree/neighborhood density and of 

clustering coefficient in their computer simulation of word recognition pro-

cesses, which employed activation diffusing through a network representa-

tion of the lexicon.  

Chan and Vitevitch (2010) observed a similar influence of C on pro-

cessing in the case of speech production. That is, words with low C were 

named more quickly and accurately than words with high C. A similar expla-

nation based on the dispersion of activation for words with low C versus the 

trapping of activation for words with high C accounted for the speech pro-

duction findings. 

Vitevitch et al. (2012) further explored the dispersion of activation for 

words with low C versus the trapping of activation for words with high C in 

the context of long-term and short-term memory. In one experiment they 

used the phonological false memory paradigm (Sommers and Lewis 1999; 

see Roediger and McDermott 1995 for semantic false memories) to explore 

long-term memory processes. In the phonological false memory paradigm 

words such as at, scat, mat, cut, and cap are presented to participants for 

study. In subsequent recognition tasks, participants are likely to indicate that 

the word cat appeared in the study list, when in fact it did not (Sommers and 

Lewis 1999).  

In the phonological false memory experiment in Vitevitch et al. (2012) 

the phonological neighbors of words with high C and with low C were pre-

sented to participants. For words with high C, it was predicted that activation 

would tend to re-circulate amongst the neighbors, whereas for low C words 

activation would tend to disperse to the unstudied word with low C, produc-

ing more false memories for words with low C than for words with high C. 
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The results of the phonological false memory experiment (and of a recogni-

tion memory task) confirmed those predictions.  

Vitevitch et al. (2012) also examined the process of redintegration, in 

which representations in long-term memory are used to reconstruct decaying 

representations in short-term memory. In a serial recall task, in which partic-

ipants heard a list of 6 words that were either high or low in C, they found 

higher recall for lists comprised of high C words than for lists comprised of 

low C words. In contrast to the previous studies, the re-circulation of activa-

tion amongst words with high C was now beneficial for processing by facili-

tating the reconstruction of decayed representations in short-term memory, 

whereas the dispersion of activation associated with words with low C pro-

vided little support to the decayed representations in short-term memory.  

 

3.3. Meso-level: Paths through the lexical network 

A path in a network refers to the (number of) connections that one must trav-

erse to get from one node to another node in a network. In the present review 

we categorize the path (or the length of the path) in a network as a meso-

level measure that describes the network between the micro-level (which de-

scribes individual nodes) and the macro-level (which describes the overall 

structure of the entire network). However, like degree and clustering coeffi-

cient, when a mean value is computed path-length can also be categorized as 

a macro-level measure.  

Work by Iyengar et al. (2012) in a network of orthographic word-forms 

suggests that participants can use their knowledge of the paths between 

words to navigate from one word to another disparate word. Iyengar et al. 

used a game called word-morph, in which participants were given a word, 

and asked to form a disparate word by changing one letter at a time to form 

intermediate words. For example, when asked to “morph” the word bay into 

the word egg participants might have changed bay into bad-bid-aid-add-ado-

ago-ego and finally into egg. Once participants in this task identified certain 

“landmark” words in the lexicon the task of navigating from one word to an-

other became trivial, enabling the participants to solve subsequent word-

morph puzzles very quickly. The time it took to find a solution dropped from 

10-18 minutes in the first 10 games, to about 2 minutes after playing 15 

games, to about 30 seconds after playing 28 games. Thus, knowledge of the 
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paths between words enabled participants to quickly navigate the lexical 

network.  

Similarly, in an examination of the phonological network, Vitevitch et al. 

(in press) found evidence for paths existing between words during the mis-

perception of spoken words. In a naturally occurring slip of the ear, a listener 

hears a word, but does not perceive the word that was uttered. Instead the lis-

tener perceives a word that is phonologically similar to the uttered word. As a 

laboratory analogue of what happens when one experiences a slip of the ear, 

Vitevitch et al. presented participants with an English word over a pair of 

headphones and asked participants to respond with the first word that came 

to mind that sounded like the word they heard (see Luce and Large 2001). In 

the phonological associate task – a variant of the well-known semantic asso-

ciate task – participants were allowed to define for themselves what “sound-

ed like” meant, thereby allowing the researchers to explore the parameters 

that listeners may use (implicitly) to define phonological similarity.  

Two results from the phonological associate task used in Vitevitch et al. 

(in press) are relevant to the present discussion of paths in the lexical net-

work. First, about 80% of the responses were 1 link away from the stimulus 

word. That is, the response differed from the stimulus word by a single pho-

neme. Importantly, the location of the phoneme change was distributed 

across positions in the word, suggesting that participants did not adopt the 

naïve strategy of simply producing a word that rhymed with the stimulus 

word.  

Second, responses that differed by more than one phoneme tended to be 

connected to the stimulus word by a path of real words in the lexicon. The 

existence of lexical intermediaries raises some concerns about measures of 

word-form similarity that ignore such items, such as the Orthographic Le-

venshtein Distance-20 (OLD-20; Yarkoni et al. 2008), and the Phonological 

Levenshtein Distance-20 (PLD-20; Suárez et al. 2011). In OLD-20/PLD-20, 

Levenshtein distance is computed between a target word and all other words 

in the lexicon. OLD-20/PLD-20 is then the mean edit distance (i.e., the num-

ber of letter or phoneme changes) in the 20 closest neighbors. The computa-

tions of OLD-20/PLD-20 do not consider whether real-word intermediaries 

exist or not; the measure only considers the number of letter/phoneme 

changes (respectively) that are required to turn one word into another. How-

ever, the work of Iyengar et al. (2012) and of Vitevitch et al. (in press) sug-

gest that even distant lexical neighbors tend to be connected to a word via a 

path of real words, raising questions about the psychological validity of met-
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rics such as OLD-20 and PLD-20 that do not consider the influence of these 

lexical intermediaries. 

 

3.4. Meso-level: Community structure 

Recall that the meso-level describes structures that lie between the micro-

level (which describes individual nodes) and the macro-level (which de-

scribes the overall structure of the entire network). At the meso-level re-

searchers often look for evidence of community structure. That is, within the 

whole network, do enclaves or sub-groups of nodes exist, such that the nodes 

within a group (or community) are more highly interconnected with each 

other than they are to nodes in other groups? 

Communities in a larger network have been observed in the human brain, 

in social networks, and in the World Wide Web (Porter et al. 2009). Siew 

(2013) examined the giant component of the phonological network described 

in Vitevitch (2008), and found 17 communities using a common community 

detection technique developed by Girvan and Newman (2002). The commu-

nities ranged in size from 31 to 697 words. Interestingly, the larger communi-

ties tended to consist of shorter, more frequent words of high degree and ear-

lier age of acquisition, whereas smaller communities tended to consist of 

longer, less frequent words of low degree and later age of acquisition. This 

pattern was similar to the pattern found in the phonological network overall – 

the giant component contains shorter more frequent words with high degree, 

the lexical islands tend to be slightly longer and lower in frequency and de-

gree, and the lexical hermits tend to be longer still, with even lower word 

frequency (and degree = 0) – suggesting a remarkable self-similarity in the 

phonological network across scales; that is, certain features of the phonologi-

cal network appear when you look at the whole system, or at a smaller part 

the system. 

The importance of community structure can be determined by examining 

the constituents of the various communities to see what the members of a 

community have in common, and how the constituents of one community 

differ from the constituents of other communities. Siew (2013) observed that 

different communities tended to contain certain sequences of phonological 

segments. For example, in one community the most common sequences of 

phonological segments were /ŋk/, /ɪŋ/, and /rɪ/, and were found in words like 

brink, drink and wrinkle. Siew suggested that knowledge of phonotactic in-
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formation may emerge from lexical representations rather than from separate 

representations of phonological segments and sequences of segments as has 

been proposed in certain models of spoken word recognition (e.g., Shortlist; 

Norris, 1994). That is, processing focused on the micro-level of the network 

(i.e., on independent lexical representations) might result in “lexical effects” 

such as the commonly observed neighborhood density effects or word fre-

quency effects, whereas processing focused on the meso-level of the network 

might result in phonotactic probability effects being observed (e.g., Vitevitch 

and Luce 2005; Vitevitch 2003). This novel insight provided by the analysis 

for community structure provides an alternative (and, perhaps, more parsi-

monious) account of neighborhood density and phonotactic probability ef-

fects observed in the literature (Vitevitch and Luce 2005; Vitevitch 2003). 

Siew (2013) further suggested that the community structure of the giant 

component might play a role in spoken word recognition by limiting the 

spread of activation in the network, thereby constraining the number of pos-

sible lexical competitors. Recall that Vitevitch (2008) observed a small-world 

structure in the giant component of the phonological network. Further recall 

that one of the defining features of small-world networks is that (on average) 

a very short path exists between any two nodes in the network, implying that 

activation spreading in a network will very quickly activate the entire net-

work. The community structure in the phonological network observed by 

Siew (2013) may keep activation localized within a community and slow its 

progress to other communities, thereby reducing the possibility of rampant 

activation of the mental lexicon.  

Although the speculations of Siew (2013) remain to be tested empirical-

ly, the ideas put forward are novel and provocative. Furthermore, the ideas 

put forward by Siew show the innovative predictions that can be generated 

when the tools of network science are employed to examine psycholinguistic 

processes and representations. 

 

3.5. Macro-level: Assortative mixing by degree 

Assortative mixing by degree is a macro-level metric that refers to the ten-

dency in a network for a highly connected node to be connected to other 

highly connected nodes (Newman 2002), and for less-connected nodes to 

connect to nodes that are also less-connected. In other words, when looking 
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at the network overall, there is a positive correlation between the degree of a 

node and the degree of its neighbor.  

Assortative mixing by degree is often observed in social networks 

(Newman 2002). Note that a negative correlation between the degree of a 

node and the degree of its neighbors is also possible, and is known as disas-

sortative mixing by degree. Disassortative mixing by degree is often found in 

networks representing technological systems, like the World Wide Web 

(Newman 2002). Networks with a correlation of zero between the degree of a 

node and the degree of its neighbors are also possible, and also have been 

observed (Newman 2002).  

Mathematical simulations by Newman (2002) found that network con-

nectivity (i.e., the existence of paths between pairs of nodes) was easier to 

disrupt (by a factor of five to ten) by removing nodes with high-degree in 

networks with disassortative mixing than in networks with assortative mixing 

by degree. In other words, networks with assortative mixing by degree are 

better able to maintain processing pathways than networks with disassorta-

tive mixing by degree in the face of targeted attacks to the system. In the 

context of a social network representing a criminal organization a “highly 

connected” node (representing a criminal in that organization) could be re-

moved from the system by arresting that person, thereby disrupting the flow 

of information and illicit goods through the criminal organization.  

Recall that Arbesman et al. (2010) observed values of assortative mixing 

by degree in the phonological networks of several languages that were as 

high as .7 (compared to values ranging from .1–.3 in social networks). They 

also examined how connected the network remained (indicating how well the 

network could continue to transmit information, etc.) in response to the re-

moval of nodes in the network of English words. In the context of a lexical 

network a node might be “removed” (at least temporarily) due to the tip-of-

the-tongue state, in which the phonological representation of a word fails to 

be retrieved. Arbesman et al. observed that the language network remained 

relatively well connected when nodes were removed at random and when the 

highly connected nodes were targeted for removal. This pattern of network 

resiliency differs from that typically seen in other networks, which tend to 

remain well-connected in the face of random attacks on the network, but 

quickly become disconnected when highly connected nodes are targeted for 

removal (e.g., Albert et al. 2002).  

Given the high levels of assortative mixing by degree, and the ability of 

the networks to remain intact despite random and targeted removal of nodes  
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Figure 2. Although node 1 is connected to the most nodes in the network (nodes 2–8) 

it is not a “key player” in the network, because its removal does not disconnect the 

network. However, removal of node 8 (a “key player”) results in the network 

fracturing into two smaller components that are disconnected from each other. 

Adapted from Borgatti (2006). 

 

 

that was observed in the language networks examined by Arbesman et al. 

(2010), Vitevitch et al. (2014) examined instances of lexical retrieval failures 

in a computer simulation (jTRACE; Strauss et al. 2007), real lexical retrieval 

failures from a slips-of-the-ear corpus (Bond 1999), and elicited lexical re-

trieval failures from three psycholinguistic experiments for evidence of as-

sortative mixing by degree. In all cases the same result was observed: a posi-

tive correlation was found between the degree/neighborhood density of the 

stimulus word and the degree/neighborhood density of the phonological 

neighbors that were (erroneously) retrieved when lexical retrieval failed. 

These results suggest that failed lexical retrieval, a less-commonly examined 

aspect of language processing, is influenced by the macro-level structure of 

the lexical network known as assortative mixing by degree. These findings 

highlight how the network approach can be used to examine less-commonly 

asked questions in psycholinguistics, and how the account provided for the 

observed results (i.e., the structure of the lexical network influences pro-

cessing) can also account for a wide-range of other findings. 

 

3.6. Macro-level: Key players in a network/keywords in the lexicon 

Key players are “important” nodes in a network. In Figure 2, node 1 appears 

to be very “important” because it connects to many other nodes in the net-
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work. What makes key players so “important” is that the removal of such 

nodes results in the network fracturing into several smaller components (or 

connected groups of nodes that are not connected to other groups of nodes). 

Removing node 1 (and its connections) from the network does not “fracture” 

the network (or in network science terminology, partition the network). In-

formation (or disease, etc.) can still get from node 2 to nodes 8–12; the path-

way from node 2 to nodes 8–12 is longer now, but a path still exists between 

those nodes.  

Now consider what happens if node 8 (and its connections) is removed 

from the network. We are now left with two smaller components (one com-

prised of nodes 1–7, and the other comprised of nodes 9–12) that cannot 

communicate with each other because there is no path that connects them, re-

sulting in a much more significant disruption to the system than what occurs 

when node 1 is removed. 

Goldstein and Vitevitch (2014) found a set of such nodes in the phono-

logical network, and selected another set of words (i.e., foils) from the lexical 

network that were comparable to the “keywords” on a number of standard 

psycholinguistic characteristics (word length, word frequency, familiarity, 

neighborhood density/degree, phonotactic probability, etc.) and network 

characteristics (clustering coefficient, closeness centrality, etc.). Examples of 

the keywords include: fish, misty, pocket, spring and tense; examples of the 

foils include: firm, mystic, party, squirt, and test. Goldstein and Vitevitch 

(2014) presented the keywords and foils as stimuli in three conventional 

tasks commonly used in psycholinguistics: perceptual identification task, au-

ditory naming task, and auditory lexical decision task. Across tasks the re-

sults showed that the keywords were responded to more quickly and accu-

rately than the words that were comparable to the keywords in their psycho-

linguistic and network characteristics.  

The results of Goldstein and Vitevitch (2014) – indeed, of all the studies 

summarized above – suggest that the characteristics of individual words that 

language scientists typically examine – word frequency, word length, neigh-

borhood density, phonotactic probability – are not the only things that influ-

ence lexical processing. Importantly, the relationships that exist among 

words in the lexicon also matter. The structure that emerges in the lexical 

network from the similarity relations among words appears to influence a 

number of language-related processes, including word retrieval during the 

recognition and production of spoken words, recovery from instances of 
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failed lexical retrieval, and the acquisition of word-forms (see Goldstein and 

Vitevitch 2014). 

4. Summary 

 

One way to measure the structure of complex systems such as the mental lex-

icon at multiple scales – micro-, meso- and macro-level – is with the tools 

provided by network science. Important discoveries in the domains of biolo-

gy, technology, and social interaction have been made using the tools of this 

approach (for a brief review see Albert and Barabási 2002; Brandes et al. 

2013). The studies summarized in this brief review demonstrate that network 

science can lead to new discoveries in the psychological and linguistic sci-

ences as well. Although we did not discuss this issue in the present review, 

network science also provides a framework for examining changes in a sys-

tem on multiple time-scales, such as the development of language in an indi-

vidual (Hills et al. 2009), diachronic changes in a language over longer time 

scales, and even changes on a longer, evolutionary time-scale (Solé et al. 

2010). 

Network science holds much promise for various areas of psychology 

and the language sciences, and can be used to address a wide variety of prob-

lems and research questions. It is important to note, however, that network 

science is not a panacea. Researchers who desire to use the theoretical 

framework and analytic tools of network science should think carefully about 

how well entities and relationships among those entities in a given domain 

map onto nodes and connections in a network representation (see Valente 

2012 for a similar point regarding network interventions). 
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